Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96502
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 楊岳平 | zh_TW |
dc.contributor.advisor | Yueh-Ping Yang | en |
dc.contributor.author | 吳媚烜 | zh_TW |
dc.contributor.author | Mei-Hsuan Wu | en |
dc.date.accessioned | 2025-02-19T16:15:39Z | - |
dc.date.available | 2025-02-20 | - |
dc.date.copyright | 2025-02-19 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-02-03 | - |
dc.identifier.citation | 壹、中文文獻
(一) 專書 王澤鑑(1999),《法律思維與民法實例》,臺北:自版。 司法院(2011),《美國聯邦最高法院憲法判決選譯》,臺北:司法院。 許志雄(2016),《人權論──現代與近代的交會》,臺北:元照。 (二) 期刊論文 陳凱迪(2018),〈人工智慧發展對金融業之衝擊與因應〉,《財金資訊季刊》,93期,頁14-22。 陳靜慧(2017),〈歐洲人權法院及歐洲法院對間接歧視之適用〉,《憲法解釋之理論與實務》,9期,頁385-436。 焦興鎧(1990),〈美國勞工法上就業歧視之最新發展〉,《美國研究》,20期,頁51-116。 焦興鎧(1995),〈勞工法與勞工權利之保障〉,《美國勞工法論文集(一)》,頁329-364。 黃昭元(2012),〈論差別影響歧視與差別對待歧視之關係-評美國最高法院Ricci v. DeStefano(2009)判決〉,《中研院法學期刊》,11期,頁1-63。 葉啟洲(2014),〈民事交易關係上之反歧視原則-德國一般平等待遇法之借鏡〉,《東吳法律學報》,26期,頁143-200。 廖淑君(2012),〈人工智慧與普惠金融-淺析演算法於徵信/授信應用之金融消費者保護議題〉,《財金法學研究》,5卷,1期,頁115-150。 劉祐君(2020),〈我國信貸反歧視規範初探-以美國《公平信貸機會法》為比較〉,《萬國法律》,233期,頁91-99。 謝棋楠(2008),〈由美國差別影響歧視制度評台北地院九十一年重勞訴字第五號判決〉,《全國律師月刊》,12卷4期,頁14-35。 (三) 學位論文 李婷婷(2019),《小額消費信貸信用評分模型的建置–以台灣某銀行為例》,國立清華大學財務金融碩士在職專班碩士論文。 康建民(2008),《個人貸款信用評分模型-以儲蓄互助社為例》,國立暨南大學財務金融學系碩士論文。 楊舒嵐(2010),《憲法價值於私法關係之體現─以隱私權與表現自由之衝突與調和為例》,國立臺灣大學碩士論文。 (四) 決議、函令 金融監督管理委員會113 年3 月14 日金管銀國字第 1120237675 號函 金融監督管理委員會106年6月3日金管銀國字第10620002360號函 (五) 政府文件 金融監督管理委員會(2023),〈金融業運用人工智慧(AI)之核心原則與相關推動政策〉。 金融監督管理委員會(2024),〈金融業運用人工智慧(AI)指引〉。 (六) 網路資料 Medium,〈可解釋 AI (XAI) 系列 — SHAP〉,載於:https://medium.com/ai-academy-taiwan/%E5%8F%AF%E8%A7%A3%E9%87%8B-ai-xai-%E7%B3%BB%E5%88%97-shap-2c600b4bdc9e。 Medium,〈平等、公平、現實、正義(解放)之間的差異〉,載於:https://medium.com/vincent-chen/%E5%B9%B3%E7%AD%89-%E5%85%AC%E5%B9%B3-%E7%8F%BE%E5%AF%A6-%E6%AD%A3%E7%BE%A9-%E8%A7%A3%E6%94%BE-%E4%B9%8B%E9%96%93%E7%9A%84%E5%B7%AE%E7%95%B0-79f7043e8d6e。 中央廣播電臺(2024/06/20),〈台灣金融業使用AI占比近3成金管會發布指引〉,載於:https://www.rti.org.tw/news/view/id/2210313。 中時新聞網(07/28/2023),〈合庫銀將推「速速貸線上信貸」最快30分鐘入帳〉,載於:https://ynews.page.link/Jn8z5。 台灣好報(09/06/2023),〈廈門銀行推出「臺e貸」 大陸首款臺胞專屬線上信用貸款產品〉,載於:https://tw.news.yahoo.com/%E5%BB%88%E9%96%80%E9%8A%80%E8%A1%8C%E6%8E%A8%E5%87%BA-%E8%87%BAe%E8%B2%B8-%E5%A4%A7%E9%99%B8%E9%A6%96%E6%AC%BE%E8%87%BA%E8%83%9E%E5%B0%88%E5%B1%AC%E7%B7%9A%E4%B8%8A%E4%BF%A1%E7%94%A8%E8%B2%B8%E6%AC%BE%E7%94%A2%E5%93%81-083204181.html。 金管會(2023/11/28),〈金管會就金融業運用人工智慧(AI)指引草案公開徵詢外界意見〉,載於:https://www.fsc.gov.tw/ch/home.jsp?id=96&parentpath=0,2&mcustomize=news_view.jsp&dataserno=202312280004&dtable=News。 科技大觀園,〈電機資工的現況與未來:生活中的演算法〉,載於:https://scitechvista.nat.gov.tw/Article/c000003/detail?ID=084a957b-aa02-4833-a08d-ec0788e97d50。 財訊(09/29/2021),〈傳統銀行程序冗長 自動化借貸系統有創舉 AI助攻信貸平台股價暴衝5倍〉,載於:https://www.wealth.com.tw/articles/9e9060cd-9248-499e-801e-f1744f944c5d。 財團法人資訊工業策進會數位轉型研究院,〈金管會AI指引、銀行公會AI規範發布,三大重點一次看懂!〉,載於:https://www.find.org.tw/index/indus_trend/browse/875b2d221ea9f38c4fc418f3d0089ead/。 凱基銀行(09/27/2024),〈信用貸款是什麼?信貸流程有哪些?貸款申請要多久?貸款流程申請必備資訊總整理!〉,載於: https://www.kgibank.com.tw/zh-tw/kgibarticleshome/loan/pl-process。 貳、英文文獻 (一) 專書 Becker, G. S. (1971), The Economics of Discrimination, University Of Chicago Press. Bentham, Jeremy (revised 2017), An Introduction to the Principles of Morals and Legislation, https://www.earlymoderntexts.com/assets/pdfs/bentham1780.pdf. Fredman, Sandra (2011), Discrimination Law, Oxford University Press. Hellman, Deborah & Moreau, Sophia, eds. (2013), Philosophical Foundations of Discrimination Law, Suffolk University Law School Research Paper. Lauer, Josh (2017), Creditworthy, Columbia University Press. Lippert-Rasmussen, Kasper (2014), Born Free And Equal?: A Philosophical Inquiry Into The Nature Of Discrimination, Oxford University Press. Rawls, John (1971), A Theory of Justice, Harvard University Press. Sandel, Michael J. (2010), Justice: What’s the Right Thing to Do?, Farrar Straus & Giroux. (二) 期刊論文 Andreeva, Galina, Ansell, Jake & Crook, Jonathan (2004), Impact of Anti-Discrimination Laws on Credit Scoring, 9 J. Financ. Serv. Mark 22. Black, Emily et al. (2023), Less Discriminatory Algorithms, 101 Georgetown Law Journal 53, https://www.law.georgetown.edu/georgetown-law-journal/wp-content/uploads/sites/26/2024/11/Black-et-al._LessDiscriminatory.pdf. Collins, Hugh (2003), Discrimination, equality and social inclusion, The Modern Law Review 66. Deeks, Ashley (2019), The Judicial Demand for Explainable Artificial Intelligence, 119 Columbia Law Rev.1829. Di Palma, M., Carioti, D., Arcangeli, E., et al. (2022), The biased hand. Mouse-tracking metrics to examine the conflict processing in a race-implicit association test, 17(7) Plos One 2, https://pmc.ncbi.nlm.nih.gov/articles/PMC9328548/. Fuster, Andreas, Goldsmith-Pinkham, Paul S., Ramadorai, Tarun & Walther, Ansgar (2022), Predictably Unequal? The Effects of Machine Learning on Credit Markets, 77 Journal Of Finance 5, http://dx.doi.org/10.2139/ssrn.3072038. Garcia, Ana Cristina Bicharra, Garcia, Marcio Gomes Pinto & Rigobon, Roberto (2023), Algorithmic Discrimination in the Credit Domain: What Do We Know about It?, Ai & Society, https://doi.org/10.1007/s00146-023-01676-3. Gerards, Janneke & Zuiderveen Borgesius, Frederik (2020), Protected Grounds and the System of Non-Discrimination Law in the Context of Algorithmic Decision-Making and Artificial Intelligence, 20 Colo. Tech. L.J. 1, https://ctlj.colorado.edu/wp-content/uploads/2022/06/PROTECTED-GROUNDS-AND-THE-SYSTEM-OF-NON-DISCRIMINATION-LAW-IN-THE-CONTEXT-OF-ALGORITHMIC-DECISION-MAKING-AND-ARTIFICIAL-INTELLIGENCE.pdf. Heringa, Aalt Willem (1999), Standards of Review for Discrimination: The Scope of Review by the Courts, Non-Discrimination Law: Comparative Perspectives 25. King, Allan G. & Wang, Alice H., Artificial Intelligence As A Less Discriminatory Alternative, 33 Public Policy 375 (2023), https://scholarship.law.ufl.edu/jlpp/vol33/iss3/2/. Lawrence, Charles R. III (1987), The Id, the Ego, and Equal Protection: Reckoning with Unconscious Racism, 39 Stan. L. Rev. 317. Lepri, Bruno et al. (2018), Fair, Transparent, and Accountable Algorithmic Decision-Making Processes: The Premise, the Proposed Solutions, and the Open Challenges, 31 Philos. Technol. 611. McGinley, Ann C. (2010), Discrimination Redefined, 75 Mo. L. Rev 443. Odinet, Christopher K. (2022), Fintech Credit and the Financial Risk of AI, U. Iowa Legal Stud. Research Paper, No. 2021-39. Selbst, Andrew D. & Barocas, Solon (2018), The Intuitive Appeal of Explainable Machines, 87 Fordham L. Rev. 1085, https://ir.lawnet.fordham.edu/cgi/viewcontent.cgi?article=5569&context=flr. Wasserman, David, Discrimination, concept of (1998), 1 Encyclopedia Of Applied Ethics, 807. Wu, Jason Jia-Xi (2024), Algorithmic Fairness in Consumer Credit Underwriting: Towards a “Harm-Based” Framework for AI Fair Lending, 21 Berkeley Business Law Journal 1, https://doi.org/10.15779/Z38CF9J785. Zuiderveen Borgesius, Frederik J. (2020), Strengthening Legal Protection against Discrimination by Algorithms and Artificial Intelligence, 24 Int. J. Hum. Rights 1572. (三) 判決案例 A.B. & S. Auto Service, Inc., v. South Shore Bank of Chicago, 962 F.Supp. 1056, 1061 (N.D. Ill. 1997) Albemarle Paper Co. v. Moody, 422 U.S. 405 (1975) Braxton v. Wells Fargo Bank, N.A. a Delaware corporation, 3:22-cv-01748, (N.D. Cal.) DeJung v. Superior Court, 169 Cal.App.4th 533, 87 Cal. Rptr. 3d 99 (Cal. Ct. App. 2008) Federal Trade Commission, V. Passport Automotive Group, Inc. No. 8:2022cv02670 (US District Court for the District of Maryland) Griggs v. Duke Power Co., 401 U.S. 424, 91 S. Ct. 849 (1971) Lewis v. ACB Bus. Services, Inc., 135 F.3d 389, 406 (6th Cir. 1998) Monson v. Rochester Athletic Club, 759 N.W.2d 60 (Minn. Ct. App. 2009) Ricci v. Destefano, 530 F.3d 88 (2d Cir. 2008) Union of Refugee Women v. Director, Private Security Industry Regulatory Authority (CCT 39/06) [2006] Z.A.C.C. 23, paras 122–123 (S. Afr.). (四) 研究報告 Consumer Financial Protection Bureau (2024), Fair Lending Report of the Consumer Financial Protection Bureau, , https://files.consumerfinance.gov/f/documents/cfpb_fair-lending-report_fy-2023.pdf. European Banking Federation (2019), EBF Position Paper on AI in the Banking Industry, https://www.ebf.eu/wp-content/uploads/2020/03/EBF-AI-paper-_final-.pdf. Federal Trade Commission, Discrimination And Bias In Automated Systems, https://www.ftc.gov/system/files/ftc_gov/pdf/EEOC-CRT-FTC-CFPB-AI-Joint-Statement%28final%29.pdf. Financial Stability Board (2022), Fintech and Market Structure in the COVID-19 Pandemic, https://www.fsb.org/wp-content/uploads/P210322.pdf. OECD (2019), Scoping the OECD AI principles, OECD Digital Economy Papers, https://www.oecd-ilibrary.org/docserver/d62f618a-en.pdf?expires=1589038170&id=id&acc name=guest&checksum=4E099F3617BD00290FCC34E651F0920A. OECD (2020), OECD Business and Finance Outlook 2020: Sustainable and Resilient Finance, OECD Publishing, Paris, https://doi.org/10.1787/eb61fd29-en. OECD (2022), OECD Framework for the Classification of AI systems, OECD Digital Economy Papers, https://doi.org/10.1787/cb6d9eca-en. U.S. Equal Employment Opportunity Commission, Select Issues: Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964, https://www.eeoc.gov/laws/guidance/select-issues-assessing-adverse-impact-software-algorithms-and-artificial#_ednref21:~:text=What%20is%20the%20%E2%80%9Cfour%2Dfifths%20rule%E2%80%9D%3F. U.S. Public Interest Research Group (USPIRG) and the Center for Digital Democracy (CDD) (2015), Expanding Access to Credit through Online Marketplace Lending, Comments To The U.S. Department Of The Treasury, https://www.democraticmedia.org/sites/default/files/field/public/2015/uspirg_cdd_marketplacelendingrf_fnal30sept2015.pdf. (五) 網路資料 Aba Banking Journal, Fed’s Barr highlights digital redlining risk resulting from AI tools, https://bankingjournal.aba.com/2023/07/feds-barr-highlights-digital-redlining-risk-resulting-from-ai-tools/. AI Incident Database, Incident 92: Apple Card's Credit Assessment Algorithm Allegedly Discriminated against Women (2019), https://incidentdatabase.ai/cite/92/. Bet, Black Home Mortgage Borrowers Sue Navy Federal Credit Union For Discrimination (2023), https://www.bet.com/article/vlo62w/navy-federal-credit-union-lawsuit-racial-discrimination. Bloomberg, Artificial Intelligence Has Some Explaining to Do (Dec 12, 2018), https://www.bloomberg.com/news/articles/2018-12-12/artificial-intelligence-has-some-explaining-to-do. Bloomberg, Wells Fargo Rejected Half Its Black Applicants in Mortgage Refinancing Boom (Mar. 11, 2022), https://www.bloomberg.com/graphics/2022-wells-fargo-black-home-loan-refinancing/?utm_source=website&utm_medium=share&utm_campaign=copy. CNN, The Nation’s Largest Credit Union Rejected More Than Half Its Black Conventional Mortgage Applicants (Dec. 14, 2023), https://www.cnn.com/2023/12/14/business/navy-federal-credit-union-black-applicants-invs. Consumer Federation of America, Consumer Groups Call on CFPB to Protect Consumers from Discriminatory Algorithms Used by Banks and Other Financial Institutions to Make Credit Decision (June 26, 2024), https://consumerfed.org/press_release/consumer-groups-call-on-cfpb-to-protect-consumers-from-discriminatory-algorithms-used-by-banks-and-other-financial-institutions-to-make-credit-decisions/. Cornell University, The Fairness of Credit Scoring Models (2024), http://arxiv.org/abs/2205.10200. Datenschutz-notizen, Privacy and AI: Schufa algorithm condemned by the CJEU, https://www.datenschutz-notizen.de/privacy-and-ai-schufa-algorithm-condemned-by-the-cjeu-0946847/. Federal Trade Commission, Federal Trade Commission Takes Action Against Passport Automotive Group for Illegally Charging Junk Fees and Discriminating Against Black and Latino Customers (October 18, 2022), https://www.ftc.gov/news-events/news/press-releases/2022/10/federal-trade-commission-takes-action-against-passport-automotive-group-illegally-charging-junk-fees. Forbes, What Is An Algorithm? Defining And Applying Algorithms, https://www.forbes.com/sites/technology/article/what-is-an-algorithm/ Geeksforgeeks, Supervised and Unsupervised Learning (23 Sep, 2024), https://geeksforgeeks.org/supervised-unsupervised-learning/. Georgetown Online Public Health, Equity vs. Equality: What’s the Difference? (November 5, 2020 ), https://onlinepublichealth.gwu.edu/resources/equity-vs-equality/. Github, Counterfactual Explanations, https://christophm.github.io/interpretable-ml-book/counterfactual.html. Github, Local Surrogate (LIME), https://christophm.github.io/interpretable-ml-book/lime.html. Github, Permutation Feature Importance, https://christophm.github.io/interpretable-ml-book/feature-importance.html. Housing Wire, Mortgage Underwriting Algorithm at Heart of Wells Fargo’s Racial Disparity Lawsuit (June 14, 2024), https://finance.yahoo.com/news/mortgage-underwriting-algorithm-heart-wells-161043355.html. Investopedia, Effects Test: What It Means, How It Works (2022), https://www.investopedia.com/terms/e/effects-test.asp. Investopedia, What Is Redlining? Definition, Legality, and Effects, https://www.investopedia.com/terms/r/redlining.asp. JMP, Introduction to machine learning: easy-to-understand interpretation of decision trees (May 20, 2024), https://community.jmp.com/t5/JMP-Blog/%E6%A9%9F%E5%99%A8%E5%AD%B8%E7%BF%92%E5%85%A5%E9%96%80-%E9%80%9A%E4%BF%97%E6%98%93%E6%87%82%E8%A7%A3%E8%AE%80%E6%B1%BA%E7%AD%96%E6%A8%B9/ba-p/753561. Knowledge, How Anti-Discriminatory Measures Can Worsen AI Bias (2023), https://knowledge.insead.edu/operations/how-anti-discriminatory-measures-can-worsen-ai-bias. Machine Learning, Linear regression, https://developers.google.com/machine-learning/crash-course/linear-regression. Medium, A Quick Guide to Boosting in ML (Mar. 21, 2018),https://medium.com/greyatom/a-quick-guide-to-boosting-in-ml-acf7c1585cb5/. Medium, Understanding the Essentials of Model Distillation in AI (Jun 8, 2024), https://medium.com/stream-zero/understanding-the-essentials-of-model-distillation-in-ai-1e97403bee8a. Merriam-Wester.Com, Algorithm, https://www.merriam-webster.com/dictionary/algorithm. MIT Management, Machine learning, explained (Apr 21, 2021), https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained. Mit Tech. Rev., Is AI Riding a One-Trick Pony? (2017), https://www.technologyreview.com/s/608911/is-ai-riding-a-one-trick-pony/. New York Institute of Finance, The C’s and P’s of Credit Risk Analysis, https://info.nyif.com/do-know-your-cs-and-ps-for-credit-analysis/. New York State Department of Financial Services, Report on Apple Card Investigation (2021), https://www.dfs.ny.gov/system/files/documents/2021/03/rpt_202103_apple_card_investigation.pdf. Office of the comptroller of the Currency, Comptroller’s Handbook: Fair Lending (2023), https://www.occ.treas.gov/publications-and-resources/publications/comptrollers-handbook/files/fair-lending/index-fair-lending.html. Oracle Ai &Data Science Blog, Using the Artificial Neural Network for Credit Risk Management (Jan. 23, 2019), https://blogs.oracle.com/ai-and-datascience/post/using-the-artificial-neural-network-for-credit-risk-management. Reuters, Insight - Amazon scraps secret AI recruiting tool that showed bias against women (October 11, 2018), https://www.reuters.com/article/world/insight-amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK0AG/. SpiceWorks, What Is Logistic Regression? Equation, Assumptions, Types, and Best Practices (April 8, 2022), https://www.spiceworks.com/tech/artificial-intelligence/articles/what-is-logistic-regression/. The Regulatory Review, How the FTC Could Regulate Algorithmic Discrimination (Jan 25, 2024), https://www.theregreview.org/2024/01/25/shaikh-how-the-ftc-could-regulate-algorithmic-discrimination/. U.S. Department of Justice, Federal Coordination and Compliance Title VI Manual Section VII- Proving Discrimination- Disparate Impact, https://www.justice.gov/crt/fcs/T6Manual7#P. United States Consumer Financial Protection Bureau & Department of Justice, Joint Statement On Enforcement Efforts Against, https://www.ftc.gov/system/files/ftc_gov/pdf/EEOC-CRT-FTC-CFPB-AI-Joint-Statement%28final%29.pdf. World Economic Forum, International Women’s Day: What’s the difference between equity and equality? (Mar 3, 2023), https://www.weforum.org/stories/2023/03/equity-equality-women-iwd/. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96502 | - |
dc.description.abstract | 隨著人工智慧技術的發展,其於各行業中的應用日益普及,金融機構也不例外地在金融服務中開始運用人工智慧技術,藉此提升效率以提供更完善的金融服務。但於此同時,人工智慧技術的運用也帶來了公平性的隱憂。
本文以金融機構運用人工智慧技術於信貸服務中引發的歧視問題為討論主軸,從目前實務上發生的案例,發現人工智慧信貸不同於傳統信貸的歧視風險態樣,進而梳理人工智慧信貸歧視的風險形成與原因,並指出我國現行金融反歧視法存在規範空白的問題。本文進而透過比較法研究討論實務和學說如何在現行金融歧視法規範的架構下解決人工智慧信貸歧視問題,並以美國公平信貸相關規範及學者研究文獻為主要參考對象,觀察傳統公平信貸法制實踐於人工智慧信貸時產生的公平性問題與解釋挑戰。 透過比較法的研究,本文歸納我國法制針對人工智慧信貸應用可考慮的監理路徑,並以《金融業運用人工智慧(AI)指引》及《金融機構運用人工智慧技術作業規範》的規範內容為主,提出我國金融監理面對人工智慧信貸歧視問題時可考慮的具體規範建議。 | zh_TW |
dc.description.abstract | With the development of Artificial Intelligence (AI) technology, its application in various industries is becoming more and more popular. Financial institutions are no exception, which have started to utilize AI technology in financial services to enhance efficiency and provide better financial services. However, at the same time, the use of AI technology in financial services also brings about the hidden problem of fairness.
This thesis focuses on the use of AI technology in credit services by financial institutions. It identifies the different patterns of discrimination of AI credit services from that of traditional credit services from the cases occurring in practice, explores the causes of AI credit discrimination, and specifies the gaps in the existing financial anti-discrimination laws in Taiwan. Furthermore, the thesis adopts the comparative legal study to discuss how the practice and theory can solve the problem of AI credit discrimination under the existing financial anti-discrimination legal framework in other countries. It mainly focuses on the legal reforms in the U.S. related to fair credit and scholars' literatures to observe the interpretation challenges related to the fairness problem when applying the traditional fair credit laws to AI credit services. This thesis finally discusses how the current legal system can be applied in the context Taiwan's law, specifically the Guidelines on the Use of Artificial Intelligence (AI) in the Financial Sector and the Code of Practice on the Use of Artificial Intelligence by Financial Institutions. It proposes specific regulatory suggestions to address the problem of discrimination in the use of AI in credit services. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-19T16:15:39Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-19T16:15:39Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
謝辭 ii 摘要 iv ABSTRACT v 目次 vi 圖次 viii 第一章 緒論 1 第一節 研究動機 1 第二節 研究對象與範圍 4 第三節 研究方法與限制 5 第一項 文獻回顧法 5 第二項 比較法研究 5 第四節 研究架構 6 第二章 人工智慧信貸的歧視問題 8 第一節 人工智慧歧視 8 第一項 人工智慧與機器學習概述 8 第二項 機器學習的不透明性 9 第三項 機器學習的公平性疑慮 12 第二節 人工智慧信貸歧視 13 第一項 人工智慧信貸歧視的案例 13 第二項 人工智慧信貸歧視的原因分類 21 第三項 反歧視與公平性要求 24 第三節 我國法下的公平信貸規範與人工智慧信貸歧視 30 第一項 公平信貸與金融反歧視規範 30 第二項 金融業應用人工智慧規範 31 第四節 小結 34 第三章 公平信貸規範的理論與法制 36 第一節 公平信貸規範之規範目的 36 第一項 契約自由與公平信貸 36 第二項 傳統信貸審核與公平信貸 42 第二節 公平信貸與反歧視規範的內容 46 第一項 反歧視規範的立法模式 47 第二項 反歧視規範下的歧視態樣 49 第三項 歧視的例外正當化事由 52 第三節 比較法下的公平信貸 53 第一項 公平信貸規範 53 第二項 歧視認定之舉證責任、動機與因果關係 57 第四節 小結 59 第四章 人工智慧信貸歧視之解決之道 61 第一節 人工智慧信貸的監管方式 61 第一項 法規範 62 第二項 技術監管 63 第三項 可解釋人工智慧與人力介入 64 第二節 公平信貸規範的新挑戰 69 第一項 民權法第七章、ECOA與Regulation B 69 第二項 比較法上的人工智慧信貸歧視監管發展 72 第三節 較小歧視替代方案與可解釋人工智慧的應用 75 第一項 較小歧視替代方案的內涵 75 第二項 人工智慧信貸與較小歧視替代方案 77 第三項 可解釋人工智慧的應用實例 78 第四節 小結 80 第五章 我國法下之人工智慧與公平信貸規範 81 第一節 人工智慧信貸歧視的控管方向 81 第二節 制訂信貸反歧視法之芻議 82 第一項 制定規範的必要性討論 82 第二項 規範層級及規範對象 83 第三項 金融反歧視法的基本規範內容與法定受保護特徵 84 第四項 正當理由例外與較小歧視替代方案 86 第五項 主管機關的調查監督 87 第六章 結論 88 參考文獻 91 | - |
dc.language.iso | zh_TW | - |
dc.title | 人工智慧金融與金融歧視之研究—以信用貸款為中心 | zh_TW |
dc.title | Research on Artificial Intelligence Finance in Financial Discrimination: Focusing on Credit Lending | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 林勤富;林育廷 | zh_TW |
dc.contributor.oralexamcommittee | Ching-Fu Lin;Yu-Ting Lin | en |
dc.subject.keyword | 金融反歧視法,公平信貸,人工智慧信貸歧視,機器學習,金融消費者保護, | zh_TW |
dc.subject.keyword | Financial Anti-Discrimination Act,Fair Lending,Artificial Intelligence Credit Discrimination,Machine Learning,Financial Consumer Protection, | en |
dc.relation.page | 102 | - |
dc.identifier.doi | 10.6342/NTU202500326 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2025-02-03 | - |
dc.contributor.author-college | 法律學院 | - |
dc.contributor.author-dept | 科際整合法律學研究所 | - |
dc.date.embargo-lift | 2025-02-20 | - |
Appears in Collections: | 科際整合法律學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-113-1.pdf | 1.44 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.