Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 國際企業學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96532
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor連勇智zh_TW
dc.contributor.advisorYung-Chih Lienen
dc.contributor.author劉竣嘉zh_TW
dc.contributor.authorChun-Chia Liuen
dc.date.accessioned2025-02-19T16:23:37Z-
dc.date.available2025-02-20-
dc.date.copyright2025-02-19-
dc.date.issued2024-
dc.date.submitted2025-01-23-
dc.identifier.citationAkter, S., & Wamba, S. F. (2016). Big data analytics in E-commerce: a systematic review and agenda for future research. Electronic Markets, 26, 173-194.
Al Khaldy, M. A., Al-Obaydi, B. A. A., & al Shari, A. J. (2023, May). The impact of predictive analytics and AI on digital marketing strategy and roi. In Conference on Sustainability and Cutting-Edge Business Technologies (pp. 367-379). Cham: Springer Nature Switzerland.
Aydin, Z. E., & Ozturk, Z. K. (2021, March). Performance analysis of XGBoost classifier with missing data. In 1st Int. Conf. Comput. Mach. Intell., no.
Babin, B. J., Darden, W. R., & Griffin, M. (1994). Work and/or fun: measuring hedonic and utilitarian shopping value. Journal of consumer research, 20(4), 644-656.
Chen, H. (2023). Enterprise marketing strategy using big data mining technology combined with XGBoost model in the new economic era. Plos one, 18(6), e0285506.
Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794).
Christodoulopoulou, E. (2023). How to implement Big Data on Customer Behavior.
Gonzalez, Maria, and Fazle Rabbi. "Evaluating the impact of Big Data Analytics on personalized E-commerce shopping experiences and customer retention strategies." Journal of Computational Social Dynamics 8.2 (2023): 13-25.
Howard, E. (2007). New shopping centres: is leisure the answer?. International Journal of Retail & Distribution Management, 35(8), 661-672.
Kliestik, T., Kovalova, E., & Lăzăroiu, G. (2022). Cognitive decision-making algorithms in data-driven retail intelligence: consumer sentiments, choices, and shopping behaviors. Journal of Self-Governance and Management Economics, 10(1), 30-42.
Lenskold, J. D. (2002). Marketing ROI: Playing to win. Marketing Management, 11(3), 30.
Mooradian, T. A., & Olver, J. M. (1996). Shopping motives and the five factor model: an integration and preliminary study. Psychological Reports, 78(2), 579-592.
Saito, T., & Rehmsmeier, M. (2015). The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PloS one, 10(3), e0118432.
Zhang, Y. (2021, January). Prediction of customer propensity based on machine learning. In 2021 Asia-Pacific Conference on Communications Technology and Computer Science (ACCTCS) (pp. 5-9). IEEE.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96532-
dc.description.abstract本研究旨在深入探討人工智慧 (AI) 和機器學習技術在地方 (社區) 百貨公司行銷策略中的應用,尤其關注其對活動投資回報率 (ROI) 和客戶轉化率的影響。隨著數位行銷的發展,百貨公司愈發依賴精準行銷來提高營收,然而傳統行銷方式依然在某些情境中具有一定優勢。本研究的核心在於比較傳統行銷方式與 AI 技術驅動的精準行銷方法,以了解這些技術如何在實際環境中為企業帶來更高的回報。
研究設計一個為期兩週的美食展活動,並設立兩種不同的折價券發送方式進行 A/B 測試。第一種為傳統行銷方式,消費者可在百貨公司的 APP 中限時搶折價券,兌換成功後可於指定櫃位消費使用。此方式依賴於大眾推廣,且根據過去數據顯示,兌換率約為 50%。第二種方式則是利用 AI 模型,通過機器學習預測模型篩選出最有可能參與活動的顧客,將折價券直接發送給這些高潛力顧客,並通過推送通知提醒他們使用。這種精準行銷方式旨在提高行銷效益,同時降低折價券發送和推廣成本。
在模型訓練與應用的過程中,我們選用了 XGBoost 作為主要的機器學習算法。XGBoost 具有優越的效能和靈活性,特別適合處理大規模數據,並且能夠有效處理異質數據與缺失值。
研究結果顯示,通過 AI 精準行銷策略,百貨公司能夠顯著提升客戶轉化率和 ROI。相比傳統行銷方式,精準行銷不僅能夠降低行銷成本,還能精確鎖定高價值客戶群體,進一步提高行銷活動的投資回報率。具體來說,AI 驅動的行銷策略能更有效地圈選出潛在顧客,這些顧客的購買行為預測更為準確,從而達到提升營收的目標。尤其是在折價券發放環節,AI 技術能夠自動化推送策略,使得每張折價券的效益最大化。
然而,本研究也發現,傳統行銷方式在吸引新顧客方面依然具有一定的優勢。儘管精準行銷能有效識別高潛力顧客,並提升回購率,但對於首次參與活動的顧客或非會員顧客來說,傳統的廣告推廣依然能夠帶來不錯的效果。因此,未來的行銷策略應結合兩種方法,充分發揮精準行銷和傳統行銷的互補優勢。
zh_TW
dc.description.abstractThis study explores the application of Artificial Intelligence (AI) and machine learning technologies in the marketing strategies of local department stores, focusing on their impact on return on investment (ROI) and customer conversion rates. As digital marketing continues to evolve, department stores increasingly adopt precision marketing to boost revenue. However, traditional marketing methods retain certain advantages in specific scenarios. The core objective of this research is to compare traditional marketing approaches with AI-driven precision marketing techniques to evaluate their effectiveness in real-world environments.
A two-week food festival event was designed as the research framework, featuring two coupon distribution methods via an A/B test. The first approach utilized traditional marketing, where consumers could claim time-limited coupons through the department store’s app, redeemable at designated counters. This mass-promotion strategy achieved a redemption rate of approximately 50% based on historical data. The second approach applied an AI model, specifically XGBoost, to predict and target high-potential customers. Coupons were sent directly to these customers, supplemented with push notifications as reminders. This precision marketing strategy aimed to enhance marketing efficiency and minimize coupon distribution and promotional costs.
XGBoost was chosen as the primary machine learning algorithm due to its superior performance, flexibility, and ability to handle large-scale datasets, heterogeneous data, and missing values. The results indicate that AI-driven precision marketing significantly improves ROI and customer conversion rates. Compared to traditional methods, this approach reduces marketing costs while effectively targeting high-value customer groups, further optimizing the ROI of marketing campaigns. AI-based strategies demonstrated higher accuracy in predicting customer purchasing behavior, directly contributing to increased revenue. In addition, automated push strategies allowed for the maximization of each coupon’s effectiveness.
The study also highlighted the enduring value of traditional marketing methods in attracting new customers. While precision marketing effectively identifies high-potential customers and increases repurchase rates, traditional approaches remain effective for engaging first-time participants or non-member customers. Consequently, future marketing strategies should integrate both methods to capitalize on their complementary strengths and achieve comprehensive marketing success.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-19T16:23:37Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-19T16:23:37Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要...................................................... II
Abstract..................................................... IV
目次.......................................................... VI
圖次.......................................................... VII
表次.......................................................... VII中文摘要...................................................... II
Abstract..................................................... IV
目次.......................................................... VI
圖次.......................................................... VII
表次.......................................................... VII
第一章 緒論.................................................... 1
1.1 研究背景................................................... 1
1.1.1 傳統百貨過去的行銷手法..................................... 2
1.1.2 新型電商常用的行銷手法..................................... 3
1.1.3 成效區別 ................................................ 3
1.1.4 大數據時代的數位轉型....................................... 4
1.2 研究目的................................................... 4
第二章 研究問題................................................. 7
2.1 研究動機................................................... 7
第三章 研究方法................................................. 8
3.1 資料收集................................................... 8
3.1.1 顧客資料庫 &百貨公司 POS 系統數據........................... 8
3.1.2 市場調查與訪談資料......................................... 9
3.2 機器學習模型選擇與應用....................................... 12
3.2.1 模型選擇依據 ............................................ 12
3.2.2 模型訓練與驗證........................................... 13
3.2.3 模型評估標準 ............................................ 16
3.3 實驗設計.................................................. 18
第四章 資料實證分析............................................. 19
4.1 資料簡介&模型欄位整理....................................... 19
4.2 模型預訓練流程與結果......................................... 28
4.2.1 訓練資料與測試資料標籤..................................... 28
4.2.2 超參數優化............................................... 29
4.2.3 實驗預訓練結果............................................ 32
4.2.4 模型預測排序與切點選擇..................................... 34
4.2.5 重要特徵分析 ............................................. 37
4.3 實際廣告活動結果比較 A/B 測試................................. 42
第五章 結論與建議 ............................................... 48
5.1 研究結論.................................................... 48
5.2 管理意涵.................................................... 49
5.3 研究限制.................................................... 50
5.4 後續研究建議................................................. 52
參考文獻 ....................................................... 55
第一章 緒論.................................................... 1
1.1 研究背景................................................... 1
1.1.1 傳統百貨過去的行銷手法..................................... 2
1.1.2 新型電商常用的行銷手法..................................... 3
1.1.3 成效區別 ................................................ 3
1.1.4 大數據時代的數位轉型....................................... 4
1.2 研究目的................................................... 4
第二章 研究問題................................................. 7
2.1 研究動機................................................... 7
第三章 研究方法................................................. 8
3.1 資料收集................................................... 8
3.1.1 顧客資料庫 &百貨公司 POS 系統數據........................... 8
3.1.2 市場調查與訪談資料......................................... 9
3.2 機器學習模型選擇與應用....................................... 12
3.2.1 模型選擇依據 ............................................ 12
3.2.2 模型訓練與驗證........................................... 13
3.2.3 模型評估標準 ............................................ 16
3.3 實驗設計.................................................. 18
第四章 資料實證分析............................................. 19
4.1 資料簡介&模型欄位整理....................................... 19
4.2 模型預訓練流程與結果......................................... 28
4.2.1 訓練資料與測試資料標籤..................................... 28
4.2.2 超參數優化............................................... 29
4.2.3 實驗預訓練結果............................................ 32
4.2.4 模型預測排序與切點選擇..................................... 34
4.2.5 重要特徵分析 ............................................. 37
4.3 實際廣告活動結果比較 A/B 測試................................. 42
第五章 結論與建議 ............................................... 48
5.1 研究結論.................................................... 48
5.2 管理意涵.................................................... 49
5.3 研究限制.................................................... 50
5.4 後續研究建議................................................. 52
參考文獻 ....................................................... 55
-
dc.language.isozh_TW-
dc.subject機器學習zh_TW
dc.subject精準行銷zh_TW
dc.subject投資回報率zh_TW
dc.subject顧客轉化率zh_TW
dc.subjectXGBoostzh_TW
dc.subject百貨公司zh_TW
dc.subject人工智慧zh_TW
dc.subjectDepartment Storesen
dc.subjectAIen
dc.subjectMachine Learningen
dc.subjectPrecision Marketingen
dc.subjectReturn On Investment (ROI)en
dc.subjectCustomer Conversion Rateen
dc.subjectXGBoosten
dc.title地方百貨應用大數據與機器學習的消費者分析:精準行銷與傳統行銷手法比較zh_TW
dc.titleConsumer Analysis Using Big Data and Machine Learning in A Local Department Store: A Comparison of Precision Marketing and Traditional Marketing Methoden
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃奎隆;何筱文zh_TW
dc.contributor.oralexamcommitteeKwei-Long Huang;Hsiao-Wen Hoen
dc.subject.keyword人工智慧,機器學習,精準行銷,投資回報率,顧客轉化率,XGBoost,百貨公司,zh_TW
dc.subject.keywordAI,Machine Learning,Precision Marketing,Return On Investment (ROI),Customer Conversion Rate,XGBoost,Department Stores,en
dc.relation.page56-
dc.identifier.doi10.6342/NTU202500254-
dc.rights.note未授權-
dc.date.accepted2025-01-25-
dc.contributor.author-college管理學院-
dc.contributor.author-dept國際企業學系-
dc.date.embargo-liftN/A-
顯示於系所單位:國際企業學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved