Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96466
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor魏宏宇zh_TW
dc.contributor.advisorHung-Yu Weien
dc.contributor.author徐永霖zh_TW
dc.contributor.authorYung-Lin Hsuen
dc.date.accessioned2025-02-18T16:16:11Z-
dc.date.available2025-02-19-
dc.date.copyright2025-02-18-
dc.date.issued2024-
dc.date.submitted2025-02-06-
dc.identifier.citation[1] 3GPP, “Study on New Radio (NR) to support non-terrestrial networks,” 3rd Generation Partnership Project (3GPP), Technical Report (TR) 38.811, 10 2020, version 15.4.0.
[2] B. Rong, “6g: The next horizon: From connected people and things to connected intelligence,” IEEE Wireless Communications, vol. 28, no. 5, pp. 8–8, 2021.
[3] ITU, “Framework and overall objectives of the future development of IMT for 2030 and beyond,” International Telecommunication Union (ITU), Recommendations M.2160, 12 2023, m Series.
[4] 3GPP, “Study on Integrated Sensing and Communication,” 3rd Generation Partnership Project (3GPP), Technical Report (TR) 22.837, 06 2024, version 19.4.0.
[5] M. F. Safitra, M. Lubis, A. R. Lubis, and M. I. Alhari, “The need for energy-efficient networks: A review of green communication systems and network architectures,” in Intelligent Sustainable Systems, A. K. Nagar, D. S. Jat, D. Mishra, and A. Joshi, Eds. Singapore: Springer Nature Singapore, 2024, pp. 127–136.
[6] Y. Sheet, M. Thanoun, and F. Alsharbaty, “Smart factory based on iiot: Applications, communication networks and cybersecurity,” International Journal of Wireless and Microwave Technologies, p. 4, 08 2024.
[7] F. Neto, J. Granjal, and V. Pereira, “A survey on security approaches on ppdr systems toward 5g and beyond,” IEEE Access, vol. 10, pp. 117 118–117 140, 2022.
[8] ITU, “Radiocommunication objectives and requirements for Public Protection and Disaster Relief (PPDR),” International Telecommunication Union (ITU), Recommendations M.2377-1, 1 2018, m Series.
[9] M. Matracia, N. Saeed, M. A. Kishk, and M.-S. Alouini, “Post-disaster communications: Enabling technologies, architectures, and open challenges,” IEEE Open Journal of the Communications Society, vol. 3, pp. 1177–1205, 2022.
[10] H. Lee, B. Lee, H. Yang, J. Kim, S. Kim, W. Shin, B. Shim, and H. V. Poor, “Towards 6g hyper-connectivity: Vision, challenges, and key enabling technologies,” Journal of Communications and Networks, pp. 1–11, 2023.
[11] W. Jiang and F.-L. Luo, The Vision of 6G: Drivers, Enablers, Uses, and Roadmap. Wiley-IEEE Press, 2023, pp. 89–130.
[12] 3GPP, “Study on using satellite access in 5G,” 3rd Generation Partnership Project (3GPP), Technical report (TR) 22.822, 7 2018, version 16.0.0.
[13] N.-N. Dao, Q.-V. Pham, N. H. Tu, T. T. Thanh, V. N. Q. Bao, D. S. Lakew, and S. Cho, “Survey on aerial radio access networks: Toward a comprehensive 6g access infrastructure,” IEEE Communications Surveys Tutorials, vol. 23, no. 2, pp. 1193–1225, 2021.
[14] S. Niknam, H. S. Dhillon, and J. H. Reed, “Federated learning for wireless communications: Motivation, opportunities, and challenges,” IEEE Communications Magazine, vol. 58, no. 6, pp. 46–51, 2020.
[15] S. Kaul, M. Gruteser, V. Rai, and J. Kenney, “Minimizing age of information in vehicular networks,” in Proc. 8th Annu. IEEE Commun. Soc. Conf. Sensor, Mesh Ad Hoc Commun. Netw., Jun. 2011, pp. 350–358.
[16] R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano, and S. Ulukus, “Age of information: An introduction and survey,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 5, pp. 1183–1210, 2021.
[17] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). The MIT Press, 2005.
[18] Y.-L. Hsu, C.-F. Liu, S. Samarakoon, H.-Y. Wei, and M. Bennis, “Age-optimal power allocation in industrial iot: A risk-sensitive federated learning approach,” in 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2021, pp. 1323–1328, © 2024 IEEE.
[19] S. Batewela, C.-F. Liu, M. Bennis, H. A. Suraweera, and C. S. Hong, “Risk-sensitive task fetching and offloading for vehicular edge computing,” IEEE Commun. Lett., vol. 24, no. 3, pp. 617–621, Mar. 2020.
[20] B. Zhou and W. Saad, “Age of information in ultra-dense iot systems: Performance and mean-field game analysis,” CoRR, vol. abs/2006.15756, pp. 1–30, Jun. 2020.
[21] ——, “Performance analysis of age of information in ultra-dense internet of things (iot) systems with noisy channels,” IEEE Transactions on Wireless Communications, vol. 21, no. 5, pp. 3493–3507, 2022.
[22] B. Yin, S. Zhang, and Y. Cheng, “Application-oriented scheduling for optimizing the age of correlated information: A deep-reinforcement-learning-based approach,” IEEE Internet of Things Journal, vol. 7, no. 9, pp. 8748–8759, 2020.
[23] B. Zhou and W. Saad, “Minimum age of information in the internet of things with non-uniform status packet sizes,” IEEE Transactions on Wireless Communications, vol. 19, no. 3, pp. 1933–1947, 2020.
[24] M. A. Abd-Elmagid, H. S. Dhillon, and N. Pappas, “Aoi-optimal joint sampling and updating for wireless powered communication systems,” IEEE Transactions on Vehicular Technology, vol. 69, no. 11, pp. 14110–14115, 2020.
[25] ——, “A reinforcement learning framework for optimizing age of information in rf-powered communication systems,” IEEE Transactions on Communications, vol. 68, no. 8, pp. 4747–4760, 2020.
[26] X. Xie, H. Wang, and M. Weng, “A reinforcement learning approach for optimizing the age-of-computing-enabled iot,” IEEE Internet of Things Journal, vol. 9, no. 4, pp. 2778–2786, 2022.
[27] H. Tang, J. Wang, L. Song, and J. Song, “Minimizing age of information with power constraints: Multi-user opportunistic scheduling in multi-state time-varying channels,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 5, pp. 854–868, 2020.
[28] M. J. Neely, Stochastic Network Optimization with Application to Communication and Queueing Systems. San Rafael, CA, USA: Morgan and Claypool, Jun. 2010.
[29] H. Laurens and F. Ana, Extreme and Intermediate Order Statistics. New York: Springer New York, 2006. [Online]. Available: https://doi.org/10.1007/0-387-34471-3_2
[30] S. Coles, An Introduction to Statistical Modeling of Extreme Values. London, U.K.: Springer, 2001.
[31] Y.-L. Hsu, C.-F. Liu, H.-Y. Wei, and M. Bennis, “Optimized data sampling and energy consumption in iiot: A federated learning approach,” IEEE Transactions on Communications, vol. 70, no. 12, pp. 7915–7931, 2022,© 2024 IEEE.
[32] D. J. Beutel, T. Topal, A. Mathur, X. Qiu, T. Parcollet, and N. D. Lane, “Flower: A friendly federated learning research framework,” CoRR, vol. abs/2007.14390, 2020. [Online]. Available: https://arxiv.org/abs/2007.14390
[33] E. Gindullina, L. Badia, and D. Gündüz, “Average age-of-information with a backup information source,” in Proc. IEEE 30th Annu. Int. Symp. Pers., Indoor Mobile Radio Commun., Sep. 2019, pp. 1–6.
[34] J. Park, S. Samarakoon, M. Bennis, and M. Debbah, “Wireless network intelligence at the edge,” Proc. IEEE, vol. 107, no. 11, pp. 2204–2239, Nov. 2019.
[35] J. Park, S. Samarakoon, A. Elgabli, J. Kim, M. Bennis, S.-L. Kim, and M. Debbah, “Communication-efficient and distributed learning over wireless networks: Principles and applications,” CoRR, vol. abs/2008.02608, pp. 1–20, Aug. 2020.
[36] C.-F. Liu and M. Bennis, “Taming the tail of maximal information age in wireless industrial networks,” IEEE Commun. Lett., vol. 23, no. 12, pp. 2442–2446, Dec. 2019.
[37] Y. Lu, K. Xiong, P. Fan, Z. Zhong, and K. B. Letaief, “Online transmission policy in wireless powered networks with urgency-aware age of information,” in Proc. 15th Int. Wireless Commun. Mobile Comput. Conf., Jun. 2019, pp. 1096–1101.
[38] A. Elgabli, H. Khan, M. Krouka, and M. Bennis, “Reinforcement learning based scheduling algorithm for optimizing age of information in ultra reliable low latency networks,” in Proc. IEEE Symp. Comput. Commun., Jun. 2019, pp. 1–6.
[39] A. B. Atkinson, “On the measurement of inequality,” Journal of Economic Theory, vol. 2, no. 3, pp. 244–263, Sep. 1970.
[40] T. Lipp and S. Boyd, “Variations and extension of the convex–concave procedure,” Optimization and Engineering, vol. 17, 06 2016.
[41] T. Li, A. Beirami, M. Sanjabi, and V. Smith, “Tilted empirical risk minimization,” CoRR, vol. abs/2007.01162, pp. 1–40, Jul. 2020.
[42] 3GPP, “Scenarios, frequencies and new field measurement results from two operational factory halls at 3.5 ghz for various antenna configurations,” November 2018, 3GPP TSG RAN WG1 Meeting 95, Spokane, USA.
[43] J. Kwak, Y. Kim, J. Lee, and S. Chong, “Dream: Dynamic resource and task allocation for energy minimization in mobile cloud systems,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 12, pp. 2510–2523, 2015.
[44] E. Adi, A. Anwar, Z. A. Baig, and S. Zeadally, “Machine learning and data analytics for the iot,” Neural Computing and Applications, pp. 1–29, 2020.
[45] B. Chang, L. Zhang, L. Li, G. Zhao, and Z. Chen, “Optimizing resource allocation in urllc for real-time wireless control systems,” IEEE Transactions on Vehicular Technology, vol. 68, no. 9, pp. 8916–8927, 2019.
[46] J. Li, Y. Zhou, and H. Chen, “Age of information for multicast transmission with fixed and random deadlines in iot systems,” IEEE Internet of Things Journal, vol. 7, no. 9, pp. 8178–8191, 2020.
[47] C. Xu, H. H. Yang, X. Wang, and T. Q. S. Quek, “Optimizing information freshness in computing-enabled iot networks,” IEEE Internet of Things Journal, vol. 7, no. 2, pp. 971–985, 2020.
[48] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-efficient learning of deep networks from decentralized data,” 2016.
[49] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang, D. T. Niyato, and C. Miao, “Federated learning in mobile edge networks: A comprehensive survey,” IEEE Commun. Surveys Tuts., vol. 22, pp. 2031–2063, 2020.
[50] S. Savazzi, M. Nicoli, M. Bennis, S. Kianoush, and L. Barbieri, “Opportunities of federated learning in connected, cooperative, and automated industrial systems,” IEEE Communications Magazine, vol. 59, pp. 16–21, 2021.
[51] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, “Federated optimization in heterogeneous networks,” in Proceedings of Machine Learning and Systems, I. Dhillon, D. Papailiopoulos, and V. Sze, Eds., vol. 2, 2020, pp. 429–450.
[52] P. Kairouz et al., “Advances and open problems in federated learning,” Found. Trends Mach. Learn., vol. 14, pp. 1–210, 2021.
[53] X. Qiu, T. Parcollet, D. J. Beutel, T. Topal, A. Mathur, and N. D. Lane, “A first look into the carbon footprint of federated learning,” CoRR, vol. abs/2010.06537, 2020.
[54] S. Savazzi, S. Kianoush, V. Rampa, and M. Bennis, “A framework for energy and carbon footprint analysis of distributed and federated edge learning,” ArXiv, vol. abs/2103.10346, 2021.
[55] T. D. Burd and R. W. Brodersen, “Processor design for portable systems,” Journal of VLSI signal processing systems for signal, image and video technology, vol. 13, no. 2, pp. 203–221, Aug. 1996.
[56] M. Asad, A. Moustafa, T. Ito, and A. Muhammad, “Evaluating the communication efficiency in federated learning algorithms,” Proc. IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD), pp. 552–557, 2021.
[57] H. H. Yang, A. Arafa, T. Q. S. Quek, and H. Vincent Poor, “Age-based scheduling policy for federated learning in mobile edge networks,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., May 2020, pp. 8743–8747.
[58] Y. Ye, S. Li, F. Liu, Y. Tang, and W. Hu, “Edgefed: Optimized federated learning based on edge computing,” IEEE Access, vol. 8, pp. 209 191–209 198, 2020.
[59] A. M. Ghosh and K. Grolinger, “Edge-cloud computing for Internet of things data analytics: Embedding intelligence in the edge with deep learning,” IEEE Trans. Ind. Informat., vol. 17, no. 3, pp. 2191–2200, Mar. 2021.
[60] C.-F. Liu and M. Bennis, “Federated learning with correlated data: Taming the tail for age-optimal industrial iot,” in Proc. 19th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt), 2021, pp. 1–6.
[61] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and stochastic optimization,” J. Mach. Learn. Res., vol. 12, no. null, p. 2121–2159, Jul. 2011.
[62] D. Jones, M. Schonlau, and W. Welch, “Efficient global optimization of expensive black-box functions,” Journal of Global Optimization, vol. 13, pp. 455–492, Dec. 1998.
[63] E. Esenogho, K. Djouani, and A. M. Kurien, “Integrating artificial intelligence internet of things and 5g for next-generation smart grid: A survey of trends challenges and prospect,” IEEE Access, vol. 10, pp. 4794–4831, 2022.
[64] S. Rath, D. Pal, P. S. Sharma, and B. K. Panigrahi, “A cyber-secure distributed control architecture for autonomous ac microgrid,” IEEE Systems Journal, vol. 15, no. 3, pp. 3324–3335, 2021.
[65] 3GPP, “Study on channel model for frequencies from 0.5 to 100 GHz,” 3rd Generation Partnership Project (3GPP), Technical Report (TR) 38.901, 4 2024, version 18.0.0.
[66] M. Volk and J. Sterle, “5g experimentation for public safety: Technologies, facilities and use cases,” IEEE Access, vol. 9, pp. 41 184–41 217, 2021.
[67] O. Kodheli, E. Lagunas, N. Maturo, S. K. Sharma, B. Shankar, J. F. M. Montoya, J. C. M. Duncan, D. Spano, S. Chatzinotas, S. Kisseleff, J. Querol, L. Lei, T. X. Vu, and G. Goussetis, “Satellite communications in the new space era: A survey and future challenges,” IEEE Communications Surveys Tutorials, vol. 23, no. 1, pp. 70–109, 2021.
[68] T. Naous, M. Itani, M. Awad, and S. Sharafeddine, “Reinforcement learning in the sky: A survey on enabling intelligence in ntn-based communications,” IEEE Access, vol. 11, pp. 19 941–19 968, 2023.
[69] C.-X. Wang, X. You, X. Gao, X. Zhu, Z. Li, C. Zhang, H. Wang, Y. Huang, Y. Chen, H. Haas, J. S. Thompson, E. G. Larsson, M. D. Renzo, W. Tong, P. Zhu, X. Shen, H. V. Poor, and L. Hanzo, “On the road to 6g: Visions, requirements, key technologies, and testbeds,” IEEE Communications Surveys & Tutorials, vol. 25, no. 2, pp. 905–974, 2023.
[70] Y. Su, Y. Liu, Y. Zhou, J. Yuan, H. Cao, and J. Shi, “Broadband leo satellite communications: Architectures and key technologies,” IEEE Wireless Communications, vol. 26, no. 2, pp. 55–61, 2019.
[71] X. Lin, S. Rommer, S. Euler, E. A. Yavuz, and R. S. Karlsson, “5g from space: An overview of 3gpp non-terrestrial networks,” IEEE Communications Standards Magazine, vol. 5, no. 4, pp. 147–153, 2021.
[72] A. Anttonen and M. Höyhtyä, Emerging 5G satellite-aided networks for mission-critical services: A survey and feasibility study. VTT Technical Research Centre of Finland Ltd., 03 2020.
[73] H. Cui, J. Zhang, Y. Geng, Z. Xiao, T. Sun, N. Zhang, J. Liu, Q. Wu, and X. Cao, “Space-air-ground integrated network (sagin) for 6g: Requirements, architecture and challenges,” China Communications, vol. 19, no. 2, pp. 90–108, 2022.
[74] H. Yu, T. Taleb, K. Samdanis, and J. Song, “Towards supporting holographic services over deterministic 6g integrated terrestrial & non-terrestrial networks,” IEEE Network, pp. 1–10, 2023.
[75] G. Geraci, D. López-Pérez, M. Benzaghta, and S. Chatzinotas, “Integrating terrestrial and non-terrestrial networks: 3d opportunities and challenges,” IEEE Communications Magazine, vol. 61, no. 4, pp. 42–48, 2023.
[76] H. Guo, J. Li, J. Liu, N. Tian, and N. Kato, “A survey on space-air-ground-sea integrated network security in 6g,” IEEE Communications Surveys Tutorials, vol. 24, no. 1, pp. 53–87, 2022.
[77] Z. Han, C. Xu, K. Liu, L. Yu, G. Zhao, and S. Yu, “A novel mobile core network architecture for satellite-terrestrial integrated network,” in 2021 IEEE Global Communications Conference (GLOBECOM), 2021, pp. 01–06.
[78] V. P. Kafle, M. Sekiguchi, H. Asaeda, and H. Harai, “Integrated network control architecture for terrestrial and non-terrestrial network convergence in beyond 5g systems,” in 2022 ITU Kaleidoscope- Extended reality–How to boost quality of experience and interoperability, 2022, pp. 1–9.
[79] P. K. N, S. Krishna M, and N. M. Balasubramanya, “Performance analysis of a uav-based non-terrestrial network (ntn) using nb-iot,” in 2023 IEEE Wireless Communications and Networking Conference (WCNC), 2023, pp. 1–6.
[80] Y. Hokazono, H. Kohara, Y. Kishiyama, and T. Asai, “Extreme coverage extension in 6g: Cooperative non-terrestrial network architecture integrating terrestrial networks,” in 2022 IEEE Wireless Communications and Networking Conference (WCNC), 2022, pp. 138–143.
[81] G. Im, D. H. Jung, and J. Gyu Ryu, “Enhancing the connectivity of satellite iot devices in terrestrial-non terrestrial integrated networks based on the stackelberg game approach,” in 2020 International Conference on Information and Communication Technology Convergence (ICTC), 2020, pp. 1783–1785.
[82] F. Rinaldi, S. Pizzi, A. Molinaro, A. Iera, and G. Araniti, “Cooperative resource allocation in integrated terrestrial/non-terrestrial 5g and beyond networks,” in GLOBECOM 2020 - 2020 IEEE Global Communications Conference, 2020, pp. 1–6.
[83] M. Benzaghta, G. Geraci, R. Nikbakht, and D. López-Pérez, “Uav communications in integrated terrestrial and non-terrestrial networks,” in GLOBECOM 2022 - 2022 IEEE Global Communications Conference, 2022, pp. 3706–3711.
[84] D. J. Birabwa, D. Ramotsoela, and N. Ventura, “Service-aware user association and resource allocation in integrated terrestrial and non-terrestrial networks: A genetic algorithm approach,” IEEE Access, vol. 10, pp. 104 337–104 357, 2022.
[85] M. N. Dazhi, H. Al-Hraishawi, B. Shankar, S. Chatzinotas, and B. Ottersten, “Energy-efficient service-aware multi-connectivity scheduler for uplink multi-layer non-terrestrial networks,” IEEE Transactions on Green Communications and Networking, pp. 1–1, 2023.
[86] H. Nguyen-Kha, V. N. Ha, E. Lagunas, S. Chatzinotas, and J. Grotz, “Leo-to-user assignment and resource allocation for uplink transmit power minimization,” in WSA & SCC 2023; 26th International ITG Workshop on Smart Antennas and 13th Conference on Systems, Communications, and Coding, 2023, pp. 1–6.
[87] G. Gür, “Spectrum sharing and content-centric operation for 5g hybrid satellite networks: Prospects and challenges for space-terrestrial system integration,” IEEE Vehicular Technology Magazine, vol. 14, no. 4, pp. 38–48, 2019.
[88] W. Saad, M. Bennis, and M. Chen, “A vision of 6g wireless systems: Applications, trends, technologies, and open research problems,” IEEE Network, vol. 34, no. 3, pp. 134–142, 2020.
[89] A. Guidotti, A. Vanelli-Coralli, M. Conti, S. Andrenacci, S. Chatzinotas, N. Maturo, B. Evans, A. Awoseyila, A. Ugolini, T. Foggi, L. Gaudio, N. Alagha, and S. Cioni, “Architectures and key technical challenges for 5g systems incorporating satellites,” IEEE Transactions on Vehicular Technology, vol. 68, no. 3, pp. 2624–2639, 2019.
[90] W. Jiang, B. Han, M. A. Habibi, and H. D. Schotten, “The road towards 6g: A comprehensive survey,” IEEE Open Journal of the Communications Society, vol. 2, pp. 334–366, 2021.
[91] H. Kokkinen, A. Piemontese, L. Kulacz, F. Arnal, and C. Amatetti, “Coverage and interference in co-channel spectrum sharing between terrestrial and satellite networks,” in 2023 IEEE Aerospace Conference, 2023, pp. 1–9.
[92] H.-W. Lee, A. Medles, V. Jie, D. Lin, X. Zhu, I.-K. Fu, and H.-Y. Wei, “Reverse spectrum allocation for spectrum sharing between tn and ntn,” in 2021 IEEE Conference on Standards for Communications and Networking (CSCN), 2021, pp. 1–6.
[93] 3GPP, “Non-terrestrial networks (NTN) related RF and co-existence aspects,” 3rd Generation Partnership Project (3GPP), Technical report (TR) 38.863, 9 2024, version 18.3.0.
[94] N. Cheng, F. Lyu, W. Quan, C. Zhou, H. He, W. Shi, and X. Shen, “Space/aerial-assisted computing offloading for iot applications: A learning-based approach,” IEEE Journal on Selected Areas in Communications, vol. 37, no. 5, pp. 1117–1129, 2019.
[95] S. Jung, S. Jeong, J. Kang, and J. Kang, “Marine iot systems with space-air-sea integrated networks: Hybrid leo and uav edge computing,” IEEE Internet of Things Journal, pp. 1–1, 2023.
[96] S. S. Hassan, D. H. Kim, Y. K. Tun, N. H. Tran, W. Saad, and C. S. Hong, “Seamless and energy-efficient maritime coverage in coordinated 6g space–air–sea non-terrestrial networks,” IEEE Internet of Things Journal, vol. 10, no. 6, pp. 4749–4769, 2023.
[97] A. Traspadini, M. Giordani, G. Giambene, and M. Zorzi, “Real-time hap-assisted vehicular edge computing for rural areas,” IEEE Wireless Communications Letters, vol. 12, no. 4, pp. 674–678, 2023.
[98] L. Zhang, H. Zhang, C. Guo, H. Xu, L. Song, and Z. Han, “Satellite-aerial integrated computing in disasters: User association and offloading decision,” in ICC 2020 - 2020 IEEE International Conference on Communications (ICC), 2020, pp. 554–559.
[99] L. Zhang, X. Ma, Z. Zhuang, H. Xu, V. Sharma, and Z. Han, “𝑞-learning aided intelligent routing with maximum utility in cognitive uav swarm for emergency communications,” IEEE Transactions on Vehicular Technology, vol. 72, no. 3, pp. 3707–3723, 2023.
[100] H.-H. Liu, R. Y. Chang, Y.-Y. Chen, I.-K. Fu, and H. V. Poor, “Sensor deployment and link analysis in satellite iot systems for wildfire detection,” in GLOBECOM 2022 - 2022 IEEE Global Communications Conference, 2022, pp. 5631–5636.
[101] 3GPP, “Study on Narrow-Band Internet of Things (NB-IoT) enhanced Machine Type Communication (eMTC) support for Non-Terrestrial Networks (NTN),” 3rd Generation Partnership Project (3GPP), Technical Report (TR) 36.763, 10 2021, version 17.0.0.
[102] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Now Foundations and Trends, 2011.
[103] G. Charbit, A. Medles, P. Jose, D. Lin, X. Zhu, and I.-K. Fu, “Satellite and cellular networks integration - a system overview,” in 2021 Joint European Conference on Networks and Communications 6G Summit (EuCNC/6G Summit), 2021, pp. 118–123.
[104] 3GPP, “Solutions for NR to support Non-Terrestrial Networks (NTN),” 3rd Generation Partnership Project (3GPP), Technical report (TR) 38.821, 4 2023, version 16.2.0.
[105] I. Leyva-Mayorga, B. Soret, M. Röper, D. Wübben, B. Matthiesen, A. Dekorsy, and P. Popovski, “Leo small-satellite constellations for 5g and beyond-5g communications,” IEEE Access, vol. 8, pp. 184 955–184 964, 2020.
[106] M. GRASMAIR, “Basic properties of convex functions,” 2016. [Online]. Available: https://wiki.math.ntnu.no/_media/tma4180/2015v/convex.pdf
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96466-
dc.description.abstract整合感測與通信是國際電信聯盟無線電通信部門與第三代合作夥伴計畫推薦的第六代及更高世代的潛在應用場景。本論文研究了兩種整合感測與通信環境監測場景:智慧工廠和災害救援。在智慧工廠中,業主可以通過減少能源使用降低運營成本;而在災害救援中,可以通過節約能源延長感測器的壽命。然而,系統效能(如資訊的新鮮度)不應因此受到影響。在此背景下,本論文的三個研究工作的最終目標是,在滿足資訊陳舊度要求的前提下,實現數據傳輸能耗的最小化。

本論文的第一個研究工作探討了一個實時環境監測場景,其中感測器主動收集環境數據並將其傳輸至控制器。第一個工作採用熵風險測度,並結合李亞普諾夫優化的概念,在滿足陳舊度違反概率和超過預定閾值的平均極端陳舊度約束下,實現能耗的最小化。為應對極端陳舊度,本研究融入聯邦學習的框架以生成全局統計數據。數值結果表明,基於聯邦學習的解決方案在建模能耗方面優於集中式基線方法。繼承第一項工作的基礎,第二項研究進一步探討感測器數據採樣頻率與數據傳輸能耗之間的權衡,同時保持資訊的新鮮度。同樣地,第二項工作利用熵風險測度實現全球傳輸能耗的最小化,並滿足陳舊度約束。為尋找最合適的平衡,該研究提出了一個基於聯邦學習的兩階段優化框架,通過李亞普諾夫優化迭代學習最佳採樣頻率與相應的全球傳輸能耗。數值結果顯示,該基於聯邦學習的框架在輕微性能損失的情況下,比集中式基線方案節省了更多計算能耗。

考慮到地球表面活動的不斷增加,第三項研究著重於為災害救援整合臨時地面與非地面感測網絡。為了保持採樣數據的新鮮度,本研究提出了一種方法其包括數據流量安排機制和資源分配最佳化,目的在考慮兩種數據時效性要求(即端到端延遲和條件監測間隔)的情況下,最佳化感測數據傳輸的能耗。具體而言,感測數據流量以動態輪詢方式進行管理,而功率和頻寬分配則採用交替方向乘子法進行最佳化,以滿足上述的的兩種數據時效性要求。除了多場景分析外,數值結果顯示,從簡化提出之方法中節省能量對於系統成本(即目標能量、處理能耗和約束損失總和)而言並不有效。
zh_TW
dc.description.abstractIntegrated sensing and communication (ISAC) is a promising sixth generation (6G) and beyond usage scenarios recommended by the International Telecommunication Union Radiocommunication Sector (ITU-R) and the 3rd Generation Partnership Project (3GPP). This dissertation studies two ISAC environment monitoring scenarios: the smart factory and disaster relief. In the smart factory, the owner can lower the operation costs by reducing energy usage, whereas in disaster relief, the sensor's life cycle can be prolonged by conserving energy. However, the system performance, e.g., the freshness of information, should not be compromised. In this regard, the ultimate objective of the three works in this dissertation is to minimize data transmission energy subject to some staleness requirements.

In this dissertation, the first work studies a real-time environment monitoring scenario, where the sensors proactively collect environmental data and transmit it to the controller. The first work adopts the entropic risk measure (ERM) to minimize the energy consumption subject to the constraints on the staleness violation probability and the average extreme staleness exceedances over a pre-defined threshold by leveraging the concept of Lyapunov optimization. To deal with extreme staleness, this work weaves the framework of federated learning (FL) to create global statistics. Numerical results demonstrate that the proposed FL-based solution outperforms the centralized baseline regarding modeling energy consumption. Inheriting the first work, the second work further investigates the trade-off between the sensor's data-sampling frequency and the data transmission energy while maintaining information freshness. Similarly, the second work minimizes global transmission energy by leveraging ERM and is subject to staleness constraints. To find the most appropriate trade-off, the second work proposes an FL-based two-stage optimization framework to iteratively learn the optimal sampling frequency with the corresponding global transmission energy via Lyapunov optimization. Numerical results show that the proposed FL-based framework saves more computing energy than the centralized baseline with slight performance degradation.

Considering Earth's increasing surface activity, the third work focuses on integrated Ad Hoc terrestrial and non-terrestrial sensing networks for disaster relief. To keep the sampling data fresh, this work proposes an approach, which includes a data traffic orchestration mechanism and a resource allocation optimization scheme, to optimize the sensing data transmission energy while taking into account two staleness requirements, i.e., the End-to-End Delay (EED) and the Condition Monitoring Interval (CMI). Therein, the traffic of sensing data is managed in a dynamic round-robin manner, while the power and bandwidth allocation is optimized for sensing data transmission in an alternating direction approach of multipliers (ADMM) manner regarding the EED and CMI requirements. In addition to the multi-scenario analysis, the numerical results reveal that saving energy by simplifying the approach is inefficient regarding the system cost as the sum of objective energy, processing energy, and constraint loss.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-18T16:16:11Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-18T16:16:11Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract v
Contents vii
List of Figures x
List of Tables xii
Chapter 1. Introduction 1
1.1 Background 1
1.2 Introduction of the Works 6
1.3 Contribution of the Works 8
1.3.1 Chapter 2: Age-Optimal Power Allocation in Risk-Sensitive Industrial IoT 8
1.3.2 Chapter 3: Optimized Data Sampling and Energy Consumption in Industrial IoT 10
1.3.3 Chapter 4: Staleness-Aware Resource Allocation in Disaster Relief Integrated Networks 11
1.4 Preliminaries 12
1.4.1 Federated Learning Framework 12
1.4.2 Lyapunov Optimization 13
Chapter 2. Age-Optimal Power Allocation in Risk-Sensitive IIoT 16
2.1 Introduction 16
2.2 Related work 17
2.3 System Model and Problem Formulation 18
2.4 FL-Based Distributed Power Allocation 22
2.4.1 Lyapunov Optimization Framework 22
2.4.2 Distributed Power Allocation with Federated Learning for AoI Exceedances 23
2.5 Numerical Results 28
2.6 Summary 34
Chapter 3. Optimized Data Sampling and Energy Consumption in IIoT 35
3.1 Introduction 35
3.1.1 Related Work 36
3.2 System Model and Problem Formulation 38
3.2.1 System Architecture 38
3.2.2 Problem Formulation 40
3.3 Data Staleness-Aware Power Allocation 42
3.3.1 Lyapunov-Based Iterative Transmission Optimization Scheme (Lya-ITOS) 43
3.3.2 Bayesian Optimization-Based Sampling Granularity Criterion Optimization Scheme (Bay-SCOS) 52
3.4 Numerical Results 56
3.4.1 Performance Evaluation of FL-Based Lya-ITOS 59
3.4.2 Performance Evaluation of FL-Based Bay-SCOS 64
3.4.3 The Trade-Off Between Training Performance and Energy Consumption 68
3.5 Summary 71
Chapter 4. Staleness-Aware Resource Allocation in Disaster Relief Integrated Networks 73
4.1 Introduction 73
4.1.1 Related Work 74
4.2 System Model 76
4.2.1 Traffic Orchestration Mechanism 77
4.2.2 Problem Formulation 81
4.3 ADMM-Based Power and Bandwidth Allocation 83
4.4 Simulated System Settings 88
4.4.1 LEO Deployment 88
4.4.2 TC Channel Gain 90
4.4.3 NTC Channel Gain 91
4.4.4 Simulated Architecture 92
4.5 Numerical Results 92
4.5.1 Merit of the Proposed Traffic Orchestration Mechanism 92
4.5.2 Optimal Results in Different Scenarios 95
4.5.3 Effects of EED and CMI Requirements 101
4.5.4 Trade-off Between the Processing Energy and the Objective Energy 105
4.6 Summary 108
Chapter 5. Conclusions 110
5.1 Conclusions 110
5.2 Future Study Orientations 112
Bibliography 114
Appendix A: The Proof of Corollary 1 in Chapter 3 127
Appendix B: The iteration manner to updating parameter of the augmented Lagrange function (4.13) in Chapter 4 129
-
dc.language.isoen-
dc.subject工業物聯網zh_TW
dc.subject資源分配zh_TW
dc.subject地面與非地面整合網路zh_TW
dc.subject災害救援zh_TW
dc.subject資訊新鮮度zh_TW
dc.subject感測與通訊整合zh_TW
dc.subjectinformation freshnessen
dc.subjectdisaster reliefen
dc.subjectIndustrial Internet of Things (IIoT)en
dc.subjectIntegrated Sensing and Communication (ISAC)en
dc.subjectresource allocationen
dc.subjectintegrated terrestrial and non-terrestrial networksen
dc.title智慧感測器節能的信息年齡感知資源分配zh_TW
dc.titleAge-Aware Resource Allocation for Intelligent Sensor Energy Savingen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee王奕翔;謝宏昀;高榮鴻;李佳翰;許裕彬zh_TW
dc.contributor.oralexamcommitteeI-Hsiang Wang;Hung-Yun Hsieh;Rung-Hung Gau;Chia-Han Lee;Yu-Pin Hsuen
dc.subject.keyword感測與通訊整合,工業物聯網,資訊新鮮度,災害救援,地面與非地面整合網路,資源分配,zh_TW
dc.subject.keywordIntegrated Sensing and Communication (ISAC),Industrial Internet of Things (IIoT),disaster relief,information freshness,integrated terrestrial and non-terrestrial networks,resource allocation,en
dc.relation.page130-
dc.identifier.doi10.6342/NTU202500462-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-02-06-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
dc.date.embargo-lift2030-02-06-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
7.48 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved