Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 重點科技研究學院
  3. 積體電路設計與自動化學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96519
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor闕志達zh_TW
dc.contributor.advisorTzi-Dar Chiuehen
dc.contributor.author許嘉芯zh_TW
dc.contributor.authorChia-Hsin Hsuen
dc.date.accessioned2025-02-19T16:20:09Z-
dc.date.available2025-02-20-
dc.date.copyright2025-02-19-
dc.date.issued2025-
dc.date.submitted2025-02-05-
dc.identifier.citation[1] M. Murroni, M. Anedda, M. Fadda, P. Ruiu, V. Popescu, C. Zaharia, and D. Giusto, “6G—Enabling the New Smart City: A Survey,” Sensors, vol. 23, no. 17, 2023.
[2] J. Kassam, D. Castanheira, A. Silva, R. Dinis, and A. Gameiro, “A Review on Cell-Free Massive MIMO Systems,” Electronics, vol. 12, no. 4, 2023.
[3] A. Mishra, Y. Mao, O. Dizdar, and B. Clerckx, “Rate-Splitting Multiple Access for 6G—Part I: Principles, Applications and Future Works,” IEEE Communications Letters, vol. 26, no. 10, pp. 2232–2236, 2022.
[4] B. Fu, Y. Xiao, H. Deng, and H. Zeng, “A Survey of Cross-Layer Designs in Wireless Networks,” IEEE Communications Surveys & Tutorials, vol. 16, no. 1, pp. 110–126, 2014.
[5] H. Zeng, K. J. Kwak, J. Deng, B. Fu, Y. Xiao, and J. Jeski, “Proactive and Adaptive Reconfiguration for Reliable Communication in Tactical Networks,” in Defense Transformation and Net-Centric Systems 2012 (R. Suresh, ed.), vol. 8405, p. 84050D, International Society for Optics and Photonics, SPIE, 2012.
[6] X. Huang, Y. Wang, S. Chen, Y. Li, and Y. Wu, “Joint User Clustering and Graph Coloring Based Pilot Assignment for Cell-Free Massive MIMO Systems,” Sensors, vol. 23, no. 11, 2023.
[7] J. Park, B. Lee, J. Choi, H. Lee, N. Lee, S.-H. Park, K.-J. Lee, J. Choi, S. H. Chae, S.- W. Jeon, K. S. Kwak, B. Clerckx, and W. Shin, “Rate-Splitting Multiple Access for 6G Networks: Ten Promising Scenarios and Applications,” IEEE Network, vol. 38, no. 3, pp. 128–136, 2024.
[8] WiseRepeater, “4G LTE bands and frequencies for RF Signal Booster.” https:// www.wiserepeater.com/supports/4g-lte-bands-and-frequencies-tdd-fdd-lte/, 2021.
[9] T. D. Chiueh, P. Y. Tsai, and I. W. Lai, Baseband Receiver Design for Wireless MIMO-OFDM Communications. Wiley, 2012.
[10] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge, 2013.
[11] T. S. Rappaport, Wireless Communications: Principles and Practice. Cambridge University Press, 2024.
[12] A. R. Flores, R. C. De Lamare, and K. V. Mishra, “Rate-Splitting Meets Cell-Free MIMO Communications,” in 2022 IEEE International Conference on Communications Workshops (ICC Workshops), pp. 657–662, 2022.
[13] MATLAB, “Transmitarray. Scattering MIMO channel.” https:// www.mathworks.com/ help/ phased/ ref/ phased.scatteringmimochannel-systemobject.html, 2024.
[14] R. Jia, K. Xu, X. Xia, W. Xie, N. Sha, and W. Guo, “Extrinsic Information Aided Fingerprint Localization of Vehicles for Cell-Free Massive MIMO-OFDM System,” IEEE Open Journal of the Communications Society, vol. 3, pp. 1–1, January 2022.
[15] B. Ziaeemehr, Z. Jandaghian, H. Ge, M. Lacasse, and T. Moore, “Increasing Solar Reflectivity of Building Envelope Materials to Mitigate Urban Heat Islands: Stateof-the-Art Review,” Buildings, vol. 13, no. 11, 2023.
[16] J. Weiss, P. Axelrad, A. Dempster, C. Rizos, and S. Lim, “Estimation of Simplified Reflection Coefficients for Improved Modeling of Urban Multipath,” in Proceedings of the 63rd Annual Meeting of The Institute of Navigation, pp. 635–643, 2007.
[17] A. Fastenbauer, M. K. Mueller, and M. Rupp, “Investigation of Wraparound Techniques for the Simulation of Wireless Cellular Networks,” in WSA 2019; 23rd International ITG Workshop on Smart Antennas, pp. 1–6, 2019.
[18] B. Fu, Y. Xiao, H. Deng, and H. Zeng, “A Survey of Cross-Layer Designs in Wireless Networks,” IEEE Communications Surveys & Tutorials, vol. 16, no. 1, pp. 110–126, 2014.
[19] Y. Yin, M. Liu, G. Gui, H. Gacanin, H. Sari, and F. Adachi, “Cross-Layer Resource Allocation for UAV-Assisted Wireless Caching Networks With NOMA,” IEEE Transactions on Vehicular Technology, vol. 70, no. 4, pp. 3428–3438, 2021.
[20] L. F. Abanto-Leon, M. Hollick, and G. H. A. Sim, “BEAMWAVE: Cross-layer Beamforming and Scheduling for Superimposed Transmissions in Industrial IoT mmWave Networks,” in 2021 19th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt), pp. 1–8, 2021.
[21] X. Yan, Z. Wang, Y. Jia, Y. Huang, and L. Yang, “Cross-Layer Optimization of Access Point Selection and Beamforming in Non-Coherent Cell Free Network,” in 2023 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6, 2023.
[22] S. He, Z. An, J. Zhu, M. Zhang, Y. Huang, and Y. Zhang, “Cross-Layer Optimization: Joint User Scheduling and Beamforming Design With QoS Support in Joint Transmission Networks,” IEEE Transactions on Communications, vol. 71, no. 2, pp. 792–807, 2023.
[23] S. He, J. Yuan, Z. An, W. Huang, Y. Huang, and Y. Zhang, “Joint User Scheduling and Beamforming Design for Multiuser MISO Downlink Systems,” IEEE Transactions on Wireless Communications, vol. 22, no. 5, pp. 2975–2988, 2023.
[24] Dataaspirant, “How the Hierarchical Clustering Algorithm Works.” https://dataaspirant.com/hierarchical-clustering-algorithm/, 2023.
[25] O. Zhou, J. Wang, and F. Liu, “Average Downlink Rate Analysis for Clustered CellFree Networks with Access Point Selection,” in 2022 IEEE International Symposium on Information Theory (ISIT), pp. 742–747, 2022.
[26] A. R. Flores, R. C. de Lamare, and K. V. Mishra, “Clustered Cell-Free Multi-User Multiple-Antenna Systems with Rate-Splitting: Precoder Design and Power Allocation,” IEEE Transactions on Communications, vol. 71, no. 10, pp. 5920–5934, 2023.
[27] N. Arya, “K-means clustering for Unsupervised Machine Learning.” https:// www.ejable.com/ tech-corner/ ai-machine-learning-and-deep-learning/ k-meansclustering/, 2023.
[28] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and validation of cluster analysis,” Journal of Computational and Applied Mathematics, vol. 20, pp. 53–65, 1987.
[29] J. R. Sella Veluswami, I. Ioannou, P. Nagaradjane, C. Christophorou, V. Vassiliou, D. Nivedhitha, M. Sriram, and A. Pitsillides, “A Two-Stage Machine Learning Approach for 5G Mobile Network Augmentation through Dynamic Selection and Activation of UE-VBSs.” http://dx.doi.org/10.2139/ssrn.4003830, January 2022.
[30] W. Wang, L. Li, G. Deng, and J. Li, “A Joint Multiservice Transmission Scheme for RSMA-Aided Cell-Free mMIMO System,” IEEE Communications Letters, vol. 27, no. 2, pp. 591–594, 2023.
[31] Y. Hao, J. Xin, W. Tao, S. Tao, L. Yu-xiang, and W. Hao, “Pilot Allocation Algorithm Based on K-means Clustering in Cell-Free Massive MIMO Systems,” in 2020 IEEE 6th International Conference on Computer and Communications (ICCC), pp. 608– 611, 2020.
[32] N. Pal and J. Bezdek, “On Cluster Validity for the Fuzzy C-means Model,” IEEE Transactions on Fuzzy Systems, vol. 3, no. 3, pp. 370–379, 1995.
[33] A. DelSanto, R. Palmer, and K. Andreadis, “Fuzzy C-means Clustering for Physical Model Calibration and 7-day, 10-year Low Flow Estimation in Ungaged Basins: Comparisons to Traditional, Statistical Estimates,” Frontiers in Water, January 2024.
[34] J. Kwak and N. B. Shroff, “Simulated Annealing for Optimal Resource Allocation in Wireless Networks with Imperfect Communications,” in 2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 903–910, 2018.
[35] O. Abuajwa, M. B. Roslee, and Z. B. Yusoff, “Simulated Annealing for Resource Allocation in Downlink NOMA Systems in 5G Networks,” Applied Sciences, vol. 11, no. 10, 2021.
[36] M. Demri, S. Ferouhat, S. Zakaria, and M. E. Barmati, “A Hybrid Approach for Optimal Clustering in Wireless Sensor Networks using Cuckoo Search and Simulated Annealing Algorithms,” in 2020 2nd International Conference on Mathematics and Information Technology (ICMIT), pp. 202–207, 2020.
[37] Y. Melouki and M. Omari, “Simulated Annealing Approach for Clustering in Wireless Sensor Networks,” in 2020 2nd International Conference on Mathematics and Information Technology (ICMIT), pp. 216–219, 2020.
[38] J. Nalepa, Smart Delivery Systems: Solving Complex Vehicle Routing Problems. Elsevier, 2020.
[39] S. Sun, S. Tian, Y. Wang, and B. Li, “The Data-Driven Discovery of Partial Differential Equations by Symbolic Genetic Algorithm,” Nonlinear Dynamics, vol. 112, pp. 19871–19885, August 2024.
[40] N. M.K, R. Nordin, and M. Ismail, “An Improved-Water Filling Algorithm Power Allocation in Network MIMO,” Telecommunication Systems, vol. 8, pp. 113–119, December 2020.
[41] H. Kour, R. K. Jha, and S. Jain, “A Comprehensive Survey on Spectrum Sharing: Architecture, Energy Efficiency and Security Issues,” Journal of Network and Computer Applications, vol. 103, pp. 29–57, 2018.
[42] D. P. Bertsekas, Convex Optimization Theory. Athenea Scientific, 2009.
[43] Nesterov, Yurii, Nemirovskii, and Arkadii., Interior Point Polynomial Algorithms in Convex Programming. SIAM, 1994.
[44] S.-H. Park, H. Lee, and S.-E. Hong, “Rate-Splitting Multiple Access with Conjugate Beamforming for Cell-Free MIMO,” in 2022 13th International Conference on Information and Communication Technology Convergence (ICTC), pp. 1258–1260, 2022.
[45] D. Yu, S.-H. Park, O. Simeone, and S. Shamai Shitz, “Robust Design of RateSplitting Multiple Access with Imperfect CSI for Cell-Free MIMO Systems,” in 2022 IEEE International Conference on Communications Workshops (ICC Workshops), pp. 604–609, 2022.
[46] F. Tan, S. Si, H. Chen, S. Li, and T. Lv, “Rate Splitting Multiple Access Assisted Cell-Free Massive MIMO for URLLC Services in 5G and Beyond Networks,” IEEE Open Journal of the Communications Society, vol. 5, pp. 6018–6032, 2024.
[47] Q. Zheng, P. Zhu, J. Li, D. Wang, and X. You, “On the Spectral and Energy Efficiency of RSMA-Based Cell-Free Systems,” IEEE Transactions on Vehicular Technology, vol. 73, no. 11, pp. 17726–17731, 2024.
[48] K. Kolev, Convexity in Image-Based 3D Surface Reconstruction. PhD thesis, Computer Vision Group, Department of Computer Science Technical University Munich, 85748 Garching, Germany, 2011.
[49] J. Carretero and M. Nahon, “A Genetic Algorithm for Calculating Minimum Distance between Convex and Concave Bodies,” in Proceeding of the 6th International Symposium on Artificial Intelligence and Robotics & Automation in Space, pp. 18– 22, June 2001.
[50] S. N. Parizi, K. He, R. Aghajani, S. Sclaroff, and P. Felzenszwalb, “Generalized majorization-minimization,” in Proceedings of the 36th International Conference on 91 Machine Learning (K. Chaudhuri and R. Salakhutdinov, eds.), vol. 97 of Proceedings of Machine Learning Research, pp. 5022–5031, PMLR, 09–15 Jun 2019.
[51] H. Zhang, P. Zhou, Y. Yang, and J. Feng, “Generalized Majorization-Minimization for Non-Convex Optimization,” in Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pp. 4257–4263, International Joint Conferences on Artificial Intelligence Organization, July 2019.
[52] A. Mishra, Y. Mao, L. Sanguinetti, and B. Clerckx, “Rate-Splitting Assisted Massive Machine-Type Communications in Cell-Free Massive MIMO,” IEEE Communications Letters, vol. 26, no. 6, pp. 1358–1362, 2022.
[53] S. Si and F. Tan, “Max-Min Rate Optimization in Cell-Free Massive MIMO Systems Using RSMA Scheme,” in 2023 Cross Strait Radio Science and Wireless Technology Conference (CSRSWTC), pp. 1–3, 2023.
[54] H. V. H. Holma and P. Mogensen, “Extreme Massive MIMO for Macro Cell Capacity Boost in 5G-Advanced and 6G.” https://onestore.nokia.com/asset/210786, 2023.
[55] Z. Cui, P. Zhang, and S. Pollin, “6G Wireless Communications in 7-24 GHz Band: Opportunities, Techniques, and Challenges,” 2024.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96519-
dc.description.abstract當前的無線通信系統基礎設施主要依賴TCP/IP所定義的多層網路協議模型進行運作,並通過部署在目標區域內的基站 (BS) 為多個使用者 (UE) 提供服務。然而,隨著通信應用的快速發展,這種嚴格的層次結構和傳統通信技術逐漸難以滿足多樣化應用的需求。因此, 5G/6G技術在近年來越來越受到學術界和業界的關注,雙方正致力於突破傳統限制,構建更靈活且具彈性的無線通信架構,以滿足更高的傳輸速度和服務品質標準。
為了緩解層與層之間嚴格劃分可能帶來的不利影響,跨層設計(Cross-Layer Design)透過適度的層間訊息交換,實現通訊網路整體性能的提升。然而,靈活的通信協定需要一個靈活的通信系統來充分發揮其潛力。與傳統蜂巢系統 (cellular system) 相比,近年來常在5G/6G相關研究中提到的無蜂巢系統 (cell-free system) 提供了更靈活的服務模式。通過移除蜂巢架構,並使用多個小型基地台 (AP) 協作服務使用者,無蜂巢系統可以解決使用者在細胞邊緣 (cell edge) 通訊品質低落的問題。此外,由於無蜂巢系統將傳統蜂巢系統中的基站 (BS) 功能分離為負責大量計算的中央處理單元 (CPU) 和多個負責發射或是接收訊號的AP,整體通訊系統的覆蓋率也可以有所提升。
儘管無蜂巢系統具備上述優勢,它仍面臨諸多挑戰,其中最棘手的問題之一是AP對非目標使用者之間的干擾。速率拆分多工 (Rate-Splitting Multiple Access, RSMA) 正是為了應對這種複雜且多變的干擾環境而誕生。作為將干擾完全當作雜訊的空分多工 (Space-Division Multiple Access, SDMA) 和完全解碼干擾的非正交多工 (Non-Orthogonal Multiple Access, NOMA) 之間的銜接者,速率拆分多工能夠通過適當的功率和訊息分配,選擇性地將部分干擾作為雜訊處理,而其他干擾則解碼並利用連續干擾消除 (Successive Interference Cancellation, SIC) 將其扣除。綜合以上敘述,本研究旨在針對速率拆分多工輔助的無蜂巢系統,設計跨層優化架構,以提升通訊系統的可達傳輸速率總和 (achievable sum rate) 及最小可達傳輸速率 (achievable minimum rate)。
zh_TW
dc.description.abstractThe current wireless communication system infrastructure primarily operates based on the multi-layer network protocol model defined by TCP/IP, providing services to multiple users through base stations (BS) deployed in target areas. However, with the rapid development of communication applications, this rigid layered structure and traditional communication technologies are increasingly insufficient to meet the demands of diverse applications. Consequently, 5G and 6G technologies have garnered significant attention from academia and industry in recent years, with efforts focused on overcoming traditional limitations to build a more flexible and resilient wireless communication architecture that meets higher standards for transmission speed and quality of service.
To mitigate the adverse effects of strict layer separation, cross-layer design enhances overall network performance by allowing appropriate information exchange between layers. However, fully achieving the potential of a flexible communication protocol also requires a flexible communication system. Compared to traditional cellular systems, cell-free systems offer a more adaptable service model. By eliminating conventional cellular architecture and using multiple access points (APs) to collaboratively serve each user, cell-free systems effectively address the issue of poor communication quality often experienced by cell-edge users. Additionally, by decoupling the functions of the base station (BS) into a central processing unit (CPU) for complex computations and multiple APs for signal transmission and reception, cell-free systems can further improve the overall coverage of the communication network.
Despite these advantages, cell-free systems still face significant challenges, with one of the most critical being interference between APs and unintended users. Rate-splitting multiple access (RSMA) has emerged as a promising solution to address these complex and dynamic interference environments. RSMA bridges the gap between space division multiple access (SDMA), which treats interference as noise, and non-orthogonal multiple access (NOMA), which fully decodes interference. By selectively managing interference, RSMA treats some as noise while decoding and canceling others using successive interference cancellation (SIC). This research focuses on designing a cross-layer optimization framework for RSMA-aided cell-free systems to improve both the achievable sum rate and the achievable minimum rate.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-19T16:20:09Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-19T16:20:09Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 . . . ii
致謝 . . . iii
摘要 . . . v
Abstract . . . vii
目次 . . . ix
圖次 . . . xiii
表次 . . . xv
符號列表 . . . xvii

第一章 緒論 . . . 1
1.1 研究背景 . . . 1
1.2 論文組織與貢獻 . . . 6

第二章 系統與跨層架構概述 . . . 9
2.1 系統概述 . . . 9
2.2 通道模型 . . . 14
2.3 模擬系統設定 . . . 17
2.4 跨層架構設計 . . . 20
2.4.1 跨層設計的定義與分類 . . . 21
2.4.2 本論文所採用的跨層架構 . . . 25

第三章 媒體存取控制層相關設計 . . . 27
3.1 使用者分組(UE Grouping)演算法 . . . 27
3.1.1 現有無蜂巢系統使用者分組演算法 . . . 27
3.1.2 本研究所提出的相似性指標 . . . 30
3.2 小型基地台選擇(AP Selection)演算法 . . . 34
3.2.1 現有無蜂巢系統小型基地台選擇演算法 . . . 35
3.2.2 速率拆分輔助的無蜂巢系統小型基地台選擇問題定義 . . . 36
3.2.3 退火式遺傳演算法(GAA) . . . 37
3.2.4 基於複雜度改良後的兩段式小型基地台選擇演算法 . . . 44
3.3 媒體存取控制層複雜度分析 . . . 49
3.4 媒體存取控制層模擬結果與討論 . . . 50

第四章 實體層相關設計 . . . 53
4.1 發射功率分配(Power Allocation)演算法 . . . 53
4.1.1 現有發射功率分配演算法 . . . 53
4.1.2 廣義多數最小化(GMM) . . . 56
4.1.3 本研究提出的退火式廣義多數最小化(GMMA) . . . 58
4.1.4 發射功率分配問題定義與GMMA優化流程 . . . 60
4.2 速率拆分輔助的無蜂巢系統預編碼(Precoding)設計 . . . 65
4.2.1 現有速率拆分輔助的無蜂巢系統預編碼設計 . . . 65
4.2.2 本論文提出的協作干擾消除(CIZ)預編碼設計 . . . 67
4.3 實體層模擬結果與討論 . . . 70

第五章 系統模擬比較與討論 . . . 73
5.1 模擬設定與基準方法介紹 . . . 73
5.2 不同系統負載下的模擬比較 . . . 74
5.3 不同發射通道資訊誤差下的模擬比較 . . . 76
5.4 不同載波頻率模擬比較 . . . 77
5.5 不同小型基地台天線數的模擬比較 . . . 79

第六章 結論與展望 . . . 81

參考文獻 . . . 85
-
dc.language.isozh_TW-
dc.subject速率拆分zh_TW
dc.subject分群演算法zh_TW
dc.subject遺傳演算法zh_TW
dc.subject退火zh_TW
dc.subject干擾消除預編碼zh_TW
dc.subject無蜂巢通訊系統zh_TW
dc.subject跨層優化zh_TW
dc.subjectinterference-cancelling precodingen
dc.subjectcross-layer optimizationen
dc.subjectcell-free systemen
dc.subjectrate-splittingen
dc.subjectclusteringen
dc.subjectgenetic algorithmen
dc.subjectannealingen
dc.title基於速率拆分多工的無蜂巢系統之下行傳輸跨層優化研究zh_TW
dc.titleCross-Layer Optimization for Downlink Transmission in RSMA-aided Cell-Free Networksen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蘇炫榮;馬席彬;黃楚翔zh_TW
dc.contributor.oralexamcommitteeHsuan-Jung Su;Hsi-Pin Ma;Chu-Hsiang Huangen
dc.subject.keyword跨層優化,無蜂巢通訊系統,速率拆分,分群演算法,遺傳演算法,退火,干擾消除預編碼,zh_TW
dc.subject.keywordcross-layer optimization,cell-free system,rate-splitting,clustering,genetic algorithm,annealing,interference-cancelling precoding,en
dc.relation.page92-
dc.identifier.doi10.6342/NTU202500102-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-02-06-
dc.contributor.author-college重點科技研究學院-
dc.contributor.author-dept積體電路設計與自動化學位學程-
dc.date.embargo-lift2030-02-04-
顯示於系所單位:積體電路設計與自動化學位學程

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
15.7 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved