Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96512
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡育彰zh_TW
dc.contributor.advisorYu-Chang Tsaien
dc.contributor.author方信秀zh_TW
dc.contributor.authorHsin-Hsiu Fangen
dc.date.accessioned2025-02-19T16:18:17Z-
dc.date.available2025-02-20-
dc.date.copyright2025-02-19-
dc.date.issued2025-
dc.date.submitted2025-01-23-
dc.identifier.citation方信秀、李文立、邱國棟、董致韡、蔡育彰 (2022)。夜間特殊光譜燈照防治荔枝細蛾技術應用。植物防檢疫新技術之開發應用研討會專刊 P.121-140。
江淑雯、盧柏松 (2011)。鳳梨釋迦在台東地區之果實生長與特性 臺灣園藝 57(1) : 9-17。
林沛儒、林慧玲 (2015)。日長與除葉對鳳梨釋迦開花之影響。興大園藝。40: 11-21。
邱祝櫻、翁仁憲、黃明得 (2004)。光源對印度棗生育之研究。高雄區農業改良場研究彙報 15: 49-59。
洪巧珍、江碧媛、黃振聲 (2002)。荔枝細蛾 (Conopomorpha sinensis Bradley) 之飼育技術及其羽化與交尾行為。植物保護學會會刊 44(2): 89-99。https://doi.org/10.6715/PPB.200206_44(2).0003。
黃基倬 (2018)。蓮霧園應用簡易設施及加熱系統於寒害防減之研究。新興蔬果設施栽培成果研討會 P.37-51。
陳奕君、江淑雯 (2015)。溫溼度對番荔枝臺東2號與鳳梨釋迦花粉活力之影響。臺東區農業專訊 93: 8-10。
葉文彬、張致盛、劉惠菱、張林仁 (2014)。不同夜間電照光源對‘巨峰’葡萄新梢生育、著果率與品質之影響 (一)。臺中區農業改良場研究彙報 122: 33-45。
葉文彬、張林仁、劉惠菱 (2015)。LED電照應用於溫室‘巨峰’葡萄栽培之研究。臺中區農業改良場研究彙報129: 55-65。
葉文彬 (2020)。夜間燈照與根砧對‘巨峰’葡萄生長及果實品質之影響 (博士論文) 。國立中興大學,台中。
盧柏松、江淑雯、陳奕君 (2016)。鳳梨釋迦果園防風栽培及災後復育技術之研究。臺東區農業改良場研究彙報 26:1-16。
盧柏松、江淑雯、陳奕君 (2014)。鳳梨釋迦災後復育試驗-夜間燈照處理對開花及果實品質之影響。臺東區農業改良場103年試驗研究推廣成果研討會專刊 P.17-38。
盧柏松、江淑雯 (2010)。夜間燈照對番荔枝冬期果開花、結果之影響。臺灣園藝 56 (4): 255。
盧柏松、江淑雯 (2011)。暗期中斷處理對番荔枝冬期果開花及果實品質之影響。臺東區農業改良場 100 年試驗研究推廣成果研討會專刊 P.45-50。
蘇東生 (2008)。SWOT分析應用於鳳梨釋迦產業經營策略之研究。臺東區農業改良場研究彙報 17: 51-72。
Abidi, F., Girault, T., Douillet, O., Guillemain, G., Sintes, G., Laffaire, M., Ben Ahmed, H., Smiti, S., Huché-Thélier, L., & Leduc, N. (2013). Blue light effects on rose photosynthesis and photomorphogenesis. Plant Biology 15(1): 67-74. https://doi.org/10.1111/j.1438-8677.2012.00603.x.
Achard, P., Gong, F., Cheminant, S., Alioua, M., Hedden, P., & Genschik, P. (2008). The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. The Plant Cell 20(8): 2117-2129. https://doi.org/10.1105/tpc.108.058941.
Ali, F., Qanmber, G., Li, F., & Wang, Z. (2021). Updated role of ABA in seed maturation, dormancy, and germination. Journal of Advanced Research 35: 199-214. doi: 10.1016/j.jare.2021.03.011.
An, J. P., Zhang, X. W., Bi, S. Q., You, C. X., Wang, X. F., & Hao, Y. J. (2019). MdbHLH93, an apple activator regulating leaf senescence, is regulated by ABA and MdBT2 in antagonistic ways. The New Phytologist 222(2): 735-751. https://doi.org/10.1111/nph.15628.
Antignus, Y. (2000). Manipulation of wavelength-dependent behavior of insects: an IPM tool to impede insects and restrict epidemics of insect-borne viruses. Virus Research 71: 213-220.
Appolloni, E., Paucek, I., Pennisi, G., Stringari, G., Gabarrell, D. X. Orsini, F. & Gianquinto, G. (2022). Supplemental LED lighting improves fruit growth and yield of tomato grown under the sub-optimal lighting condition of a building integrated rooftop greenhouse (i-RTG). Horticulturae 8: 771. https://doi.org/10.3390/horticulturae8090771.
Araújo-Filho, G. C., Andrade, O. M. S., Castro, F. A., & Sá, F. T. (1998). Instruções técnicas para o cultivo da Ateira, Embrapa Agroindústria Tropical, Instruções técnicas no. 1, Brasil, p. 1-9.
Artlip, T., McDermaid, A., Ma, Q., & Wisniewski, M. (2019). Differential gene expression in non-transgenic and transgenic "M.26" apple overexpressing a peach CBF gene during the transition from eco-dormancy to bud break. Horticulture Research 6: 86. https://doi.org/10.1038/s41438-019-0168-9
Bajguz, A., & Piotrowska-Niczyporuk, A. (2023). Biosynthetic pathways of hormones in plants. Metabolites 13(8): 884. https://doi.org/10.3390/metabo13080884
Bantis, F., Ouzounis, T., & Radoglou, K. (2016). Artificial LED lighting enhances growth characteristics and total phenolic content of Ocimum basilicum, but variably affects transplant success. Scientia Horticulturae 198: 277-283.
Bantis, F., Smirnakou, S., Ouzounis, T., Koukounaras, A., Ntagkas, N., & Radoglou, K. (2018). Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs). Scientia Horticulturae 235: 437-451.
Barajas-Lopez, J. D., Tiwari, A., Zarza, X., Shaw, M. W., Pascual, J. S., Punkkinen, M., Bakowska, J. C., Munnik, T., & Fujii, H. (2021). EARLY RESPONSE TO DEHYDRATION 7 remodels cell membrane lipid composition during cold stress in Arabidopsis. Plant & Cell Physiology 62(1): 80-91. https://doi.org/10.1093/pcp/pcaa139.
Beegum, S., Walne, C. H., Reddy, K. N., Reddy, V., & Reddy, K. R. (2023). Examining the corn seedling emergence-temperature relationship for recent hybrids: insights from experimental studies. Plants 12(21): 3699.
Berry, S. (2022). The use of optical coherence tomography to demonstrate dark and light adaptation in a live moth. Environmental Entomology 51(4): 643-648. https://doi.org/10.1093/ee/nvac044.
Binder, B. M. (2020). Ethylene signaling in plants. The Journal of Biological Chemistry 295(22): 7710-7725. https://doi.org/10.1074/jbc.REV120.010854
Böckmann, E., Pfaff, A., Schirrmann, M., & Pflanz, M. (2021). Rapid and low-cost insect detection for analysing species trapped on yellow sticky traps. Scientific Reports 11(1): 10419. https://doi.org/10.1038/s41598-021-89930-w.
Briggs, W.R. & Christie. J.M. (2002). Phototropins 1 and 2: Versatile plant blue-light receptors. Trends in Plant Science 7: 204-210.
Briscoe, A. D. (2000). Six opsins from the butterfly Papilio glaucus: molecular phylogenetic evidence for paralogous origins of red-sensitive visual pigments in insects. Journal of Molecular Evolution 51: 110-121. doi: 10.1007/s002390010071.
Briscoe, A. D., & Chittka, L. (2001). The evolution of color vision in insects. Annual Review of Entomology 46: 471-510. doi: 10.1146/annurev.ento.46.1.471.
Brooks, A., & Farquhar, G. D. (1985). Effect of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light. Planta 165: 397-406.
Brouwer, B., Gardeström, P., & Keech, O. (2014). In response to partial plant shading, the lack of phytochrome A does not directly induce leaf senescence but alters the fine-tuning of chlorophyll biosynthesis. Journal of Experimental Botany 65(14): 4037-4049. https://doi.org/10.1093/jxb/eru060.
Brown, B.A., C. Cloix, G.H. Jiang, E. Kaiserli, P. Herzyk, D.J. Kliebenstein, & and G.I. Jenkins. (2005). A UV-B-specific signaling component orchestrates plant UV protection. Proceedings of the National Academy of Sciences of the united states of america 102: 18225-18230.
Buttrose, M. S. (1969). Fruitfulness in grapevines: Effects of light intensity and temperature. Botanical Gazette 130(3): 166-173.
Buttrose, M. S. (1974). Climatic factors and fruitfulness in grapevines. CABI
Cao, K., Cui, L., Ye, L., Zhou, X., Bao, E., Zhao, H., & Zou, Z. (2016). Effects of red light night break treatment on growth and flowering of tomato plants. Frontiers in Plant Science 7: 527. doi:10.3389/fpls.2016.00527.
Cao, W., Tibbitts, & T. W. (1991). Physiological responses in potato plants under continuous irradiation. Journal of the American Society for Horticultural Science 116(3): 525-527.
Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T. L. (2009). BLAST+: architecture and applications. BMC Bioinformatics 10: 421. https://doi.org/10.1186/1471-2105-10-421.
Carlson, M. (2023). org.At.tair.db: Genome wide annotation for Arabidopsis. R package version 3.16.0.
Casanova-Sáez, R., Mateo-Bonmatí, E., & Ljung, K. (2021). Auxin etabolism in plants. Cold Spring Harbor Perspectives in Biology 13(3): a039867. https://doi.org/10.1101/cshperspect.a039867.
Cashmore, A. R., Jarillo, J. A., Wu, Y. J., & Liu, D. (1999). Cryptochromes: blue light receptors for plants and animals. Science 284(5415): 760-765.
Chaudhari, J. C., Patel, K. D., Yadav, L., Patel, U. I., & Varu, D. K. (2016). Effect of plant growth regulators on flowering, fruit set and yield of custard apple (Annona squamosa L.) cv. Sindhan. Advances in Life Sciences 5(4): 1202-1204.
Chen, H. B., & Huang, H. B. (2003). Low temperature requirements for floral induction in lychee. pp. 195-202. In Chomchalow N., & Sukhvibul N. (Eds.). II International Symposium on Lychee, Longan, Rambutan and other Sapindaceae Plants.
Chen, H., Li, Y., & Zhao, Z. (2019). Influence of light wavelength on the behavior of Spodoptera litura and its implications for pest control. Journal of Insect Behavior 32 (3): 200-210.
Chen, M., Chory, J., & Fankhauser, C. (2004). Light signal transduction in higher plants. Annual Review of Genetics 38(1): 87-117.
Chen, Y.F., Hsu, F.C., & Lin, C.C. (2020). Effects of elevations and vegetation types on the ground-dwelling ant community structures. Experimental Forest of National Taiwan University Bulletin 34 (1): 1-14.
Chinnusamy, V., Ohta, M., Kanrar, S., Lee, B. H., Hong, X., Agarwal, M., & Zhu, J. K. (2003). ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes & Development 17(8): 1043-1054.
Cho, M., & Cho, H. (2013). The function of ABCB transporters in auxin transport. Plant Signaling & Behavior 8(2): 642-654. https://doi.org/10.4161/psb.22990.
Chong, G. L., Foo, M. H., Lin, W. D., Wong, M. M., & Verslues, P. E. (2019). Highly ABA-Induced 1 (HAI1)-Interacting protein HIN1 and drought acclimation-enhanced splicing efficiency at intron retention sites. Proceedings of the National Academy of Sciences of the United States of America 116(44): 22376-22385. https://doi.org/10.1073/pnas.1906244116.
Christie, J. M., Salomon, M., Nozue, K., Wada, M., & Briggs, W. R. (1999). LOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nph1): binding sites for the chromophore flavin mononucleotide. Proceedings of the National Academy of Sciences of the United States of America 96(15): 8779-8783. https://doi.org/10.1073/pnas.96.15.8779.
