請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96500
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林恩仲 | zh_TW |
dc.contributor.advisor | En-Chung Lin | en |
dc.contributor.author | 林楷翔 | zh_TW |
dc.contributor.author | Kai-Hsiang Lin | en |
dc.date.accessioned | 2025-02-19T16:15:08Z | - |
dc.date.available | 2025-02-20 | - |
dc.date.copyright | 2025-02-19 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-01-23 | - |
dc.identifier.citation | 財團法人中央畜產會。2024。2023 台灣養豬統計手冊。第 8 – 12 頁。臺北市。
Alexopoulos, J. G., D. S. Lines, S. Hallett, and K. J. Plush. 2018. A review of success factors for piglet fostering in lactation. Animals 8:38. doi: 10.3390/ani8030038 Almedia, F. R. C. I., and A. L. N. Alvarenga Dias. 2022. Pregnancy in pigs: the journey of an early life. Domest. Anim. Endocrinol. 78:106656. https://doi.org/10.1016/j.domaniend.2021.106656 Armstrong, D. V. 1994. Heat stress interaction with shade and cooling. J. Dairy Sci. 77:2044-2050. doi: 10.3168/jds.S0022-0302(94)77149-6 Berry, I. L., M. D. Shanklin, and H. D. Johnson. 1964. Dairy shelter design based on milk production decline as affected by temperature and humidity. Trans. ASAE 7:329-331. doi: 10.13031/2013.40772 Bertoldo, M. J., P. K. Holyoake, G. Evans, and C. G. Grupen. 2012. Seasonal variation in the ovarian function of sows. Reprod. Fertil. Dev. 24:822-834. doi:10.1071/RD11249 Bidanel, J.-P. 2011. Biology and genetics of reproduction. In: Rothschild, M. F., and A. Ruvinsky, editors. The genetics of the pigs. Oxfordshire, UK: CABI; pp. 218-233. Bidarimath, M., and C. Tayade. 2017. Pregnancy and spontaneous fetal loss: a pig perspective. Mol. Reprod. Dev. 84:856–869. doi:10.1002/mrd.22847 Bjerg, B., P. Brandt, K. Sørensen, P. Pedersen, and G. Zhang. 2019. Review of methods to mitigate heat stress among sows. 2019 ASABE Annu. Int. Meet. 19900741. doi: 10.13031 Black, J. J., B. P. Mullan, M. L. Lorschy, and L. R. Giles. 1993. Lactation in the sow during heat stress. Livest. Prod. Sci. 35:153-170. doi:10.1016/0301-6226(93)90188-N. Bloemhof, S., P. K. Mathur, E. F. Knol, and E. H. van der Waaij. 2013. Effect of daily environmental temperature on farrowing rate and total born in dam line sows. J. Anim. Sci. 91:2667-2679. doi:10.2527/jas. 2012-5902. Bouquet, A., V. Déru, B. Blanchet, P. Ganier, L. Flatrès -Grall, B. Ligonesche, C. Carillier-Jacquin, E. Labussière, and H. Gilbert. 2022. Digestive efficiency traits in growing pigs are genetically correlated with sow litter traits in the Large White breed. Animal 16:10047. doi:10.1016/j.animal.2021.100447. Cao, M., C. Zong, Y. Zhuang, G. Teng, S. Zhou, and T. Yang. 2021. Modeling of heat stress in sows part 2: comparison of various thermal comfort indices. Animals 11:1498. doi: 10.3390/ani11061498 Cardoso, F. F., and R. J. Tempelman. 2012. Linear reaction norm models for genetic merit prediction of Angus cattle under genotype by environment interaction. J. Anim. Sci. 90:2130-2141. doi: 10.2527/jas.2011-4333 Carrara, E. R., J. Petrini, M. Salvian, H. R. de Oliveira, G. A. Rovadoscki, L. H. de Souza Iung, M. Miquilini, P. F. Machado, and G. B. Mourão. 2021. Genetic parameters for milk yield and quality traits of Brazilian Holstein cows as a function of temperature and humidity index. J. Anim. Breed. Genet. 138:643-654. doi: 10.1111/jbg.12636 Cabezón, F., and K. Stewart. 2016. Heat stress physiology in swine. Prudue Univ. Dept. Anim. Sci. AS-362-W. Canario, L., E. Cantoni, E. Le Bihan, J. C. Caritez, Y. Billon, J. P. Bidanel, and J. L. Foulley. 2006. Between-breed variability of stillbirth and its relationship with sow and piglet characteristics. J. Anim. Sci. 84:3185-3196. doi: 10.2527/jas.2005-775 Canario, L., H. Lundgren, M. Haandlykken, and L. Rydhmer. 2010. Genetics of growth in piglets and the association with homogeneity of body weight within litters. J. Anim. Sci. 88:1240-1247. doi: 10.2527/jas.2009-2056 Chen, S.-Y., P. H. F. Freitas, H. R. Oliveira, S. F. Lázaro, Y. J. Huang, J. T. Howard, Y. Gu, A. P. Schinckel, and L. F. Brito. 2021. Genotype-by-environment interactions for reproduction, body composition, and growth traits in maternal-line pigs based on single-step genomic reaction norms. Genet. Sel. Evol. 53:51. doi: 10.1186/s12711-021-00645-y Collier, R. J., L. W. Hall, S. Rungruang, and R. B. Zimbleman. 2012. Quantifying heat stress and its impact on metabolism and performance. Dept. Anim. Sci. Univ. Arizona. pp. 74-83 in Proc. 23rd Annual Florida Ruminant Nutrition Symposium, Gainesville. University of Florida, Gainesville. Curtis, J., and F. J. Bourne. 1971. Immunoglobulin quantitation in sow serum, colostrum and milk and the serum of young pigs. Biochim. Biophys. Acta 236:319-332. https://doi.org/10.1016/0005-2795(71)90181-4 Damgaard, L. H., L. Rydhmer, P. Løvendahl, and K. Grandinson. 2003. Genetic parameters for within-litter variation in piglet birth weight and change in within-litter variation during suckling. J. Anim. Sci. 81:604-610. doi: 10.2527/2003.813604x de Jong, G. 1995. Phenotypic plasticity as a product of selection in a variable environment. Am. Nat. 145:493-512. De Rensis, F., R. Saleri, P. Tummaruk, M. Techakumphu, and R. N. Kirkwood. 2012. Prostaglandin F2α and control of reproduction in female swine: A review. Theriogenology 77:1-11. doi: 10.1016/j.theriogenology.2011.07.035 Dempfle, L. 1977. Relation entre BLUP (Best Linear Unbiased Prediction) et estimateurs bayésiens. Genet. Sel. Evol. 9:27-32. https://doi.org/10.1186/1297-9686-9-1-27 Epstein, Y., and D. S. Moran. 2006. Thermal comfort and the heat stress indices. Ind. Health 44:388-398. doi: 10.2486/indhealth.44.388 Falconer, D. S., and T. F. C. Mackay. 1996. Introduction to quantitative genetics. 4th ed. Addison Wesley Longman, Harlow. Farmer, C. 2019. Mammary development in lactating sows: the importance of suckling. Animal 13:s20-s25. doi: 10.1017/S1751731118003464 Fernández, A., J. Rodrigáñez, J. Zuzúarregui, M. C. Rodríguez, and L. Silió. 2008. Genetic parameters for litter size and weight at different parities in Iberian pigs. Span. J. Agric. Res. 6:98-106. doi:10.5424/ sjar/200806S1-378 Freitas, P. H. F., J. S. Johnson, S. Chen, H. R. Oliveira, F. Tiezzi, S. F. Lázaro, Y. Huang, Y. Gu, A. P. Schinckel, and L. F. Brito. 2021. Definition of environmental variables and critical periods to evaluate heat tolerance in large white pigs based on single-step genomic reaction norms. Front. Genet. 12:717409. doi:10.3389/ fgene.2021.717409 Fisher, R. A. 1922. On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soc. 222:309-368. doi: 10.1098/rsta.1922.0009 Fisher, R. A. 1946. Statistical methods for research workers. 10th ed. Oliver and Boyd. UK. Geisert, R. D., P. Sutvosky, M. C. Lucy, F. F. Bartol, and A. E. Meyer. 2020. Reproductive physiology of swine. In: F. W. Bazer, G. C. Lamb, and A. E. Meyer, editor, Animal Agriculture Academic Press. pp. 263-281. Gianola, D., and R. L. Fernando. 1986. Bayesian methods in animal breeding theory. J. Anim. Sci. 63:217-244. doi: 10.2527/jas1986.631217x Gianola, D., and G. J. Rosa. 2015. One hundred years of statistical developments in animal breeding. Annu. Rev. Anim. Biosci. 3:19-56. doi: 10.1146/annurev-animal-022114-110733 Gilmour, A., B. Gogel, B. Cullis, S. Welham, R. Thompson, D. But¬ler, M. Cherry, D. Collins, G. Dutkowski, and S. Harding. 2021. ASReml-SA User Guide Release 4.2 Functional Specification. Hemel Hempstead (UK): VSN International Ltd. www.vsni.co.uk Gilmour, A. R., R. Thompson, and B. R. Cullis. 1995. Average information REML: an efficient algorithm for variance parameter estimation in linear mixed models. Biometrics 51:1440-1450. https://doi.org/10.2307/2533274 Graser, H.-U., S. P. Smith, and B. Tier. 1987. A derivative-free approach for estimating variance components in animal models by restricted maximum likelihood. J. Anim. Sci. 64:1362-1370. doi: 10.2527/jas1987.6451362x Hartley, H. O., and J. N. K. Rao. 1967. Maximum-likelihood estimation for the mixed analysis of variance model. Biometrika 54:93-108. doi: 10.1093/biomet/54.1-2.93 Hartmann, P. E., N. A. Smith, M. J. Thompson, C. M. Wakeford, and P. G. Arthur. 1997. The lactation cycle in the sow: physiological and management contradictions. Livest. Prod. Sci. 50:75-87. doi: 10.1016/S0301-6226(97)00076-6 Harville, D. A. 1977. Maximum likelihood approaches to variance component estimation and to related problems. J. Am. Stat. Assoc. 72:320-338. doi: 10.1080/01621459.1977.10480998 Hanenberg, E. H. A. T., E. F. Knol, and J. W. M. Merks. 2001. Estimates of genetic parameters for reproduction traits at different parities in Dutch Landrace pigs. Livest. Prod. Sci. 69:179-186. doi:10.1016/ s0301-6226(00)00258-x Hayes, B. J., H. D. Daetwyler, and M. E. Goddard. 2016. Models for genome× environment interaction: examples in livestock. Crop Sci. 56:2251-2259. doi:10.2135/cropsci2015.07.0451 Henderson, C. R. 1953. Estimation of variance and covariance components. Biometrics 9:226-252. doi: 10.2307/3001853 Henderson, C. R. 1973. Sire evaluation and genetic trends. J. Anim. Sci. 1973:10-41. doi: 10.1093/ansci/1973. Hellbrügge, B., K. -H. Tölle, J. Bennewitz, C. Henze, U. Presuhn, and J. Krieter. 2008. Genetic aspects regarding piglet losses and the mater¬nal behaviour of sows. Part 1. Genetic analysis of piglet mortal¬ity and fertility traits in pigs. Animal 2:1273-1280. doi:10.1017/ S1751731108002504 Hill, W. G., and H. A. Mulder. 2010. Genetic analysis of environmental variation. Genet. Res. Camb. 92:381-395. doi: 10.1017/S0016672310000546 Hill, W. G., and X.-S. Zhang. 2004. Effects on phenotypic variability of directional selection arising through genetic differences in residual variability. Genet. Res. Camb. 83:121-132. doi: 10.1017/S0016672304006640 Hines, E. 2021. Developmental milestones during pig gestation. https://extension.psu.edu/developmental-milestones-during-pig-gestation, Accessed October 20, 2023. Hofer, A. 1998. Variance component estimation in animal breeding: a review. J. Anim. Breed. Genet. 115:247-265. doi: 10.1111/j.1439-0388.1998.tb00347.x Huby, M., L. Canario, L. Maigenl, T. Tribout, J. Gogué, and J. P. Bidanel. 2003. Genetic correlations between litter size and weights, piglet weight variability, and piglet survival from birth to weaning in Large White pigs. 54th Annu. Meet. Eur. Assoc. Anim. Prod., Roma, Italy Imboonta, N., L. Rydhmer, and S. Tumwasorn. 2007. Genetic parameters for reproduction and production traits of Landrace sows in Thailand. J. Anim. Sci. 85:53-59. doi:10.2527/jas.2005-708. Johnson, J. S., K. R., Stewart, T. J., Safranski, J. W., Ross, and L. H., Baumgard. 2020. In utero heat stress alters postnatal phenotypes in swine. Theriogenology 154:110-119. doi:10.1016/j.theriogenology.2020.05.013. Johansson, K., and B. W. Kennedy. 1985. Estimation of genetic parame¬ters for reproductive traits in pigs. Acta Agric. Scand. 35:421-431. doi:10.1080/00015128509442053 Johnson, D. L., and R. Thompson. 1995. Restricted maximum likelihood estimation of variance components for univariate animal models using sparse matrix techniques and average information. J. Dairy Sci. 78:449-456. https://doi.org/10.3168/jds.S0022-0302(95)76654-1 Krupa, E., and J. Wolf. 2013. Simultaneous estimation of genetic parameters for production and litter size traits in Czech Large White and Czech Landrace pigs. Czech. J. Anim. Sci. 58:429-436. doi:10.17221/6943-CJAS LaMotte, L. R. 1973. Quadratic estimation of variance components. Biometrics 29:311-330. doi: 10.2307/2529395 Lacetera, N. 2019. Impact of climate change on animal health and wel¬fare. Anim. Front. 9:26-31. doi:10.1093/af/vfy030 Lopez, B. I. M., C. Song, and K. Seo. 2018. Genetic parameters for litter traits at different parities in purebred Landrace and Yorkshire pigs. Anim. Sci. J. 89:1381-1388. https://doi.org/10.1111/asj.13090 Li, Q., X. Yuan, Z. Chen, A. Zhang, Z. Zhang, H. Zhang, and J. Li. 2018. Heritability estimates and effect on lifetime reproductive performance of age at puberty in sows. Anim. Reprod. Sci. 195:207-215. doi: 10.1016/j.anireprosci.2018.05.025 Lucy, M. C., and T. J. Safranski. 2017. Heat stress in pregnant sows: Thermal responses and subsequent performance of sows and their offspring. Mol. Reprod. Dev. 84:946-956. doi:10.1002/mrd.22844 Lush, J. L. 1931. The number of daughters necessary to prove a sire. J. Dairy Sci. 14:209-220. Liu, F., W. Zhao, H. H. Le, J. J. Cottrell, M. P. Green, B. J. Leury, F. R. Dunshea, and A. W. Bell. 2021. Review: What have we learned about the effects of heat stress on the pig industry? Animal 16 suppl. 2:100349. doi:10.1016/j.animal.2021.100349. Lucy, M.C., and T. J. Safranski. 2017. Heat stress in pregnant sows: Thermal responses and subsequent performance of sows and their offspring. Mol. Reprod. Dev. 84:946-956. doi:10.1002/mrd.22844. Malosetti, M., J.-M. Ribaut, and F. A. van Eeuwijk. 2013. The statistical analysis of multi-environment data: modeling genotype-by-environment interaction and its genetic basis. Front. Physiol. 4:44. doi: 10.3389/fphys.2013.00044 Misztal, I. 2008. Reliable computing in estimation of variance components. J. Anim. Breed. Genet. 125:363-370. https://doi.org/10.1111/j.1439-0388.2008.00774.x Mrode, R. A. 2014. Linear models for the prediction of animal breeding values. 3th ed. Boston, MA: CABI. Mulder, H. A., P. Bijma, and W. Hill. 2007. Prediction of breeding values and selection responses with genetic heterogeneity of environmental variance. Genetics 175:1895-1910. doi: 10.1534/genetics.106.063743 Muns, R., J. Malmkvist, M. L. V. Larsen, D. Sorensen, and L. J. Pedersen. 2016. High environmental temperature around farrowing induced heat stress in crated sows. J. Anim. Sci. 94:377-384. doi:10.2527/jas. 2015-9623. Myer, R., and R. Bucklin. 2001. Influence of hot-humid environment on growth performance and reproduction of swine. [accessed October 2023]. https://www.thepigsite.com/articles/influence-of-hothumid-environment-on-growth-performance-and-reproduction-of-swine NRC. 1971. A guide to environmental research on animals. Washington: National Academy of Sciences. NIOSH. 2016. NIOSH criteria for a recommended standard: occupational exposure to heat and hot environments. In: Jacklitsch B, Williams WJ, Musolin K, et al., eds. Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH). NOAA. 1976. Livestock hot weather stress. US Dept. Comm. Ocen. Atm. Admn., Rgnl. Ops. Man. Letter C-31-76. Nuntapaitoon, M., P. Juthamanee, P. K. Theil, P. Tummaruk. 2020. Impact of sow parity on yield and composition of colostrum and milk in Danish Landrace × Yorkshire crossbred sows. Prev. Vet. Med. 181:105085. https://doi.org/10.1016/j.prevetmed.2020.105085 Ogawa, S., A. Konta, M. Kimata, K. Ishii, Y. Uemoto, and M. Satoh. 2019. Estimation of genetic parameters for farrowing traits in purebred Landrace and Large White pigs. Anim. Sci. J. 90:23-28. doi:10.1111/ asj.13120. Patterson, H. D., and R. Thompson. 1971. Recovery of inter-block information when block sizes are unequal. Biometrika 58:545-554. doi:10.1093/biomet/58.3.545 Rao, C. R. 1971a. Estimation of variance and covariance components—MINQUE theory. J. Multivar. Anal. 1:257-275. doi:10.1016/0047-259X(71)90001-7 Rao, C. R. 1971b. Minimum variance quadratic unbiased estimation of variance components. J. Multivar. Anal. 1:445-456. doi:10.1016/0047-259X(71)90019-4 Rauw, W. M., and L. Gomez-Raya. 2015. Genotype by environment interaction and breeding for robustness in livestock. Front. Genet. 6:310. doi:10.3389/fgene.2015.00310 Raydan, M. 1997. The Barzilai and Borwein gradient method for the large sclae unconstrained minimization problem. SIAM. J. Optim. 7:26-33. doi:10.1137/s1052623494266365 Ribeiro, B. P. V. B., E. Lanferdini, J. Y. P. Palencia, M. A. G. Lemes, M. L. T. de Abreu, V. de Souza Cantarelli, and R. A. Ferreira. 2018. Heat negatively affects lactating swine: A meta-analysis. J. Therm. Biol. 74:325-330. doi:10.1016/j.jtherbio.2018.04.015 Robertson, A. 1955. Prediction equations in quantitative genetics. Biometrics 11:95-98. doi:10.2307/3001483 Ross, J.W., B. J. Hale, N. K. Gabler, R. P. Rhoads, A. F. Keating, and L. H. Baumgard. 2015. Physiological consequences of heat stress in pigs. Anim. Prod. Sci. 55:1381-1390. doi:10.1071/AN15267. Rothschild, M. F. and J. P. Bidanel. 1998. Biology and genetics of reproduction. In: Rothschild, M.F. and Ruvinsky, A. (eds) The genetics of the Pig. CAB International, Wallingford, UK, pp. 313-343. Ruvinsky, A. (eds) The Genetics of the Pig. CAB International, Wallingford, UK, pp. 313-343. Rydhmer, L. 2000. Genetics of sow reproduction, including puberty, oestrus, pregnancy, farrowing, and lactation. Livest. Prod. Sci. 66:1-12. doi:10.1016/S0301-6226(99)00170-0 SAS Institute Inc. 2023. SAS/STAT® 15.3 User’s Guide. Cary, NC. SanCristobal-Gaudy, M., J.-M. Elsen, L. Bodin, and C. Chevalet. 1998. Prediction of the response to a selection for canalisation of a continuous trait in animal breeding. Genet. Sel. Evol. 30:423-451. Silva, F. F., H. A. Mulder, E. F. Knol, M. S. Lopes, S. E. F. Guimarães, P. S. Lopes, P. K. Mathur, J. M. S. Viana, and J. W. M. Bastiaansen. 2014. Sire evaluation for total number born in pigs using a genomic reac¬tion norms approach. J. Anim. Sci. 92:3825–3834. doi:10.2527/jas.2013-6486 Smith, S. P., and H.-U. Graser. 1986. Estimating variance components in a class of mixed models by restricted maximum likelihood. J. Dairy Sci. 69:1156-1165. doi:10.3168/jds.S0022-0302(86)80516-1 Sorensen, D., and R. Waagepetersen. 2003. Normal linear models with genetically structured residual variance heterogeneity: a case study. Genet. Res. Camb. 82:207-222. doi:10.1017/S0016672303006426 Suriyasomboon, A., N. Lundeheim, A. Kunavongkrit, and S. Einarsson. 2006. Effect of temperature and humidity on reproductive performance of crossbred sows in Thailand. Theriogenology 65:606-628. doi:10.1016/j.theriogenology.2005.06.005. Theil, P. K., C. Lauridsen, and H. Quesnel. 2014. Neonatal piglet survival: impact of sow nutrition around parturition on fetal glycogen deposition and production and composition of colostrum and transient milk. Animal 8:1021-1030. doi:10.1017/S1751731114000950 Tiezzi, F., L. F. Brito, J. Howard, Y. J. Huang, K. Gray, C. Schwab, J. Fix, and C. Maltecca. 2020. Genomics of heat tolerance in reproduc¬tive performance investigated in four independent maternal lines of pigs. Front. Genet. 11:629. doi:10.3389/fgene.2020.00629 Tokach, M. D., M. B. Menegat, K. M. Gourley, and R. D. Goodband. 2019. Review: Nutrient requirements of the modern high-producing lactating sow, with an emphasis on amino acid requirements. Animal 13:2967-2977. doi: 10.1017/S1751731119001253 Vanderhaeghe, C., J. Dewulf, A. de Kruif, and D. Maes. 2013. Noninfectious factors associated with stillbirth in pigs: a review. Anim. Reprod. Sci. 139:76-88. doi:10.1016/j.anireprosci.2013.03.007. Vadmand, C. N., U. Krogh, C. F. Hansen, and P. K. Theil. 2015. Impact of sow and litter characteristics on colostrum yield, time for onset of lactation, and milk yield of sows. J. Anim. Sci. 93:2488-2500. doi:10.2527/jas2014-8659 Wegner, K., C. Lambertz, G. Daş, G. Reiner, and M. Gauly. 2014. Climatic effects on sow fertility and piglet survival under influ¬ence of a moderate climate. Animal 8:1526-1533. doi:10.1017/S1751731114001219 Wegner, K., C Lambertz, G. Das, G. Reiner, and M. Gauly. 2016. Effects of temperature and temperature‐humidity index on the reproduc¬tive performance of sows during summer months under a temper¬ate climate. Anim. Sci. J. 87:1334-1339. doi:10.1111/asj.12569 Whittier, J. C. 1993. Hot weather livestock stress. Univ. Missouri. Ext. (https://extension.missouri.edu/publications/g2099). Williams, A. M., T. J. Safranski, D. E. Spiers, P. A. Eichen, E. A. Coate, and M. C. Lucy. 2013. Effects of a controlled heat stress during late gestation, lactation, and after weaning on thermoregulation, metabolism, and reproduction of primiparous sows. J. Anim. Sci. 91:2700-2714. doi:10.2527/jas.2012-6055 Wiegert, J., M. Knauer, and S. B. Shah. 2022. Evaporative pad cooling impacts on barn environment and finishing pig performance. Appl. Eng. Agric. 38:351-359. doi:10.13031/aea.14810 Zhang, T., L.-G. Wang, H.-B. Shi, H. Yan, L.-C. Zhang, X. Liu, L. Pu, J. Liang, Y.-B. Zhang, K.-B. Zhao, and L.-X. Wang. 2016. Heritabilities and genetic and phenotypic correlations of litter uniformity and litter size in Large White sows. J. Integr. Agric. 15:848-854. doi:10.1016/S2095-3119(15)61155-8 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96500 | - |
dc.description.abstract | 藍瑞斯為台灣主要的母系品種之一,然而,台灣的高溫高濕環境可能對其繁殖性能,例如總仔數(TNB)和活仔數(NBA)產生負面影響,因此,透過動物育種模型的改良,對於選拔耐熱母豬提供潛在的解決方法。在動物育種模型中,氣候效應作為類別因子,並可轉換為溫濕度指數(THI)的形式,THI 同時考慮藍瑞斯母豬哺乳到分娩期間的環境溫度與相對濕度。首先,遺傳參數估計可了解台灣藍瑞斯母豬窩仔數性狀的遺傳率和遺傳相關;隨後,反應規格模型(RNM)使得THI 和累加性遺傳效應進行交感作用分析,用以觀察遺傳率、遺傳相關和育種價在不同 THI 下的變化。在本研究中,首先使用線性混合模型(Linear Mixed Model, LMM)評估台灣藍瑞斯族群中 TNB 和 NBA 的遺傳參數,並使用同質性殘差模型(homogeneous residual model)進行分析,結果顯示,TNB 和 NBA 的遺傳率分別為 0.164 和 0.111,兩性狀間的遺傳相關為 0.911。除了使用同質性殘差模型的分析外,並進一步使用異質性殘差模型(heterogeneous residual model)進行分析,該模型將氣候因子與殘差進行交感,結果顯示,TNB 的殘差方範圍為 8.934 至 11.113 且 NBA 的殘差變方範圍為 8.196 至 9.811。因此,不同氣候分類下 TNB 的遺傳率範圍在 0.186 至 0.156 之間,NBA 的遺傳率範圍在 0.125 至 0.106 之間。以上結果顯示,應根據不同氣候分類對母豬的管理與營養進行調整。在 RNM 模型中,將母豬從配種前到懷孕期切分為四個階段,包括配種前 28 天(before)、懷孕前期(early)、懷孕中期(middle)和懷孕後期(late),並估算 THI 對 TNB、NBA 和死胎率(STBR)的影響。在模型中,配種前 28 天的階段與 TNB 和 NBA 的累加性遺傳效應進行交感作用,而懷孕前期則與 STBR 的累加性遺傳效應進行交感作用。結果顯示,TNB、NBA 和 STBR 的遺傳率隨著 THI 從 54 到 83 呈現下降趨勢,分別為 0.23 - 0.11、0.18 - 0.08 和 0.10 - 0.04。三個性狀的最低遺傳相關分別為 0.85、0.64 和 0.80。另一方面,與傳統動物育種模型為每個個體估算育種價(bvc)相比,RNM 為每個個體提供兩個不同的育種價,其中一個是不隨 THI 變化的育種價(bv1),另外則是隨著 THI 變化的育種價(bv2),因此,RNM 所估計的育種價在 THI 的變化下,個體的育種價排序將有所不同。總結來說,在傳統動物育種模型中,異質性殘差顯示台灣藍瑞斯的窩仔數性狀與殘差間有交互作用產生。此外母豬不同懷孕階段的 THI 與累加性遺傳效應的交感也顯示遺傳率和遺傳相關將會隨著 THI 的變化而有不同。因此,應根據不同氣候條件對母豬的管理和營養進行調整,同時,在 RNM 的分析中所得出的 bv1 和 bv2 應用於藍瑞斯母豬窩仔數性狀對 THI 變化的選拔計畫中。 | zh_TW |
dc.description.abstract | Landrace is one of the major dam lines in Taiwan. However, the environment in Taiwan, which have high temperature and high humidity, could cause negative effects of their reproductive performance, such as total number born (TNB) and number born alive (NBA). Therefore, the modification of a statistical animal model might provide the potential solution to select the sows with heat tolerance. The climate effect, which is a categorical factor in a statistical animal model, could be redefined by temperature-humidity index (THI). The THI considers ambient temperature and relative humidity together from lactating to farrowing in Landrace sows. Firstly, the estimated genetic parameters might provide the fundamental knowledge for each trait in the population. After that, the THI factor was interacting with the additive genetic applied in the model, called Reaction Norm Model (RNM), to observe the changes of genetic parameters and breeding values across THI. In this study, the genetic parameters of litter traits, TNB and NBA, were evaluated firstly for long-term data in Taiwan Landrace population using Linear Mixed Model (LMM) with homogeneous residual variance. The results showed that the heritability of TNB and NBA were 0.164 and 0.111, respectively. The genetic correlation between the two traits was 0.911. In addition to the analysis of LMM with homogeneous residual variance, a LMM with heterogeneous residual variance which used the climate factor interacting with residual variance was conducted with the data. The residual variances ranged from 8.934 to 11.113 for TNB and 8.196 to 9.811 for NBA. Thus, the ranges of heritability fluctuated in TNB (0.186 - 0.156) and NBA (0.125 - 0.106) under different climates. These results indicated that the adjustments of management and nutrients for the sows should be considered in different levels of the climate. In the RNM model, the lactation and pregnancy of sow were divided into four stages, including before, early, middle and late to estimate the impact of average THI in TNB, NBA and stillborn rate (STBR). Then the before stage interacted with additive genetic effect for TNB and NBA, while the early stage interacted with additive genetic effect for STBR. The results showed that the decreasing trend of heritability showed 0.23 – 0.11, 0.18 – 0.08, and 0.10 – 0.04 from 54 to 83 of THI for TNB, NBA and STBR, respectively. The lowest genetic correlations among THI were 0.85, 0.64, and 0.80 for TNB, NBA and STBR, respectively. On the other hand, compared to the conventional LMM with a single breeding value estimated for each individual (bvc), the RNM provides two breeding values for each individual: one breeding value does not change along with THI (bv1), and the other breeding value (bv2) shows a changing trend across THI. Thus, the breeding values predicted by the RNM would genetically re-rank the animals across THI values. In conclusion, the estimated genetic parameters were revealed in several typical Taiwan Landrace herds. The fluctuation of residual variances in the Landrace sow population was shown to have an interaction with the climate in Taiwan. Otherwise, the interaction between THI in pregnant stages and additive genetic effect showed the changing trend of heritability and genetic correlation across THI for litter traits. Therefore, management and nutrients should change in different levels of the climate. At the same time, the estimated breeding values across THI in the RNM should be considered in the genetic improvement programs for litter trait performance in Taiwan Landrace population. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-19T16:15:08Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-19T16:15:08Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 II
中文摘要 IV Abstract VI 目次 VIII 圖次 X 表次 XIII 壹、文獻探討 1 一、母豬繁殖生理 1 二、母豬繁殖性狀的遺傳參數 7 三、溫溼度指數(THI)的發展及熱緊迫對母豬的影響 12 四、動物育種中的統計模型發展與介紹 16 五、遺傳與環境交感作用(Genotype-by-Environment Interaction, GEI) 20 貳、材料與方法 23 一、表型資料收集 23 二、氣候資料收集 25 三、豬場管理 26 四、統計分析 27 參、結果 35 一、氣候因子的同質性與異質性分析 35 二、組合氣候模型與 THI 模型分析結果 49 三、傳統模型與 RNM 模型分析結果 60 肆、討論 71 伍、結論 79 陸、參考文獻 80 柒、附錄 93 | - |
dc.language.iso | zh_TW | - |
dc.title | 應用遺傳與環境交感作用模型於藍瑞斯母豬窩仔數性狀遺傳評估分析 | zh_TW |
dc.title | Modelling genotype-by-environment interaction for genetic evaluation on litter traits in Landrace sows | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 王佩華;陳志峰;黃三元;Mark Knauer | zh_TW |
dc.contributor.oralexamcommittee | Pei-Hwa Wang;Chih-Feng Chen;San-Yuan Huang;Mark Knauer | en |
dc.subject.keyword | 藍瑞斯,窩仔數性狀,熱緊迫,遺傳參數,反應規格模型, | zh_TW |
dc.subject.keyword | Landrace,litter trait,heat stress,genetic parameter,reaction norm model, | en |
dc.relation.page | 95 | - |
dc.identifier.doi | 10.6342/NTU202500249 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2025-01-25 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 動物科學技術學系 | - |
dc.date.embargo-lift | 2025-02-20 | - |
顯示於系所單位: | 動物科學技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.43 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。