Clarke, S. J., Hardie, W. J., & Rogiers, S. Y. (2010). Changes in susceptibility of grape berries to splitting are related to impaired osmotic water uptake associated with losses in cell vitality. Australian Journal of Grape and Wine Research 16: 469-476. doi: 10.1111/j.1755-0238.2010.00108.x.
Colaric, M., Veberic, R., Stampar, F., & Hudina, M. (2005). Evaluation of peach and nectarine fruit quality and correlations between sensory and chemical attributes. Journal of the Science of Food and Agriculture 85(15): 2611-2616. https://doi.org/10.1002/jsfa.2316.
Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, S., Gissot, L., Turnbull, C., & Coupland, G. (2007). FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316(5827): 1030-1033. https://doi.org/10.1126/science.1141752.
Crane, J. H., Chagas, P. C., & Chagas, E. A. (2021). ‘LeahReese’: A new sugar apple (Annona squamosa L.) cultivar. HortScience 56(10): 1293-1294. https://doi.org/10.21273/HORTSCI16070-21.
Cushman, K. E., & Tibbitts, T. W. (1996). Size of tuber propagule influences injury of 'Kennebec' potato plants by constant light. HortScience 31(7): 1164-1166.
Cushman, K.E., Tibbitts, T.W., Sharkey, T.D., & Wise, R.R., (1995). Constant-light injury of potato: temporal and spatial patterns of carbon dioxide assimilation, starch content, chloroplast integrity, and necrotic lesions. Journal of the American Society for Horticultural Science 120: 1032-1040. https://doi.org/10.21273/jashs.120.6.1032.
D'Aloia, M., Bonhomme, D., Bouché, F., Tamseddak, K., Ormenese, S., Torti, S., Coupland, G., & Périlleux, C. (2011). Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF. The Plant Journal 65(6): 972-979. https://doi.org/10.1111/j.1365-313X.2011.04482.x
Davière, J. M., & Achard, P. (2013). Gibberellin signaling in plants. Development 140(6): 1147-1151. https://doi.org/10.1242/dev.087650.
Davis, P.A. & C. Burns. (2016). Photobiology in protected horticulture. Food and Energy Security 5: 223-238.
de Carbonnel, M., Davis P., Roelfsema, M. R. G., Inoue, S. I., Schepens, I., Lariguet, P., Geisler, M., Shimazaki, K. I., Hangarter, R., & Fankhauser, C. (2010). The Arabidopsis PHY-TOCHROME KINASE SUBSTRATE2 protein is a phototropin signaling element that regulates leaf flattening and leaf positioning. Plant Physiology 152: 1391-1405.
Demers, D. A., Dorais, M., Wien, C. H., & Gosselin, A. (1998). Effects of supplemental light duration on greenhouse tomato (Lycopersicon esculentum Mill.) plants and fruit yields. Scientia Horticulturae 74(4): 295-306.
Deng, Q., Zhang, Y., Liu, K., Zheng, G., Gao, L., Li, Z., Huang, M., & Jiang, Y. (2023). Transcriptome profiles reveal gene regulation of ginger flowering induced by photoperiod and light quality. Botanical Studies 64(1): 12. https://doi.org/10.1186/s40529-023-00388-7.
Dong, Y., Xu, S., Chen, B., Yao, Q., & Chen, G., (2015). Determination of larval instars and developmental duration of each stage at different temperatures of the litchi fruit borer, Conopomorpha sinensis (Lepidoptera: Gracillariidae). Acta Entomologica Sinica 58: 1108-1115. https://doi.org/CNKI:SUN:KCXB.0.2015-10-009.
Dorais, M., Yelle, S., & Gosselin, A., (1996). Influence of extended photoperiod on photosynthate partitioning and export in tomato and pepper plants. New Zealand Journal of Crop and Horticultural Science 24: 29-37. https://doi.org/10.1080/01140671.1996.9513932.
Du, R., Niu, S., Liu, Y., Sun, X., Porth, I., El-Kassaby, Y. A., & Li, W. (2017). The gibberellin GID1-DELLA signalling module exists in evolutionarily ancient conifers. Scientific Reports 7(1): 16637. https://doi.org/10.1038/s41598-017-11859-w.
Dung, N. V., Nghi, D. Q., Hung, N. Q. and Huy, N. Q. (2020). Current production and development trends of lychee (Litchi chinensis Sonn.) in Vietnam in the coming future. Acta Horticulturae 1293: 7-14. https://doi.org/10.17660/ActaHortic.2020.1293.2.
Economou, A. S., & Read, P. E. (1987). Light treatments to improve efficiency of in vitro propagation systems. Horticultural Science 22: 751-754.
Evans, J. R. (2013). Improving photosynthesis. Plant Physiology 162(4): 1780-1793.
Fan, C., Hu, R., Zhang, X., Wang, X., Zhang, W., Zhang, Q., Ma, J., & Fu, Y. F. (2014). Conserved CO-FT regulons contribute to the photoperiod flowering control in soybean. BMC Plant Biology 14: 1-14.
Fan, X., Zang, J., Xu, Z., Guo, S., Jiao, X., Liu, X., & Gao, Y. (2013). Effects of different light quality on growth, chlorophyll concentration and chlorophyll biosynthesis precursors of non-heading Chinese cabbage (Brassica campestris L.). Acta Physiologiae Plantarum 35: 2721-2726. http://dx.doi.org/10.1007/s11738-013-1304-z.
Fankhauser, C., & Chory, J. (1997). Light control of plant development. Annual Review of Cell and Developmental Biology 13: 203-229. https://doi.org/10.1146/annurev.cellbio.13.1.203.
Ferreira, M. T., Borges, P. A. V., & Scheffrahn, R. H. (2012). Attraction of alates of Cryptotermes brevis (Isoptera: Kalotermitidae) to different light wavelengths in South Florida and the Azores. Journal of Economic Entomology 105: 2213-2215. https://doi.org/10.1603/ec12240.
Folta, K. M. & Carvalho. S. D. (2015). Photoreceptors and control of horticultural plant traits. HortScience 50: 1274-1280.
Folta, K. M., & Maruhnich, S. A., (2007). Green light: a signal to slow down or stop. Journal of Experimental Botany 58: 3099-3111. https://doi.org/10.1093/jxb/erm130.
Furuya, M. & Schäfer. E. (1996). Photoperception and signalling of induction reactions by different phytochromes. Trends in Plant Science 1: 301-307.
Galvão, V. C. & Fankhauser, C. (2015). Sensing the light environment in plants: Photoreceptors and early signaling steps. Current Opinion in Neurobiology 34: 46-53.
Gaudreau, L., Charbonneau, J. E., Vézina, L. P., & Gosselin, A., (1994). Photoperiod and photosynthetic photon flux influence growth and quality of greenhouse-grown lettuce. HortScience 29: 1285-1289. https://doi.org/10.21273/hortsci.29.11.1285.
Gendron, J. M., & Staiger, D. (2023). New horizons in plant photoperiodism. Annual Review of Plant Biology 74: 481-509. https://doi.org/10.1146/annurev-arplant-070522-055628.
George, A. P., & Nissen, R. J. (1987). The effects of root temperature on growth and dry matter production of Annona species. Scientia Horticulturae 31 (1-2): 95-99. doi:10.1016/0304-4238 (87) 90111-7.
Gestel, N.C., Nesbit, A. D., Gordon, E. P., Green, C., Pare, P. W., Thompson, L., Peffley, E. B., Tissue, D. T. (2005). Continuous light may induce photosynthetic downregulation in onion-consequences for growth and biomass partitioning. Physiologia Plantarum 125(2): 235-246. https://doi.org/10.1111/j.1399-3054.2005.00560.x.
Gil, A. M., Duarte, I. F., Delgadillo, I., Colquhoun, I. J., Casuscelli, F., Humpfer, E., & Spraul, M. (2000). Study of the compositional changes of mango during ripening by use of nuclear magnetic resonance spectroscopy. Journal of Agricultural and Food Chemistry 48: 1524-1536. https://doi.org/10.1021/jf9911287.
Gilmour, S. J., Fowler, S. G., & Thomashow, M. F. (2004). Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional. Plant Molecular Biology 54: 767-781. doi: 10.1023/B:PLAN.0000040902.06881.d4.
Goenaga, R., & David. J. (2016). Yield and fruit quality traits of atemoya hybrids grown in Puerto Rico. HortTechnology 26: 547-551. 10.21273/HORTTECH.26.4.547.
Greenup, A., Peacock, W. J., Dennis, E. S., & Trevaskis, B. (2009). The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals. Annals of Botany 103(8): 1165-1172. https://doi.org/10.1093/aob/mcp063.
Gu, J., Liu J., Xue Y., Zang X., & Xie. X. (2011). Functions of phytochrome in rice growth and development. Rice Science 18: 231-237.
Gudenschwager, O., González-Agüero, M., & Defilippi, B. G. (2012). A general method for high-quality RNA isolation from metabolite-rich fruits. South African Journal of Botany 83: 186-192.
Guo, G., Xu, K., Zhang, X., Zhu, J., Lu, M., Chen, F., Liu, L., Xi, Z. Y., Bachmair, A., Chen, Q., & Fu, Y. F. (2015). Extensive analysis of GmFTL and GmCOL expression in northern soybean cultivars in field conditions. PLoS ONE 10: e0136601.
Guo, X., Tang, C. C., Thomas, D. C., Couvreur, T. L., & Saunders, R. M. (2017). A mega-phylogeny of the Annonaceae: taxonomic placement of five enigmatic genera and support for a new tribe, Phoenicantheae. Scientific Reports 7(1): 7323.
Gupta, Y., Pathak, A. K., Singh, K., Mantri, S. S., Singh, S. P., & Tuli, R. (2015). De novo assembly and characterization of transcriptomes of early-stage fruit from two genotypes of Annona squamosa L. with contrast in seed number. BMC Genomics 16:86. doi: 10.1186/s12864-015-1248-3.
Gutiérrez-Larruscain, D., Abeyawardana, O. A. J., Krüger, M., Belz, C., Juríček, M., & Štorchová, H. (2021). Transcriptomic study of the night break in Chenopodium rubrum reveals possible upstream regulators of the floral activator CrFTL1. Journal of Plant Physiology 265: 153492.
Haake, V., Cook, D., Riechmann, J. L., Pineda, O., Thomashow, M. F., & Zhang, J. Z. (2002). Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiology 130(2): 639-648. https://doi.org/10.1104/pp.006478.
Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P. D., Bowden, J., Couger, M. B., Eccles, D., Li, B., Lieber, M., MacManes, M. D., Ott, M., Orvis, J., Pochet, N., Strozzi, F., Weeks, N., Westerman, R., William, T., Dewey, C. N., Henschel, R., LeDuc, R. D., Friedman, N., Regev, A. (2013). De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature protocols 8(8): 1494-1512. https://doi.org/10.1038/nprot.2013.084
Han, D., Zhang, X., & Lu, Y. (2022). The role of LED light color in the attraction of pests in integrated pest management. Environmental Entomology 51(3): 736-744.
Harris, G. P. (1972). Intermittent illumination and the photoperiodic control of flowering in carnation. Annals of Botany 36(2): 345-352.
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W. , Abbasi, H., Gohlke, C., Oliphant, T. E. (2020). Array programming with NumPy. Nature 585: 357-362. https://doi.org/10.1038/s41586-020-2649-2
Hartmann, U., Höhmann, S., Nettesheim, K., Wisman, E., Saedler, H., & Huijser, P. (2000). Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. The Plant Journal 21(4): 351-360. https://doi.org/10.1046/j.1365-313x.2000.00682.x.
Hasan, M. M., Bashir, T., Ghosh, R., Lee, S. K., & Bae, H. (2017). An overview of LEDs’ effects on the production of bioactive compounds and crop quality. Molecules 22: 1420.
Hernández, R., & Kubota, C. (2016). Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEds. Environmental and Experimental Botany 121: 66-74.
Hernández-García, J., Briones-Moreno, A., & Blázquez, M. A. (2021). Origin and evolution of gibberellin signaling and metabolism in plants. Seminars in Cell & Developmental Biology 109: 46-54. https://doi.org/10.1016/j.semcdb.2020.04.009
Hidaka, K., Dan, K., Imamura, H., Miyoshi, Y., Takayama, T., Sameshima, K., Kitano, M., & Okimura, M. (2013). Effect of supplemental lighting from different light sources on growth and yield of strawberry. Environmental Control in Biology 51 (1): 41-47. https://doi.org/10.2525/ecb.51.41.
Higuchi, H. (1999). Environmental physiology of cherimoya (Annona cherimola Mill.) under heat stress conditions (Doctoral dissertation). Kyoto University.
Higuchi, Y., Sumitomo, K., Oda, A., Shimizu, H., & Hisamatsu, T. (2012). Day light quality affects the night-break response in the short-day plant chrysanthemum, suggesting differential phytochrome-mediated regulation of flowering. Journal of Plant Physiology 169(18): 1789-1796.
Hironaka, M., Kamura, T., Osada, M., Sasaki, R., Shinoda, K., Hariyama, T., & Miyatake, T. (2017). Adults of Lasioderma serricorne and Stegobium paniceum (Anobiidae: Coleoptera) are attracted to ultraviolet (UV) over blue light LEds. Journal of Economic Entomology 110(4): 1911-1915. https://doi.org/10.1093/jee/tox127.
Hnatuszko-Konka, K., Gerszberg, A., Weremczuk-Jeżyna, I., & Grzegorczyk-Karolak, I. (2021). Cytokinin signaling and de novo shoot organogenesis. Genes 12(2): 265. https://doi.org/10.3390/genes12020265.
Hori, M., Shibuya, K., Sato, M., & Saito, Y. (2014). Lethal effects of short-wavelength visible light on insects. Scientific Reports 4: 7383. https://doi.org/10.1038/srep07383.
Fang, H. H., Lee, W. L., Chiu, K. T., Ma, H. Y., Yang, S. H., Hung, C. Y., Chen H. L., Tung, C. W., & Tsai, Y. C. (2023). Irradiation with green light at night has great effects on the management of Conopomorpha sinensis and maintains favorable litchi fruit quality. Scientia Horticulturae 312: 111830.
Hu, C., Sun, D., Yu, J., Chen, M., Xue, Y., Wang, J., Su, W., Chen, R., Anwar, A., & Song, S. (2024). Transcriptome analysis of intermittent light induced early bolting in flowering Chinese cabbage. Plants 13: 866. https://doi.org/10.3390/plants13060866.
Hu, Z. L., Bao, J., & Reecy, J. M. (2008). CateGOrizer: a web-based program to batch analyze gene on-tology classification categories. Online Journal of Bioinformatics 9: 108-112.
Huang, J. Y. (2018). Special lecture: Preventive strategy for harmful ant species. Nature Conservation Quarterly 103: 86-87.
Huner, N. P., Öquist, G., & Sarhan, F. (1998). Energy balance and acclimation to light and cold. Trends in Plant Science 3(6): 224-230.
Hung, C. C., & Hwang, J. S. (1995). Toxicity of insecticides to various life stages of the litchi fruit borer, Conopomorpha sinensis Bradley. Plant Protection Bulletin 37: 201-208.
Hung, C. C., Hung, M. D., & Wang, W. L. (2006). Development of formulations of sex attractant litchi fruit borer, Conopomorpha sinensis. Plant Protection Bulletin 48: 189-202.
Hung, S. C., Ho, K. Y., & Chen, C. C. (2008). Investigation of fruit damages of litchi caused by Conopomorpha sinensis Bradley and Bactrocera dorsalis (Hendel) in Chiayi. Journal of Taiwan Agricultural Research 57: 143-152. https://doi.org/10.6156/JTAR/2008.05702.06.
Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering 9(3): 90-95. https://doi.org/10.1109/MCSE.2007.55.
Islam, M. A., Kuwar, G., Clarke, J. L., Blystad, D. R., Gislerød, H. R., Olsen, J. E., & Torre, S. (2012). Artificial light from light emitting diodes (LEDs) with a high portion of blue light results in shorter poinsettias compared to high pressure sodium (HPS) lamps. Scientia Horticulturae 147: 136-143.
Jenkins, G. I. (2009). Signal transduction in responses to UV-B radiation. Annual review of Plant Biology 60(1): 407-431. https://doi.org/10.1146/annurev.arplant.59.032607.092953.
Jiang, L., Wang, W., Chen, Z., Gao, Q., Xu, Q., & Cao, H. (2017). A role for APX1 gene in lead tolerance in Arabidopsis thaliana. Plant Science 256: 94-102. https://doi.org/10.1016/j.plantsci.2016.11.015.
Jiang, Y. L., Huang, Q. Y., Wei, G. S., Gong, Z. J., Li, T., Miao, J., Lu, R., Mei, S., Wang, X., Duan, Y., Wu, Y. & Lu, C. (2023). Effects of yellow and green light stress on emergence, feeding and mating of Anomala corpulenta Motschulsky and Holotrichia parallela Motschulsky (Coleoptera: Scarabaeidae). International Journal of Agricultural and Biological Engineering 16 (1): 81-87.
Jiang, Y. L., Liao, Y. Y., Lin, M. T., & Yang, W. J. (2016). Bud development in response to night-breaking treatment in the noninductive period in red pitaya (Hylocereus sp.). HortScience 51 (6): 690-696. doi:10.21273/HORTSCI.51.6.690.
Jiao, B., Meng, Q., & Lv, W. (2020). Roles of stay-green (SGR) homologs during chlorophyll degradation in green plants. Botanical Studies 61(1): 25. https://doi.org/10.1186/s40529-020-00302-5.
Jiao, Y., Lau, O. S., & Deng, X. W. (2007). Light-regulated transcriptional networks in higher plants. Nature Reviews Genetics 8: 217-230.
Jin, J., Essemine, J., Xu, Z., Duan, J., Shan, C., Mei, Z., Zhu, J., & Cai, W. (2022). Arabidopsis ETHYLENE INSENSITIVE 3 directly regulates the expression of PG1β-like family genes in response to aluminum stress. Journal of Experimental Botany 73(14): 4923-4940.
Johnsen, S., Kelber, A., Warrant, E., Sweeney, A. M., Widder, E. A., Lee, R. L., & Hernández-Andrés, J. (2006). Crepuscular and nocturnal illumination and its effects on color perception by the nocturnal hawkmoth Deilephila elpenor. The Journal of Experimental Biology 209: 789-800. https://doi.org/10.1242/jeb.02053.
Jones, P., Binns, D., Chang, H. Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A., Nuka, G., Pesseat, S., Quinn, A. F., Sangrador-Vegas, A., Scheremetjew, M., Yong, S. Y., Lopez, R., & Hunter, S. (2014). InterProScan 5: genome-scale protein function classification. Bioinformatics 30(9): 1236-1240. https://doi.org/10.1093/bioinformatics/btu031.
Jung, H., Lee, J., & Choi, S. (2022). Optimizing light spectra for the attraction of flying insects in pest control. Journal of Economic Entomology 115 (2): 500-507.
Kagaya, H., Ito, N., Shibuya, T., Komori, S., Kato, K., & Kanayama, Y. (2020). Characterization of FLOWERING LOCUS C homologs in apple as a model for fruit trees. International Journal of Molecular Sciences 21(12): 4562. https://doi.org/10.3390/ijms21124562.
Karimi, M., Ebadi, A., Mousavi, S. A., Salami, S. A., & Zarei, A. (2015). Comparison of CBF1, CBF2, CBF3 and CBF4 expression in some grapevine cultivars and species under cold stress. Scientia horticulturae 197: 521-526. https://doi.org/10.1016/j.scienta.2015.10.011.
Kanazawa, K., Hashimoto, T., Yoshida, S., Sungwon, P., & Fukuda, S. (2012). Short photoirradiation induces flavonoid synthesis and increases its production in postharvest vegetables. Journal of Agricultural and Food Chemistry 60(17): 4359-4368.
Kasahara, M., Kagawa, T., Oikawa, K., Suetsugu, N., Miyao, M., & Wada, M. (2002). Chloroplast avoidance movement reduces photodamage in plants. Nature 420(6917): 829-832. https://doi.org/10.1038/nature01213.
Kashyap, A. S., & Thakur, N. (2017). Problems and Prospects of Lychee Cultivation in India. In Kumar, M., Kumar, V., Bhalla-Sarin, N., & Varma, A. (Eds.) Lychee Disease Management. Springer, Singapore. https://doi.org/10.1007/978-981-10-4247-8_9.
Katai, Y., Ishikawa, R., & Masui, S. (2015). Efficacy of red LED irradiation for controlling Thrips palmi in greenhouse melon cultivation. Japanese Journal of Applied Entomology & Zoology 59(1): 1-6.
Khan, S., Alvi, A. F., Saify, S., Iqbal, N., & Khan, N. A. (2024). The ethylene biosynthetic enzymes, 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS) and ACC oxidase (ACO): the less explored players in abiotic stress tolerance. Biomolecules 14(1): 90. https://doi.org/10.3390/biom14010090.
Kiill, L. H. P., & Costa, J. G. D. (2003). Biologia floral e sistema de reprodução de Annona squamosa L.(Annonaceae) na região de Petrolina-PE. Ciência Rural 33: 851-856.
Kim, D. H. (2020). Current understanding of flowering pathways in plants: focusing on the vernalization pathway in Arabidopsis and several vegetable crop plants. Horticulture, Environment, and Biotechnology 61(2): 209-227.
Kim, K. N., Huang, Q. Y., & Lei, C. L. (2019). Advances in insect phototaxis and application to pest management: A review. Pest Management Science 75(12): 3135-3143.
Kim, K. N., Yun, C. N., Sin, U. C., Huang, Z. J., Huang, Q. Y., & Lei, C. L. (2018). Green light and light stress in moth: influence on antioxidant enzymes in the oriental armyworm, Mythimna separata (Lepidoptera: Noctuidae). Environmental Science and Pollution Research International 25(35): 35176-35183. https://doi.org/10.1007/s11356-018-3415-y.
Kim, M. G., & Lee, H. S. (2014). Phototactic behavior 5: Attractive effects of the angoumois grain moth, Sitotroga cerealella, to light-emitting diodes. Journal of the Korean Society for Applied Biological Chemistry 57: 259-262.
Kim, M. G., Yang, J. Y., & Lee, H. S. (2013). Phototactic behavior: Repellent effects of cigarette beetle, Lasioderma serricorne (Coleoptera: Anobiidae), to light-emitting diodes. Journal of the Korean Society for Applied Biological Chemistry 56: 331-333. https://doi.org/10.1007/s13765-012-3173-3.
Kim, Y. J., Lee, H. J., & Kim, K. S. (2011). Night interruption promotes vegetative growth and flowering of Cymbidium. Scientia Horticulturae 130(4): 887-893.
Komatsu, M., Kurihara, K., Saito, S., Domae, M., Masuya, N., Shimura, Y., Kajiyama, S., Kanda, Y., Sugizaki, K., Ebina, K., Ikeda, O., Moriwaki, Y., Atsumi, N., Abe, K., Maruyama, T., Watanabe, S., & Nishino, H. (2020). Management of flying insects on expressways through an academic-industrial collaboration: evaluation of the effect of light wavelengths and meteorological factors on insect attraction. Zoological Letters 6(1): 15. https://doi.org/10.1186/s40851-020-00163-7.
Kong, F., Nan, H., Cao, D., Li, Y., Wu, F., Wang, J., Lu, S., Yuan, X., Cober, E.R., Abe, J., & Liu, B. (2014). A new dominant gene conditions early flowering and maturity in soybean. Crop Science 54: 2529-2535.
Kotoda, N., Hayashi, H., Suzuki, M., Igarashi, M., Hatsuyama, Y., Kidou, S., Igasaki, T., Nishiguchi, M., Yano, K., Shimizu, T., Takahashi, S., Iwanami, H., Moriya, S., & Abe, K. (2010). Molecular characterization of FLOWERING LOCUS T-like genes of apple (Malus x domestica Borkh.). Plant & Cell Physiology 51(4): 561-575. https://doi.org/10.1093/pcp/pcq021.
La Spada, P., Dominguez, E., Continella, A., Heredia, A., & Gentile, A. (2024). Factors influencing fruit cracking: an environmental and agronomic perspective. Frontiers in Plant Science 15: 1343452. https://doi.org/10.3389/fpls.2024.1343452.
Land, M. F. (1997). Visual acuity in insects. Annual Review of Entomology 42: 147-177. https://doi.org/10.1146/annurev.ento.42.1.147.
Lanoue, J., Little, C., Hawley, D., & Hao, X. (2022). Addition of green light improves fruit weight and dry matter content in sweet pepper due to greater light penetration within the canopy. Scientia Horticulturae 304: 111350.
Larranaga, N., Albertazzi, F. J., & Hormaza, J. I. (2019). Phylogenetics of Annona cherimola (Annonaceae) and some of its closest relatives. Journal of Systematics and Evolution 57(3): 211-221.
Lee, J. H., Jung, J. H., & Park, C. M. (2015). INDUCER OF CBF EXPRESSION 1 integrates cold signals into FLOWERING LOCUS C-mediated flowering pathways in Arabidopsis. The Plant Journal 84: 29-40. doi: 10.1111/tpj.12956.
Lee, N., Shim, J. S., Kang, M. K., & Kwon, M. (2024). Insight from expression profiles of FT orthologs in plants: conserved photoperiodic transcriptional regulatory mechanisms. Frontiers in Plant Science 15: 1397714. https://doi.org/10.3389/fpls.2024.1397714.
Lee, Y. J., Ha, J. Y., Oh, J. E., & Cho, M. S. (2014). The effect of LED irradiation on the quality of cabbage stored at a low temperature. Food Science and Biotechnology 23: 1087-1093.
Lee, Z., Kim, S., Choi, S. J., Joung, E., Kwon, M., Park, H. J., & Shim, J. S. (2023). Regulation of flowering time by environmental factors in plants. Plants 12(21): 3680. https://doi.org/10.3390/plants12213680.
Lepistö, A., Kangasjärvi, S., Luomala, E. M., Brader, G., Sipari, N., Keränen, M., Keinänen, M., & Rintamäki, E. (2009). Chloroplast NADPH-thioredoxin reductase interacts with photoperiodic development in Arabidopsis. Plant Physiology 149(3): 1261-1276. https://doi.org/10.1104/pp.108.133777.
Lestari, D. A., & Sofiah, S. (2015). Flowering and fruiting times on four species of Annona (Annonaceae) in Purwodadi Botanic Garden. Journal of Tropical Life Science 5(1): 45-52.
Li, H. Y., & Chye, M. L. (2004). Arabidopsis acyl-CoA-binding protein ACBP2 interacts with an ethylene-responsive element-binding protein, AtEBP, via its ankyrin repeats. Plant Molecular Biology 54: 233-243.
Li, J., Li, G., Wang, H., & Deng, X. W. (2011). Phytochrome signaling mechanisms. The Arabidopsis Book 9: 1-26
Li, Q., & Kubota, C. (2009). Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environmental and Experimental Botany 67(1): 59-64. http://dx.doi.org/10.1016/j.envexpbot.2009.06.011.
Li, W. J., Quan, L. F., Dong, Y. Z., Yao, Q., Xu, S., & Chen, B. X., (2021). Study on the effects of white LEDs on reproduction of Conopomorpha sinensis (Lepidoptera: Gracillariidae) and its field application. Journal of fruit science 38: 1349-1358.
Li, Y., Han, S., & Qi, Y. (2023). Advances in structure and function of auxin response factor in plants. Journal of Integrative Plant Biology 65(3): 617-632. https://doi.org/10.1111/jipb.13392.
Li, Z., Chen, Q., Xin, Y., Mei, Z., Gao, A., Liu, W., Yu, L., Chen, X., Chen, Z., & Wang, N. (2021). Analyses of the photosynthetic characteristics, chloroplast ultrastructure, and transcriptome of apple (Malus domestica) grown under red and blue lights. BMC Plant Biology 21(1): 483. https://doi.org/10.1186/s12870-021-03262-5.
Liang, Q., Song, K., Lu, M., Dai, T., Yang, J., Wan, J., Li, L., Chen, J., Zhan, R., & Wang, S. (2022). Transcriptome and metabolome analyses reveal the involvement of multiple pathways in flowering intensity in mango. Frontiers in Plant Science 13: 933923. https://doi.org/10.3389/fpls.2022.933923.
Lin, C., & Shalitin, D. (2003). Cryptochrome structure and signal transduction. Annual Review of Plant Biology 54: 469-496. https://doi.org/10.1146/annurev.arplant.54.110901.160901.
Lin, X., Liu, B., Weller James, L., Abe, J., & Kong, F. (2021). Molecular mechanisms for the photoperiodic regulation of flowering in soybean. Journal of Integrative Plant Biology 63: 981-994.
Lin, Z., Li, Y., Wang, Y., Liu, X., Ma, L., Zhang, Z., Mu, C., Zhang, Y., Peng, L., Xie, S., Song, C. P., Shi, H., Zhu, J. K., & Wang, P. (2021). Initiation and amplification of SnRK2 activation in abscisic acid signaling. Nature Communications 12(1): 2456. https://doi.org/10.1038/s41467-021-22812-x.
Liu, J., & Sherif, S. M. (2019). Hormonal orchestration of bud dormancy cycle in deciduous woody perennials. Frontiers in Plant Science 10: 1136. https://doi.org/10.3389/fpls.2019.01136.
Liu, K., Feng, S., Pan, Y., Zhong, J., Chen, Y., Yuan, C., & Li, H. (2016). Transcriptome analysis and identification of genes associated with floral transition and flower development in sugar apple (Annona squamosa L.). Frontiers in Plant Science 7: 1695. https://doi.org/10.3389/fpls.2016.01695.
Liu, K., Li, H., Yuan, C., Huang, Y., Chen, Y., & Liu, J. (2015). Identification of phenological growth stages of sugar apple (Annona squamosa L.) using the extended BBCH-scale. Scientia Horticulturae 181: 76-80.
Liu, L. W., Lu, C. T., Wang, Y. M., Lin, K. H., Ma, X., & Lin, W. S. (2022). Rice (Oryza sativa L.) growth modeling based on growth degree day (GDD) and artificial intelligence algorithms. Agriculture 12(1): 59.
Lokesha, R., Athani, S. I., Gollagi, S. G., Sanjeevraddi, G. R., Nadaf, A. M., Prasanna, S. M., & Patil, D. R. (2022a). Effect of different plant growth regulators on flowering and fruit set of custard apple (Annona squamosa L.) cv. Balanagar under northern dry zone of Karnataka. The Pharma Innovation Journal 11 (9): 2135-2139.
Lora, J., Pham, V. T., & Hormaza, J. I. (2018). Genetics and breeding of fruit crops in the sapindaceae family: Lychee (Litchi chinensis Sonn.) and longan (Dimocarpus longan Lour.). In Jameel, A., Shri, M. J., & Dennis V. J. (Eds.) Advances in Plant Breeding Strategies: Fruits: Volume 3, 953-973.
Lu, N., Maruo, T., Johkan, M., Hohjo, M., Tsukagoshi, S., Ito, Y., Ichimura, T., & Shinohara, Y. (2012). Effects of supplemental lighting with light-emitting diodes (LEDs) on tomato yield and quality of single-truss tomato plants grown at high planting density. Environmental Control in Biology 50: 63-74.
Lu, S., Zhao, X., Hu, Y., Liu, S., Nan, H., Li, X., Fang, C., Cao, D., Shi, X., Kong, L., Su, T., Zhang, F., Li, S., Wang, Z., Yuan, X., Cober, E.R., Weller, J.L., Liu, B., Hou, X., Tian, Z., & Kong, F. (2017). Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nature Genetics 49: 773-779.
Luesse, D. R., S. L. Deblasio, & Hangarter, R. P. (2010). Integration of phot1, phot2, and PhyB signalling in light-induced chloroplast movements. Journal of Experimental Botany 61: 4387-4397.
Luo, W., & Brouwer, C. (2013). Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics 29(14): 1830-1831. doi:10.1093/bioinformatics/btt285.
Magdahl, C. 1989. Efecto de la defoliacio´n anticipada sobre la brotacio´n, floracio´n y desarrollo de frutos en chirimoyo (Annona cherimola Mill.) cv. Concha Lisa y efectividad de algunos productos como defoliantes. Tesis. Universidad Cato´lica de Valparaı´so. Chile, 103 pp.
Mahorkar, K. D., Naglot, U. M., Navsare, R. I., & Chavhan, P. M. (2018). Effect of plant growth regulators on flowering, fruit set and yield of custard apple (Annona squamosa L.). International Journal of Chemical Studies 6 (4): 2381-2384.
Maple, R., Zhu, P., Hepworth, J., Wang, J. W., & Dean, C. (2024). Flowering time: From physiology, through genetics to mechanism. Plant Physiology 195(1): 190-212. https://doi.org/10.1093/plphys/kiae109
Marler, T.E., George, A.P., Missen, R.J., & Andersen P.C. (1994). Miscellaneous tropical fruits, p. 200-205. In Schaffer B. & Andersen P.C. (Eds.). Handbook of environmental physiology of fruit crops: II. Subtropical and tropical crops. CRC Press, Boca Raton, FL.
Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17(1): 10-12. https://doi.org/10.14806/ej.17.1.200.
Matysiak, B. (2021). The effect of supplementary LED lighting on the morphological and physiological traits of miniature Rosa × Hybrida 'Aga' and the development of powdery mildew (Podosphaera pannosa) under greenhouse conditions. Plants 10: 417. https://doi.org/10.3390/plants10020417.
Mawphlang, O.I.L. & Kharshiing E.V. (2017). Photoreceptor mediated plant growth responses: Implications for photoreceptor engineering toward improved performance in crops. Frontiers in Plant Science 8: 1-14.
Mazza, C. A., & Ballaré, C. L. (2015). Photoreceptors UVR8 and phytochrome B cooperate to optimize plant growth and defense in patchy canopies. The New Phytologist 207(1): 4-9. https://doi.org/10.1111/nph.13332.
McKinney, W. (2010). Data structures for statistical computing in python. Proceedings of the 9th Python in Science Conference 51-56. https://doi.org/10.25080/Majora-92bf1922-00a.
Meng, X., Hu, J., Li, Y., Dai, J., Guo, M., & Ouyang, G. (2018). The preference choices of Conopomorpha sinensis Bradley (Lepidoptera: Gracilariidae) for litchi based on its host surface characteristics and volatiles. Scientific Reports 8(1): 2013. https://doi.org/10.1038/s41598-018-20383-4.
Meyer, P., Van de Poel, B., & De Coninck, B. (2021). UV-B light and its application potential to reduce disease and pest incidence in crops. Horticulture Research 8(1): 194. https://doi.org/10.1038/s41438-021-00629-5.
Miao, C., Yang, S., Xu, J., Wang, H., Zhang, Y., Cui, J., Zhang, H., Jin, H., Lu, P., He, L., Yu, J., Zhou, Q., & Ding, X. (2023). Effects of light intensity on growth and quality of lettuce and spinach cultivars in a plant factory. Plants 12(18): 3337. https://doi.org/10.3390/plants12183337.
Miryeganeh, M. (2022). Epigenetic mechanisms of senescence in plants. Cells 11(2): 251. https://doi.org/10.3390/cells11020251.
Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., & Morishima, K. (2017). KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Research 45: 353-361. https://doi.org/10.1093/nar/gkw1092
Morton, J. F. 1987. Annonaceae. p.65-90. In Morton J. F., & Curtis F. D. (Eds). Fruits for warm climate fruits for warm climate, creative resources systems. Winterville, N.C., USA.
Murage, E. N., & Masuda, M. (1997). Response of pepper and eggplant to continuous light in relation to leaf chlorosis and activities of antioxidative enzymes. Scientia Horticulturae 70(4): 269-279. https://doi.org/10.1016/s0304-4238 (97) 00078-2.
Murata, M., Hariyama, T., Yamahama, Y., Toyama, M., & Ohta, I., (2017). In the presence of red light, cucumber and possibly other host plants lose their attractability to the melon thrips Thrips palmi (Thysanoptera: Thripidae). Applied Entomology and Zoology 53: 117-128. http://doi.org/10.1007/s13355-017-0537-5.
Nakamoto, Y., & Kuba, H. (2004). The effectiveness of a green light emitting diode (LED) trap at capturing the West Indian sweet potato weevil, Euscepes postfasciatus (Fairmaire)(Coleoptera: Curculionidae) in a sweet potato field. Applied Entomology and Zoology 39(3): 491-495.
Nakasone, H.Y. & Paull. R.E. (1998). Tropical Fruits. CAB International, Wellingford, UK.
Nelson, J. A., & Bugbee, B. (2014). Economic analysis of greenhouse lighting: light emitting diodes vs. high intensity discharge fixtures. PloS One 9(6): e99010. https://doi.org/10.1371/journal.pone.0099010.
Ng, L. M., Melcher, K., Teh, B. T., & Xu, H. E. (2014). Abscisic acid perception and signaling: structural mechanisms and applications. Acta Pharmacologica Sinica 35(5): 567-584. https://doi.org/10.1038/aps.2014.5.
Ngbolua, K. T. N., Inkoto, C. L., Bongo, G. N., Moke, L. E., Lufuluabo, L. G., Ashande, C. M., & Mpiana, P. T. (2018). Phytochemistry and bioactivity of Annona reticulata L. (Annonaceae) : A mini-review. South Asian Research Journal of Natural Products 1(1): 1-11.
Nishiyama, R., Watanabe, Y., Leyva-Gonzalez, M. A., Van Ha, C., Fujita, Y., Tanaka, M., Seki, M., Yamaguchi-Shinozaki, K., Shinozaki, K., Herrera-Estrella, L., & Tran, L.S.P. (2013). Arabidopsis AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response. Proceedings of the National Academy of Sciences 110 (12): 4840-4845.
Nissim-Levi, A., Kitron, M., Nishri, Y., Ovadia, R., Forer, I., & Oren-Shamir, M. (2019). Effects of blue and red LED lights on growth and flowering of Chrysanthemum morifolium. Scientia Horticulturae 254: 77-83. doi:10.1016/j.scienta.2019.04.080.
Niu, Y. F., Li, K. X., & Liu, J. (2020). Complete chloroplast genome sequence and phylogenetic analysis of Annona reticulata. Mitochondrial DNA B Resources 5(3): 3540-3542. https://doi.org/10.1080/23802359.2020.1829131.
Nomura, K. (1967). Studies on orchard illumination against fruit-piercing moths. III. Inhibition of moths’ flying to orchard by illumination. Japanese Journal of Applied Entomology and Zoology 11:21-28. (in Japanese with English summary).
Nomura, K., Oya, S., Watanabe, I., & Kawamura, H. (1965). Studies on orchard illumination against fruit-piercing moths. I. Analysis of illumination effects, and influence of light elements on moth activities. Japanese Journal of Applied Entomology and Zoology 9:179-186. (in Japanese with English summary).
Novillo, F., Alonso, J. M., Ecker, J. R., & Salinas, J. (2004). CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 101: 3985-3990. doi: 10.1073/ pnas.0303029101.
Novillo, F., Medina, J., & Salinas, J. (2007). Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proceedings of the National Academy of Sciences of the United States of America 104: 21002-21007. doi: 10.1073/pnas.0705639105.
Noyce, P. W. (2017). Finally, proof that leaf floral induction with photoperiodic dependent flowering does not occur in the grapevine plant (Vitis vinifera L. 'Chardonnay'). Vitis 56 (3): 119-126.
Nunes, N. A. S., Leite, A. V., & Castro, C. C. (2016). Phenology, reproductive biology and growing degree days of the grapevine ‘Isabel’(Vitis labrusca, Vitaceae) cultivated in northeastern Brazil. Brazilian Journal of Biology 76(04): 975-982.
Ohtsuka, K., & Osakabe, M. (2009). Deleterious effects of UV-B radiation on herbivorous spider mites: They can avoid it by remaining on lower leaf surfaces. Environmental Entomology 38: 920-929.
Olesen, T., & Muldoon, S. J. (2009). Branch development in custard apple (cherimoya Annona cherimola Miller × sugar apple A. squamosa L.) in relation to tip-pruning and flowering, including effects on production. Trees 23(4): 855-862.
Olesen, T., & Muldoon, S. J. (2012). Effects of defoliation on flower development in atemoya custard apple (Annona cherimola Mill.× A. squamosa L.) and implications for flower-development modelling. Australian Journal of Botany. 60: 160-164. doi: 10.1071/BT11299.
Ouzounis, T., Rosenqvist, E., & Ottosen, C.O. (2015). Spectral effects of artificial light on plant physiology and secondary metabolism: a review. HortScience 50: 1128-1135. https://doi.org/10.21273/hortsci.50.8.1128.
Owens, A.C.S., Meyer-Rochow, V.B., & Yang, E.C. (2018). Short- and mid-wavelength artificial light influences the flash signals of Aquatica ficta fireflies (Coleoptera: Lampyridae). PLoS One 13: e0191576.
Ozfidan, C., Turkan, I., Sekmen, A. H., & Seckin, B. (2012). Abscisic acid-regulated responses of aba2-1 under osmotic stress: The abscisic acid-inducible antioxidant defence system and reactive oxygen species production. Plant Biology 14 (2): 337-346.
Pan, H., Liang, G., & Lu, Y. 2021. Response of different insect groups to various wavelengths of light under field conditions. Insects 12: 427. https://doi.org/10.3390/insects12050427.
Pan, W., Liang, J., Sui, J., Li, J., Liu, C., Xin, Y., Zhang, Y., Wang, S., Zhao, Y., Zhang, J., Yi, M., Gazzarrini, S., & Wu, J. (2021). ABA and bud dormancy in perennials: current knowledge and future perspective. Genes 12(10): 1635. https://doi.org/10.3390/genes12101635
Paponov, M., Kechasov, D., Lacek, J., Verheul, M.J., & Paponov, I.A. 2020. Supplemental light-emitting diode inter-lighting increases tomato fruit growth through enhanced photosynthetic light use efficiency and modulated root activity. Frontiers in Plant Science 10: 1656. https://doi.org/10.3389/fpls.2019.01656.
Paradiso, R., & Proietti, S. (2022). Light-quality manipulation to control plant growth and photomorphogenesis in greenhouse horticulture: The state of the art and the opportunities of modern LED systems. Journal of Plant Growth Regulation 41(2): 742-780.
Park, J. H., & Lee, H. S. (2017). Phototactic behavioral response of agricultural insects and stored-product insects to light-emitting diodes (LEDs). Applied Biological Chemistry 60: 137-144.
Park, J. H., Lee, S. M., Lee, S. G., & Lee, H. S. (2014). Attractive effects efficiency of LED trap on controlling Plutella xylostella adults in greenhouse. Journal of Applied Biological Chemistry 57(3): 255-257.
Park, J.H., & Lee, H.S., (2017). Phototactic behavioral response of agricultural insects and stored-product insects to light-emitting diodes (LEDs). Applied Biological Chemistry 60: 137-144. https://doi.org/10.1007/s13765-017-0263-2.
Park, Y. G., & Jeong, B. R. (2020). Both the quality and positioning of the night interruption light are important for flowering and plant extension growth. Journal of Plant Growth Regulation 39(2): 583-593. https://doi.org/10.1007/s00344-019-10002-5.
Park, Y. G., Muneer, S., & Jeong, B. R. (2015). Morphogenesis, flowering, and gene expression of Dendranthema grandiflorum in response to shift in light quality of night interruption. International Journal of Molecular Sciences 16(7): 16497-16513.
Park, Y., Cho, Y., & Kim, Y. (2017). Effects of different light spectra on the attraction of nocturnal moths and other insect pests. Pest Management Science 73(2): 310-316.
Peitsch, D., Fietz, A., Hertel, H., de Souza, J., Ventura, D. F., & Menzel, R. (1992). The spectral input systems of hymenopteran insects and their receptor-based colour vision. Journal of Comparative Physiology A 170: 23-40.
Peterson, H.M., Talamas, E., & Krawczyk, G. (2021). Survey for adventive populations of the Samurai Wasp, Trissolcus japonicus (Hymenoptera: Scelionidae) in Pennsylvania at commercial fruit orchards and the surrounding forest. Insects 12: 258. https://doi.org/10.3390/insects12030258.
Pham, M.D., Hwang, H., Park, S.W., Cui, M., Lee, H., & Chun, C. (2019). Leaf chlorosis, epinasty, carbohydrate contents and growth of tomato show different responses to the red/blue wavelength ratio under continuous light. Plant Physiology and Biochemistry 141: 477-486. https://doi.org/10.1016/j.plaphy.2019.06.004.
Pham, V. N., Kathare, P. K., & Huq, E. (2018). Phytochromes and phytochrome interacting factors. Plant Physiology 176(2): 1025-1038.
Pino, M. T., Skinner, J. S., Park, E. J., Jeknić, Z., Hayes, P. M., Thomashow, M. F., & Chen, T. H. (2007). Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield. Plant Biotechnology Journal 5(5): 591-604. https://doi.org/10.1111/j.1467-7652.2007.00269.x
Pinto, A. & Silva, E. D. (1994). Graviola para exportação: aspectos técnicos da produção. Brasília: EMBRAPA-SPI. FRUPEX. Publicação Técnica, 7: 41 p.
Piovene, C., Orsini, F., Bosi S., Sanoubar R., Bregola V., Dinelli G., & Gianquinto. G. (2015). Optimal red: blue ratio in led lighting for nutraceutical indoor horticulture. Scientia Horticulturae 193: 202-208.
Purseglove, J. W. (1968). Annonaseae. pp. 625-626. In Purseglove, J. W. (Eds.). Tropical crops. Dicotyledons. Longman, UK.
Putterill, J., Robson, F., Lee, K., Simon, R., & Coupland, G. (1995). The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zing finger transcription factors. Cell 80: 847-857. (95) 90288-0.
Quail, P.H. (1997). An emerging molecular map of the phytochromes. Plant, Cell & Environment 20: 657-665.
Rabara, R. C., Behrman, G., Timbol, T., & Rushton, P. J. (2017). Effect of spectral quality of monochromatic LED lights on the growth of artichoke seedlings. Frontiers in Plant Science 8: 190. https://doi.org/10.3389/fpls.2017.00190.
Ren, Y., Liao, S., & Xu, Y. (2023). An update on sugar allocation and accumulation in fruits. Plant Physiology, 193(2), 888-899. https://doi.org/10.1093/plphys/kiad294 .
Resnick, J. S., Wen, C.-K., Shockey, J. A., & Chang, C. (2006). REVERSION-TO-ETHYLENE SENSITIVITY1, a conserved gene that regulates ethylene receptor function in Arabidopsis. Proceedings of the National Academy of Sciences of the united states of america 103 (20): 7917-7922. https://doi.org/10.1073/pnas.0602239103.
Richardson, J. E., Chatrou, L. W., Mols, J. B., Erkens, R. H., & Pirie, M. D. (2004). Historical biogeography of two cosmopolitan families of flowering plants: Annonaceae and Rhamnaceae. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences 359(1450): 1495-1508. https://doi.org/10.1098/rstb.2004.1537.
Riikonen, J., Kettunen, N., Gritsevich, M., Hakala, T., Särkkä, L., & Tahvonen, R. (2016). Growth and development of Norway spruce and Scots pine seedlings under different light spectra. Environmental and experimental botany, 121, 112-120.
Rizzini, L., Favory, J. J., Cloix, C., Faggionato, D., O'Hara, A., Kaiserli, E., Baumeister, R., Schäfer, E., Nagy, F., Jenkins, G. I., & Ulm, R. (2011). Perception of UV-B by the Arabidopsis UVR8 protein. Science 332(6025): 103-106. https://doi.org/10.1126/science.1200660.
Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1): 139-140. https://doi.org/10.1093/bioinformatics/btp616
Rowell, T., Mortley, D. G., Loretan, P. A., Bonsi, C. K., & Hill, W. A. (1999). Continuous daily light period and temperature influence peanut yield in nutrient film technique. Crop Science, 39(4): 1111-1114. https://doi.org/10.2135/cropsci1999.0011183x003900040026x.
Sadka, A., Dahan, E., Cohen, L., & Marsh, K. B. (2000). Aconitase activity and expression during the development of lemon fruit. Physiologia Plantarum 108(3): 255-262. https://doi.org/10.1034/j.1399-3054.2000.108003255.x.
Sager, J.C. & McFarlane C. (1997). Radiation. Plant growth chamber handbook, In Langhans, R.W., & Tibbits, T.W. (Eds.). Iowa agriculture and home economics experimental station special report no. 99. North Central Region Research Publication No. 340, Ames, IA, pp. 1-29.
Salt, J. N., Yoshioka, K., Moeder, W., & Goring, D. R. (2011). Altered germination and subcellular localization patterns for PUB44/SAUL1 in response to stress and phytohormone treatments. PLoS ONE 6 (6): e21321. doi:10.1371/journal.pone.0021321.
Samad, S., Butare, D., Marttila, S., Sønsteby, A., & Khalil, S. (2021). Effects of temperature and photoperiod on the flower potential in everbearing strawberry as evaluated by meristem dissection. Horticulturae, 7(11), 484. https://doi.org/10.3390/horticulturae7110484
Samuolienė, G., Brazaitytė, A., Sirtautas, R., Viršilė, A., Sakalauskaitė, J., Sakalauskienė, S., & Duchovskis, P. (2013). LED illumination affects bioactive compounds in romaine baby leaf lettuce. Journal of the Science of Food and Agriculture 93(13): 3286-3291.
Sang, W, Zhu, Z. H. & Lei, C. L. (2016). Review of phototaxis in insects and an introduction to the light stress hypothesis. Chinese Journal of Aplied Entomology 53: 915-920.
Seo, E., Lee, H., Jeon, J., Park, H., Kim, J., Noh, Y.S. & Lee, I. (2009). Cross-talk between cold response and flowering in Arabidopsis is mediatedthrough the flowering-time gene SOC1 and its upstream negative regula-tor FLC. Plant Cell 21: 3185-3197.
Shan, X., Yang, Y., Wei, S., Wang, C., Shen, W., Chen, H. B., & Shen, J. Y. (2023). Involvement of CBF in the fine-tuning of litchi flowering time and cold and drought stresses. Frontiers in Plant Science 14: 1167458. https://doi.org/10.3389/fpls.2023.1167458.
Shi, L., He, H., Yang, G., Huang, H., Vasseur, L., & You, M. (2020). Are yellow sticky cards and light traps effective on tea green leafhoppers and their predators in Chinese tea plantations?. Insects 12(1): 14. https://doi.org/10.3390/insects12010014.
Shi, Y., Ding, Y., & Yang, S. (2018). Molecular regulation of CBF signaling in cold acclimation. Trends in Plant Science 23(7): 623-637. https://doi.org/10.1016/j.tplants.2018.04.002.
Shibuya, K., Onodera, S., & Hori, M. (2018). Toxic wavelength of blue light changes as insects grow. PloS one 13(6): e0199266. https://doi.org/10.1371/journal.pone.0199266.
Shimoda, M., & Honda, K. I. (2013). Insect reactions to light and its applications to pest management. Applied Entomology and Zoology 48: 413-421.
Siddiqua, M., & Nassuth, A. (2011). Vitis CBF1 and Vitis CBF4 differ in their effect on Arabidopsis abiotic stress tolerance, development and gene expression. Plant, Cell & Environment 34 (8): 1345-1359. https://doi.org/10.1111/j.1365-3040.2011.02334.x.
Smith, J., Lee, K., & Patel, R. (2003). Improving quantitative flowering models through a better understanding of the phases of photoperiod sensitivity. Journal of Experimental Botany, 52(357), 655–662. https://doi.org/10.1093/jxb/52.357.655.
Simpson, R.S. (2003). Lighting control - technology and applications. Focal Press, pp. 564.
Soler, L., & Cuevas, J. (2008). Development of a new technique to produce winter cherimoyas. HortTechnology 18(1): 24-28.
Soler, L., Mateos, J., & Ruiz, J., (2002). Estrategias para la produccio´n de chirimoyos enprimavera. In Damme P. V., & Scheldeman X. (Eds). III Congreso Internacional de Anona´ceas, Quillota, Chile, p. 15.
Song, Y. H., Kubota, A., Kwon, M. S., Covington, M. F., Lee, N., Taagen, E. R., Laboy Cintrón, D., Hwang, D. Y., Akiyama, R., Hodge, S. K., Huang, H., Nguyen, N. H., Nusinow, D. A., Millar, A. J., Shimizu, K. K., & Imaizumi, T. (2018). Molecular basis of flowering under natural long-day conditions in Arabidopsis. Nature plants 4(10): 824-835. https://doi.org/10.1038/s41477-018-0253-3.
Stockinger, E. J., Gilmour, S. J., and Thomashow, M. F. (1997). Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the c repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proceedings of the National Academy of Sciences of the United States of America 94: 1035-1040. doi: 10.1073/ pnas.94.3.1035
Stukenberg, N., Gebauer, K., & Poehling, H. M. (2015). Light emitting diode (LED)‐based trapping of the greenhouse whitefly (Trialeurodes vaporariorum). Journal of Applied Entomology 139(4): 268-279. https://doi.org/10.1111/jen.12172.
Suárez-López, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F., & Coupland, G. (2001). CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410(6832): 1116-1120.
Sullivan, J. A., & Deng, X. W. (2003). From seed to seed: the role of photoreceptors in Arabidopsis development. Developmental Biology 260(2): 289-297.
Suresh, H. M., Shivakumar, B., Hemalatha, K., Heroor, S. S., Hugar, D. S., & Rao, K. S. (2011). In vitro antiproliferativeactivity of Annona reticulata roots on human cancer cell lines. Pharmacognosy research 3(1): 9-12.
Takahashi, S., & Badger, M. R. (2011). Photoprotection in plants: a new light on photosystem II damage. Trends in Plant Science 16(1): 53-60. https://doi.org/10.1016/j.tplants.2010.10.001.
Tanaka, M., Yase, J., Kanto, T., & Osakabe, M. (2020). Stable management of Tetranychus urticae using UVB irradiation system (UV method) together with predatory mites in strawberry greenhouse. IOBC-WPRS Bulletin 149: 18-20.
Todoroki, Y., & Ueno, K. (2010). Development of specific inhibitors of CYP707A, a key enzyme in the catabolism of abscisic acid. Current Medicinal Chemistry 17(28): 3230-3244.
Tran, K., Ryan, S., McDonald, M., Thomas, A. L., Maia, J. G. S., & Smith, R. E. (2021). Annonacin and squamocin contents of pawpaw (Asimina triloba) and marolo (Annona crassiflora) fruits and atemoya (A. squamosal × A. cherimola) seEds. Biological Trace Element Research 199: 2320-2329. doi: 10.1007/s12011-020-02320-7.
Vasconcelos, M. C., Greven, M., Winefield, C., Trought, M., & Raw, V. (2009). The flowering process of Vitis vinifera: A review. American Journal of Enology and Viticulture 60: 411-434. 10.5344/ajev.2009.60.4.411.
Vicentini, G., Biancucci, M., Mineri, L., Chirivì, D., Giaume, F., Miao, Y., Kyozuka, J., Brambilla, V., Betti, C., & Fornara, F. (2023). Environmental control of rice flowering time. Plant Communications: 4(5), 100610. https://doi.org/10.1016/j.xplc.2023.100610.
Vince-Prue, D., & Canham, A. E. (1983). Horticultural significance of photomorphogenesis. In Shropshire W., & Mohr H. (Eds.). Photomorphogenesis, pp. 518-544. Berlin, Heidelberg: Springer Berlin Heidelberg.
Wang, F. Y., Li, L. F., Wei, Q.X., Gu, Y. L., Huang, C., Liao, R. Z., & Liao, S. C. (2020). Effects of different light environments on oviposition of Conopomorpha sinensis and its control efficacy in field. South African Journal of Agricultural Science 51: 313-318.
Wang, H. C., Huang, H. B., Huang, X. M., & Hu, Z. Q. (2006). Sugar and acid compositions in the arils of Litchi chinensis Sonn.: cultivar differences and evidence for the absence of succinic acid. The Journal of Horticultural Science and Biotechnology 81: 57-62. https://doi.org/10.1080/14620316.2006.11512029.
Wang, M., Le Gourrierec, J., Jiao, F., Demotes-Mainard, S., Perez-Garcia, M. D., Ogé, L., Hamama, L., Crespel, L., Bertheloot, J., Chen, J., Grappin, P., & Sakr, S. (2021). Convergence and divergence of sugar and cytokinin signaling in plant development. International Journal of Molecular Science 22(3): 1282. https://doi.org/10.3390/ijms22031282.
Wang, Q., Li, X., Guo, C., Wen, L., Deng, Z., Zhang, Z., Li, W., Liu, T., & Guo, Y. (2023). Senescence-related receptor kinase 1 functions downstream of WRKY53 in regulating leaf senescence in Arabidopsis. Journal of Experimental Botany 74(17): 5140-5152. https://doi.org/10.1093/jxb/erad240.
Wang, S., Zhang, Y., & Liu, X. (2018). LED light traps with different wavelengths for monitoring and controlling agricultural pests. Crop Protection 105: 102-108.
Wang, T. C., Chang, J. W., & Chang, J. Y. (2019). Assessment of bagging protection at different timings and mesh sizes for controlling litchi fruit borer (Conopomorpha sinensis Bradley) on Litchi ‘Tainung No. 1’. J. Agric. Res. 68, 40-46.
Wang, W. M., Ma, X. F., Zhang, Y., Luo, M. C., Wang, G. L., Bellizzi, M., Xiong, X. Y., & Xiao, S. Y. (2012). PAPP2C interacts with the atypical disease resistance protein RPW8.2 and negatively regulates salicylic acid-dependent defense responses in Arabidopsis. Molecular Plant 5(5): 1125-1137.
Wang, X., Wang, Q., Nguyen, P., & Lin, C. (2014). Cryptochrome-mediated light responses in plants. Enzymes 35: 167-189.
Wang, Y., Maruhnich, S. A., Mageroy, M. H., Justice, J. R., & Folta, K. M. (2013). Phototropin 1 and cryptochrome action in response to green light in combination with other wavelengths. Planta 237(1): 225-237. https://doi.org/10.1007/s00425-012-1767-y.
Wang, Z., Zhou, Z., Liu, Y., Liu, T., Li, Q., Ji, Y., Li, C., Fang, C., Wang, M., Wu, M., Shen, Y., Tang, T., Ma, J., & Tian, Z. (2015). Functional evolution of phosphatidylethanolamine binding proteins in soybean and Arabidopsis. Plant Cell 27: 323-336.
Wang, Z. Y. & Tobin, E. M. (1998). Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93 (7): 1207-1217.
Waskom, M. L. (2021). seaborn: statistical data visualization. Journal of Open Source Software 6(60): 3021. https://doi.org/10.21105/joss.03021.
Wei, W., Luo, Z. N., Fan, T. B., & Liu, T. Z. 2005. Study on systemic surveillance of Conopomorpha sinensis. China Plant Protection 25: 24-26.
Wen, H. C., & Lee, C. Y. (2009). A control for three pests of the Yuh-heh-pau litchi in the fruit stage. Formosan Entomologist 29: 95-102.
Wen, S., Neuhaus, H. E., Cheng, J., & Bie, Z. (2022). Contributions of sugar transporters to crop yield and fruit quality. Journal of Experimental Botany, 73(8), 2275-2289. https://doi.org/10.1093/jxb/erac043 .
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4, doi:10.1007/978-3-319-24277-4.
Wickham, H., & Bryan, J. (2019). readxl: Read Excel Files. R package version 1.3.1.
Wickham, H., François, R., Henry, L., & Müller, K. (2023). dplyr: A grammar of data manipulation. R package version 1.1.1.
Wísniewska, J., Kęsy, J., Mucha, N., & Tyburski, J. (2024). Auxin resistant 1 gene (AUX1) mediates auxin effect on Arabidopsis thaliana callus growth by regulating its content and distribution pattern. Journal of Plant Physiology 293: 154168.
Wolff, S. A., & Langerud, A. (2006). Fruit yield, starch content and leaf chlorosis in cucumber exposed to continuous lighting. European Journal of Horticultural Science 71(6): 259.
Wright, S. W., & Shearer, J. D. (1984). Rapid extraction and high-performance liquid chromatography of chlorophylls and carotenoids from marine phytoplankton. Journal of Chromatography A 294: 281-295.
Xiao, L., Shibuya, T., Kato, K., Nishiyama, M., & Kanayama, Y. (2022). Effects of light quality on plant development and fruit metabolism and their regulation by plant growth regulators in tomato. Scientia Horticulturae 300: 111076.
Xu, W., Lu, N., Kikuchi, M., & Takagaki, M. (2021). Continuous lighting and high daily light integral enhance yield and quality of mass-produced nasturtium (Tropaeolum majus L.) in Plant Factories. Plants 10(6): 1203. https://doi.org/10.3390/plants10061203
Xu, Y., Zhang, W., Li, X., Liu, Y., Wang, H., & Zhao, X. (2021). A daylength recognition model of photoperiodic flowering. Frontiers in Plant Science, 12, 778515. https://doi.org/10.3389/fpls.2021.778515.
Yamada, A., Tanigawa, T., Suyama, T., Matsuno, T., & Kunitake, T. (2009). Red:infrared light ratio and infrared light integral promote or retard growth and flowering in Eustoma grandiflorum (Raf.) Shinn. Scientia Horticulturae 120(1): 101-106. doi:10.1016/j.scienta.2008.09.009.
Yamada, A., Tanigawa, T., Suyama, T., Matsuno, T., & Kunitake, T. (2008). Night break treatment using different light sources promotes or delays growth and flowering of Eustoma grandiflorum (Raf.) Shinn. Journal of the Japanese Society for Horticultural Science 77(1): 69-74.
Yamada, M., Uchida, T., Kuramitsu, O., Kosaka, S., Nishimura, T., & Arikawa, K. (2006). Insect control lighting for reduced and insecticide-free agriculture. Matsushita-Denko-Giho 54(1): 30-35.
Yamashita, K. (1999). Mango production in Japan. In Subhadrabandhu S., & Pichakum A. (Eds.). VI International Symposium on Mango 509: pp. 79-86. https://doi.org/10.17660/ActaHortic.2000.509.5
Yang, C. S. 2003. Sugar apple, atemoya. Taiwan agriculture encyclopedia. Crop edition-1. Harvest Farm Magazine. Taipei, Taiwan. p. 81-92.
Yang, Y. X., Wu, C., Ahammed, G. J., Wu, C., Yang, Z., Wan, C., & Chen, J. (2018). Red light-induced systemic resistance against root-knot nematode is mediated by a coordinated regulation of salicylic acid, jasmonic acid and redox signaling in watermelon. Frontiers in Plant Science, 9, 899.
Yang, Y., Li, Y., Guang, Y., Lin, J., Zhou, Y., Yu, T., Ding, F., Wang, Y., Chen, J., Zhou, Y., & Dang, F. (2023). Red light induces salicylic acid accumulation by activating CaHY5 to enhance pepper resistance against Phytophthora capsici. Horticulture Research 10(11): 213. https://doi.org/10.1093/hr/uhad213.
Yao, Q., Xu, S., Dong, Y., Que, Y., Quan, L., & Chen, B. (2018). Characterization of vitellogenin and vitellogenin receptor of Conopomorpha sinensis Bradley and their responses to sublethal concentrations of insecticide. Frontiers in Physiology 9: 1250. https://doi.org/10.3389/fphys.2018.01250.
Yao, X. C., Tu, H. Q., Wang, X. L., & Wang, J. (2021). LED night lighting improving mini-budding technology in Hevea brasiliensis. International Journal of Environment, Agriculture and Biotechnology 6: 135-141. https://dx.doi.org/10.22161/ijeab.61.18
Yase, J., Nagaoka, O., Futai, K., Izumida, T., & Kosaka, S. (2004) Control of cabbage webworm, Hellula undalis Fabricius (Lepidoptera: Pyralidae) using yellow fluorescent lamps. Jpn J Appl Entomol Zool Chugoku Bra 46:29-37 (in Japanese with English abstract).
Yoon, C., Lee, S., & Kim, J. (2016). The effect of wavelength of light-emitting diodes on attracting different species of insect pests in the greenhouse. Journal of Asia-Pacific Entomology 19(2): 349-353.
Yu, G., Wang, L. G., Han, Y., & He, Q. Y. (2012). clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 16(5): 284-287. https://doi.org/10.1089/omi.2011.0118
Zentgraf, U., & Doll, J. (2019). Arabidopsis WRKY53, a node of multi-layer regulation in the network of senescence. Plants 8(12): 578. doi: 10.3390/plants8120578.
Zhai, H., Lü, S., Liang, S., Wu, H., Zhang, X., Liu, B., Kong, F., Yuan, X., Li, J., & Xia, Z. (2014). GmFT4, a homolog of FLOWERING LOCUS T, is positively regulated by E1 and functions as a flowering repressor in soybean. PloS One 9(2): e89030. https://doi.org/10.1371/journal.pone.0089030.
Zhang, H. N., Wei, Y. Z., Shen, J. Y., Lai, B., Huang, X. M., Ding, F., Su, Z. X., & Chen, H. B. (2014). Transcriptomic analysis of floral initiation in litchi (Litchi chinensis Sonn.) based on de novo RNA sequencing. Plant Cell Reports 33(10): 1723-1735. https://doi.org/10.1007/s00299-014-1650-3.
Zhang, J., Nie, J. Y., Jing, L. I., Zhang, H., Ye, L. I., Farooq, S., BACHA S. A. S., & WANG J. (2020). Evaluation of sugar and organic acid composition and their levels in highbush blueberries from two regions of China. Journal of Integrative Agriculture, 19(9): 2352-2361. https://doi.org/10.1016/s2095-3119 (20) 63236-1.
Zhang, S., Gottschalk, C., & van Nocker, S. (2023). Conservation and divergence of expression of GA2-oxidase homeologs in apple (Malus x domestica Borkh.). Frontiers in Plant Science 14: 1117069. https://doi.org/10.3389/fpls.2023.1117069
Zhang, X., An, L., Nguyen, T. H., Liang, H., Wang, R., Liu, X., Li, T., Qi, Y., & Yu, F. (2015). The cloning and functional characterization of peach CONSTANS and FLOWERING LOCUS T homologous genes PpCO and PpFT. PloS One 10(4): e0124108. https://doi.org/10.1371/journal.pone.0124108.
Zhang, X., Tahir, M. M., Li, S., Tang, T., Mao, J., Li, K., Shao, Y., Yang W.,Niu J. & Zhang D. (2021). Effect of exogenous abscisic acid (ABA) on the morphology, phytohormones, and related gene expression of developing lateral roots in ‘Qingzhen 1’apple plants. Plant Cell, Tissue and Organ Culture 148(1): 23-34.
Zhao, H., Nie, K., Zhou, H., Yan, X., Zhan, Q., Zheng, Y., & Song, C. P. (2020). ABI5 modulates seed germination via feedback regulation of the expression of the PYR/PYL/RCAR ABA receptor genes. The New Phytologist 228(2): 596-608. https://doi.org/10.1111/nph.16713.
Zhao, H., Yin, C. C., Ma, B., Chen, S. Y., & Zhang, J. S. (2021). Ethylene signaling in rice and Arabidopsis: New regulators and mechanisms. Journal of Integrative Plant Biology 63(1): 102-125. https://doi.org/10.1111/jipb.13028.
Zhao, L., Wang, K., Wang, K., Zhu, J., & Hu, Z. (2020). Nutrient components, health benefits, and safety of litchi (Litchi chinensis Sonn.): A review. Comprehensive Reviews in Food Science and Food Safety, 19(4), 2139-2163. https://doi.org/10.1111/1541-4337.12590.
Zheng, L., He, H., & Song, W. (2019). Application of light-emitting diodes and the effect of light quality on horticultural crops: a review. HortScience 54:1656-1661.
Zhiping, L. (2014). Preliminary study on the trapping effect of sex pheromone in Conopomorpha sinensis Bradley. Beijing Agriculture 12: 11-12.
Zhou, J., Li, P., & Wang, J. (2022). Effects of light intensity and temperature on the photosynthesis characteristics and yield of lettuce. Horticulturae 8(2): 178.
Zhou, M. Q., Shen, C., Wu, L. H., Tang, K. X., & Lin, J. (2011). CBF-dependent signaling pathway: A key responder to low temperature stress in plants. Critical Reviews in Biotechnology 31 (2): 186-192. https://doi.org/10.3109/07388551.2010.505910.
Zou, X., Long, J., Zhao, K., Peng, A., Chen, M., Long, Q., He, Y., & Chen, S. (2019). Overexpressing GH3.1 and GH3.1L reduces susceptibility to Xanthomonas citri subsp. citri by repressing auxin signaling in citrus (Citrus sinensis Osbeck). PloS One 14(12): e0220017. https://doi.org/10.1371/journal.pone.0220017.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96512-
dc.description.abstract以人工光源輔助作物生產已行之有年,但因果樹植株普遍較大,較少人工光源應用在果樹方面的研究。本論文使用不同人工光源進行番荔枝 (Annona squamosa cv. Damu) 夜間暗中斷 (night break, NB) 延長花期研究,以瞭解可促進開花的關鍵波長以及轉錄體分子機制;除此之外,利用荔枝細蛾 (Conopomorpha sinensis Bradley) 避光特性,進一步篩選可防治荔枝細蛾又不影響荔枝 (Litchi, Litchi chinensis Sonn.) 果實品質的人工光源。首先進行連續4年番荔枝、冷子番荔枝 (Annona cherimola cv. Spain) 、鳳梨釋迦 (Annona x atemoya cv Gefner) 與牛心梨 (Annona reticulata cv. Red) 的周年開花能力調查,結果顯示,開花數量與平均溫度的相關性較高,與積溫相關性次之,與日照長度及降雨量相關性較低。秋天溫度逐漸降低開花量逐漸減少,若進行暗中斷則可以刺激開花。為了解暗中斷延長番荔枝開花期之分子機制,使用藍光450 nm、紅光660 nm與遠紅光740 nm LED (Light-emitting diodes) 燈暗中斷處理,並進行生育調查與轉錄體分析,結果顯示,紅光 660 nm暗中斷處理的莖葉於秋季可持續生長且開花數量顯著高於藍光 450 nm 、遠紅光 740 nm 與無光對照組。RNAseq轉錄體分析結果顯示,在秋季以紅光暗中斷處理有促進植物生長素 (auxin) 、乙烯 (ethylelne) 、激勃素 (gibberellic acid, GA) 與離層酸 (abscisic acid, ABA) 等植物荷爾蒙相關基因表現,較沒有明顯調控細胞分裂素 (cytokinin) 與光週期路徑相關基因,紅光暗中斷有一些基因顯著增加表現,此些基因功能為減少氧化逆境、去除受損蛋白質、減少低溫損傷與減少老化。番荔枝於短日照的冬季無法順利開花,以紅光660 nm夜間暗中斷與補充4種植物生長調節劑皆無法於12月底促進開花。若以增溫方式於溫室提高白天與夜晚溫度 5.7℃ 與 1.8℃ ,增溫溫室組於1月初的平均開花量為每芽0.49朵,顯著高於露天組與露天紅光組的0朵與0.05朵,結果顯示較高的溫度比紅光暗中斷對於番荔枝花朵形成的影響較大。此外,為篩選可防治荔枝細蛾的最有效波長,本研究使用紫光 400 nm、藍光 460 nm、綠光 520 nm、黃光 600 nm、紅光 660 nm、遠紅光 740 nm、混合白光 MixW 與混合黃光 MixY 等8種不同波長LED燈進行試驗。結果顯示,荔枝細蛾確實對光線相當敏感,於有光環境活動力下降,無光環境則活動力旺盛。夜間使用綠光 520 nm燈照可較無光對照組減少荔枝細蛾 99% 活動力、93% 產卵量以及 91% 果實危害率,若於夜晚使用其它波長燈照,會有荔枝果實較小或是甜度降低的情形,只有綠光 520 nm燈照可同時保持良好的荔枝果實品質。於開花前設置8種不同波長燈具進行玉荷包荔枝全株夜間燈照,並於開花前與果實成熟後採樣調查植體糖類變化。試驗結果顯示,只有夜間綠光 520 nm 燈照的葉片,於果實成熟時至果實成熟後增加5.5% 總可溶性糖的與減少2.5% 的澱粉,顯著高於夜間無燈照及其它燈照處理消耗約 20~50% 葉片的總可溶性糖與澱粉。夜間綠光 520 nm 燈照處理的葉片含有較高的碳水化合物狀態,可能是果實可以保持較佳的可溶性固型物含量以及果實糖酸比的主要原因之一。擴大於3個荔枝產區進行驗證的結果顯示,夜間綠光 520 nm 燈照確實可有效防治荔枝細蛾,大幅減少荔枝細蛾危害損失。本研究依不同的果樹種類與目的,成功篩選適合的人工光源輔助果樹生產。zh_TW
dc.description.abstractThe application of artificial light sources in crop production has been explored for many years; however, due to the relatively large plant size of fruit trees, there has been limited research on the use of artificial light for fruit trees. This study investigates the extension of the flowering period in sugar apple (Annona squamosa cv. Damu) through night break (NB) treatments using different artificial light sources to identify the key wavelengths that promote flowering and to elucidate the underlying transcriptomic mechanisms. Additionally, the study aims to screen artificial light sources that can control the litchi fruit borer (Conopomorpha sinensis Bradley) without compromising litchi (Litchi chinensis Sonn.) fruit quality, leveraging the photophobic behavior of the pest. The research involved selecting appropriate artificial light sources to support fruit tree production according to the specific crop and objective. Over four consecutive years, we investigated the year-round flowering capacity of sugar apple, cherimoya (Annona cherimola cv. Spain), atemoya (Annona × atemoya cv. Gefner), and Bullock’s-heart (Annona reticulata cv. Red). The results indicated that flowering quantity was most strongly correlated with temperature, followed by cumulative temperature, and was less correlated with photoperiod and rainfall. As temperatures gradually decreased in autumn, the number of flowers diminished; however, night break treatment could stimulate flowering. To understand the molecular mechanisms by which night break extends the flowering period of sugar apple, LED (Light-emitting diodes) lights with wavelengths of 450 nm blue light, 660 nm red light, and 740 nm infrared light were used for night break treatments, followed by phenological observations and transcriptome analysis. The results demonstrated that night break treatment with 660 nm red light significantly promoted stem and leaf growth and increased flowering quantity in autumn compared to 450 nm blue light, 740 nm infrared light, and control groups. RNAseq transcriptome analysis revealed that red light night break treatment in autumn did not significantly regulate genes related to cytokinin and photoperiod pathways, but it did promote the expression of genes associated with plant hormones such as auxin, ethylene, gibberellic acid (GA), and abscisic acid (ABA). Some genes that were significantly upregulated by red light night break were involved in reducing oxidative stress, removing damaged proteins, reducing cold injury, and delaying senescence, which may collectively maintain the plant's growth capacity and facilitate successful flowering. During the short-day conditions of winter, sugar apple faces challenges in flowering. Attempts to promote flowering by employing nighttime red light (660 nm) interruption and supplementation with four types of plant growth regulators failed to induce flowering by late December. However, temperature elevation in a greenhouse, increasing daytime and nighttime temperatures by 5.7°C and 1.8°C, respectively, significantly enhanced flowering. By early January, the average number of flowers per bud in the heated greenhouse treatment reached 0.49, significantly higher than the open-field and open-field red-light treatments, which produced 0 and 0.05 flowers per bud, respectively. These results indicate that elevated temperatures have a greater effect on floral development in sugar apple than red light interruption under short-day conditions. Furthermore, to identify the most effective wavelength for controlling the litchi fruit borer, eight different LED light sources were tested, including 400 nm violet light, 460 nm blue light, 520 nm green light, 600 nm yellow light, 660 nm red light, 740 nm infrared light, mixed white light (MixW), and mixed yellow light (MixY). The results showed that the litchi fruit borer is indeed highly sensitive to light, exhibiting reduced activity in illuminated environments and increased activity in darkness. Nighttime application of green light illumination at 520 nm wavelength demonstrated significant suppression of litchi fruit borer activity, reducing moth mobility by 99%, oviposition rate by 93%, and fruit damage rate by 91% compared to the non-illuminated control (CT). While alternative wavelengths of illumination resulted in adverse effects on fruit size and sugar content, the 520 nm green light treatment uniquely maintained optimal litchi fruit quality. Eight different wavelengths of light were applied for whole-plant nighttime illumination of 'Yu Her Pau' litchi prior to flowering, with sampling conducted before flowering and after fruit ripening to investigate changes in plant carbohydrate levels. The results showed that only leaves exposed to nighttime green light at 520 nm exhibited a 5.5% increase in total soluble sugars and a 2.5% reduction in starch content from fruit ripening to post-ripening. These changes were significantly higher than those observed in leaves under no light or other light treatments, which consumed approximately 20–50% of total soluble sugars and starch. Leaves treated with nighttime green light at 520 nm maintained a higher carbohydrate status, which may be a key factor contributing to the improved soluble solid content and sugar-to-acid ratio in the fruit. Field validation studies conducted across three distinct litchi-producing regions—southern, central, and northern Taiwan—substantiated that green light illumination at 520 nm wavelength effectively controls litchi fruit borer, resulting in substantial reduction of fruit damage and associated economic losses. This study successfully screened suitable artificial light sources to support fruit tree production, based on different fruit tree types and objectives.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-19T16:18:17Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-19T16:18:17Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
英文摘要 v
目次 viii
圖次 xi
表次 xiii
縮寫與全名對照 xiv
第一章 使用人工光源輔助農業生產總論 1
1.1使用人工光源於作物生產之研究與應用 2
1.1.1 植物主要色素與光受體之吸收波長與反應 2
1.1.2 不同光波長照射對植物產量與性狀的影響 4
1.1.3 日照長度對植物開花的影響 4
1.1.4使用不同光波長暗中斷對植物開花的影響 6
1.2使用人工光源減少病蟲害之研究與應用 7
1.2.1 昆蟲的光受體種類與對光的反應 7
1.2.2 昆蟲對不同光波長的敏感度差異與生物防治運用 8
1.2.3 使用人工光源提升病害抗性的研究 9
第二章 番荔枝、鳳梨釋迦、冷子番荔枝與牛心梨於不同氣候之開花能力研究 11
  2.1 前言 11
  2.2 材料與方法 13
2.2.1 番荔枝與鳳梨釋迦的主產期分佈 13
2.2.2 番荔枝與鳳梨釋迦主產地之氣象資訊分析 13
2.2.3 番荔枝、冷子番荔枝、鳳梨釋迦與牛心梨的周年開花能力調查 14
2.2.4 統計分析 15
  2.3 結果 17
2.3.1番荔枝與鳳梨釋迦在台灣全年的主要產期 17
2.3.2 番荔枝、冷子番荔枝、鳳梨釋迦與牛心梨的周年開花能力 17
2.3.3 四種番荔枝屬作物的每月開花量與氣候因子迴歸分析 22
2.3.4 番荔枝與鳳梨釋迦於台東主產地與西部地區之氣象分析 25
2.4 討論 27
2.4.1 番荔枝、鳳梨釋迦、冷子番荔枝與牛心梨於不同氣候之開花能力 27
2.4.2番荔枝與鳳梨釋迦於台東主產地與西部地區之氣象分析 28
第三章 使用LED燈照延長番荔枝開花期與轉錄體研究 30
  3.1 前言 30
  3.2 材料與方法 33
3.2.1 八種不同波長暗中斷處理之番荔枝開花數量調查 33
3.2.2 四種不同波長暗中斷處理之番荔枝新梢生長狀態 35
3.2.3 四種不同波長暗中斷處理之番荔枝葉片轉錄體分析 35
3.2.4 開花或休眠相關基因即時定量PCR (real-time PCR) 分析 39
3.2.5 繪製與開花有關的關鍵基因表現量熱圖 40
3.2.6 冬季使用植物生長調節劑與紅光夜間燈照促進番荔枝開花之研究 40
3.2.7 提升冬季氣溫以促進番荔枝開花之研究 41
3.2.8 統計分析 41
  3.3 結果 42
3.3.1 番荔枝於夜間不同波長暗中斷處理之開花數量調查 42
3.3.2 番荔枝於夜間不同波長暗中斷處理之新梢生長狀態調查 45
3.3.3 番荔枝於夜間不同波長暗中斷處理之轉錄體定序結果分析 48
3.3.4 植物荷爾蒙、開花與老化相關路徑之轉錄體分析 67
3.3.5 開花、休眠與老化相關基因的即時定量PCR分析 74
3.3.6 冬季使用植物生長調節劑與紅光夜間燈照促進番荔枝開花之研究 77
3.3.7 提升冬季氣溫以促進番荔枝開花之研究 80
3.4 討論 82
3.4.1 番荔枝夜間暗中斷誘導開花與植株生長情形 82
3.4.2 番荔枝夜間暗中斷轉錄體分析與開花相關代謝路徑探討 83
3.4.3 即時定量PCR分析休眠、老化與開花關鍵基因表現情形 86
3.4.4 植物荷爾蒙、暗中斷與氣象等因子影響番荔枝開花之綜合討論 87
第四章 使用LED燈照有效防治荔枝細蛾並保持良好荔枝品質之研究 90
  4.1 前言 90
  4.2 材料與方法 94
4.2.1 試驗地點與試驗材料介紹 94
4.2.2 不同波長燈照處理環境的荔枝細蛾活動力試驗 94
4.2.3 不同波長燈照處理環境的荔枝細蛾產卵量試驗 95
4.2.4 夜間不同波長燈照處理的荔枝細蛾危害率試驗 97
4.2.5 果實品質與農藥殘留分析 97
4.2.6 玉荷包荔枝使用不同波長夜間燈照處理的植體碳水化合物分析 98
4.2.7 荔枝產區大面積田間試驗驗證 99
4.2.7 燈照誘引非目標昆蟲試驗 100
4.2.8 統計分析 100
  4.3 結果 101
4.3.1 不同光波長誘引荔枝細蛾與誘引非目標昆蟲試驗 101
4.3.2 荔枝細蛾於自然光環境下之活動力 101
4.3.3 荔枝細蛾於不同波長環境下之活動力與產卵量 106
4.3.4 荔枝果實於不同光波長環境之荔枝細蛾危害率 106
4.3.5 夜間不同光波長處理之果實品質分析 110
4.3.6 夜間不同光波長處理之果實汁液HPLC分析 112
4.3.7 夜間燈照技術於荔枝產地擴大試驗 114
4.3.8 玉荷包荔枝使用不同波長夜間燈照於開花前至果實成熟後的植體碳水化合物變化 121
4.4 討論 123
4.4.1 抑制荔枝細蛾活動力、產卵量與危害率的最適波長 123
4.4.2 不同光波長環境對荔枝果實品質影響 125
4.4.3 夜間以不同光波長燈照對荔枝植體碳水化合物的影響 127
4.4.4 不同光波長誘引非目標昆蟲 128
4.4.5 夜間燈照防治荔枝細蛾產業運用現況 128
第五章 總結 131
第六章 參考文獻 136
-
dc.language.isozh_TW-
dc.subject番荔枝zh_TW
dc.subject暗中斷zh_TW
dc.subject開花zh_TW
dc.subject綠光zh_TW
dc.subject紅光zh_TW
dc.subject轉錄體zh_TW
dc.subject發光二極體zh_TW
dc.subject光週期zh_TW
dc.subject荔枝細蛾zh_TW
dc.subject荔枝zh_TW
dc.subject釋迦zh_TW
dc.subjectsugar appleen
dc.subjectlitchi fruit boreren
dc.subjectphotoperioden
dc.subjectLEDen
dc.subjecttranscriptomeen
dc.subjectred lighten
dc.subjectgreen lighten
dc.subjectfloweringen
dc.subjectnight breaken
dc.subjectlitchien
dc.subjectlycheeen
dc.title以人工光源調整番荔枝花期及轉錄體變化與 防治荔枝細蛾技術之研究zh_TW
dc.titleStudy on Adjusting the Flowering Period and Transcriptomic Changes of Sugar Apple (Annona squamosa L.) Using Artificial Light Sources and Techniques for Controlling the Litchi Fruit Borer (Conopomorpha sinensis Bradley)en
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree博士-
dc.contributor.coadvisor董致韡zh_TW
dc.contributor.coadvisorChih-Wei Tungen
dc.contributor.oralexamcommittee吳俊達;李國潭;林彥伯;陳昶璋;洪傳揚zh_TW
dc.contributor.oralexamcommitteeChun-Ta Wu;Kuo-Tan Li;Yen-Po Lin;Chang-Chang Chen;Chwan-Yang Hongen
dc.subject.keyword番荔枝,釋迦,荔枝,荔枝細蛾,光週期,發光二極體,轉錄體,紅光,綠光,開花,暗中斷,zh_TW
dc.subject.keywordsugar apple,lychee,litchi,litchi fruit borer,photoperiod,LED,transcriptome,red light,green light,flowering,night break,en
dc.relation.page168-
dc.identifier.doi10.6342/NTU202500217-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-01-25-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept農藝學系-
dc.date.embargo-lift2030-01-23-
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  此日期後於網路公開 2030-01-23
10.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved