請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96445
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳韋仁 | zh_TW |
dc.contributor.advisor | Wei-Jen Chen | en |
dc.contributor.author | 王奕鈞 | zh_TW |
dc.contributor.author | Yi-Chun Wang | en |
dc.date.accessioned | 2025-02-18T16:10:08Z | - |
dc.date.available | 2025-02-19 | - |
dc.date.copyright | 2025-02-18 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-01-21 | - |
dc.identifier.citation | Alemany, D., E. M. Acha & O. Iribarne, 2009. The relationship between marine fronts and fish diversity in the Patagonian Shelf Large Marine Ecosystem. Journal of Biogeography 36:2111-2124 https://doi.org/10.1111/j.1365-2699.2009.02148.x.
Arthington, A. H., N. K. Dulvy, W. Gladstone & I. J. Winfield, 2016. Fish conservation in freshwater and marine realms: status, threats and management. Aquatic Conservation-Marine and Freshwater Ecosystems 26:838-857 https://doi.org/10.1002/aqc.2712. Baselga, A. & C. D. L. Orme, 2012. betapart: an R package for the study of beta diversity. Methods in Ecology and Evolution 3:808-812 https://doi.org/10.1111/j.2041-210X.2012.00224.x. Benoít, H. P. & D. P. Swain, 2003. Accounting for length- and depth-dependent diel variation in catchability of fish and invertebrates in an annual bottom-trawl survey. Ices Journal of Marine Science 60:1298-1317 https://doi.org/10.1016/s1054-3139(03)00124-3. Berry, T. E., B. J. Saunders, M. L. Coghlan, M. Stat, S. Jarman, A. J. Richardson et al., 2019. Marine environmental DNA biomonitoring reveals seasonal patterns in biodiversity and identifies ecosystem responses to anomalous climatic events. Plos Genetics 15:e1007943 https://doi.org/10.1371/journal.pgen.1007943. Bertrand, J. A. M., P. Borsa & W. J. Chen, 2017. Phylogeography of the sergeants Abudefduf sexfasciatus and A. vaigiensis reveals complex introgression patterns between two widespread and sympatric Indo-West Pacific reef fishes. Molecular Ecology 26:2527-2542 https://doi.org/10.1111/mec.14044. Bland, S., F. S. Valdovinos, J. A. Hutchings & A. Kuparinen, 2019. The role of fish life histories in allometrically scaled food-web dynamics. Ecology and Evolution 9:3651-3660 https://doi.org/10.1002/ece3.4996. Boettiger, C., D. T. Lang & P. C. Wainwright, 2012. rfishbase: exploring, manipulating and visualizing FishBase data from R. Journal of Fish Biology 81:2030-9 https://doi.org/10.1111/j.1095-8649.2012.03464.x. Boulanger, E., N. Loiseau, A. Valentini, V. Arnal, P. Boissery, T. Dejean et al., 2021. Environmental DNA metabarcoding reveals and unpacks a biodiversity conservation paradox in Mediterranean marine reserves. Proc Biol Sci 288:20210112 https://doi.org/10.1098/rspb.2021.0112. Burian, A., Q. Mauvisseau, M. Bulling, S. Domisch, S. Qian & M. Sweet, 2021. Improving the reliability of eDNA data interpretation. Molecular Ecology Resources 21:1422-1433 https://doi.org/10.1111/1755-0998.13367. Canals, O., I. Mendibil, M. Santos, X. Irigoien & N. Rodríguez-Ezpeleta, 2021. Vertical stratification of environmental DNA in the open ocean captures ecological patterns and behavior of deep-sea fishes. Limnology and Oceanography Letters 6:339-347 https://doi.org/10.1002/lol2.10213. Catul, V., M. Gauns & P. K. Karuppasamy, 2011. A review on mesopelagic fishes belonging to family Myctophidae. Reviews in Fish Biology and Fisheries 21:339-354 https://doi.org/10.1007/s11160-010-9176-4. Chang, Y., Oey, L., Wu, C., & Lu, H., 2010. Why Are There Upwellings on the Northern Shelf of Taiwan under Northeasterly Winds? Journal of Physical Oceanography 40(6), 1405-1417. . Chen, C. S. & T. S. Chiu, 2003. Early life history traits of Japanese anchovy in the northeastern waters of Taiwan, with reference to larval transport. Zoological Studies 42:248-257. Chen, W.-J., C.-F. Huang, C.-L. Wei, V. Denis & C.-Y. Ko, 2023. Investigation on Marine ecosystem around Taiwan and ecosystem service evaluation. (in Chinese) (111-P-40). Chen, W. Y., Y. C. Wang & M. A. Lee, 2012. Early-Summer Ichthyoplankton Biodiversity Associated with Oceanic Factors on the Continental Shelf of the Southern East China Sea. Journal of Marine Science and Technology-Taiwan 20:698-706 https://doi.org/10.6119/Jmst-012-0727-1. Cherel, Y., C. Fontaine, P. Richard & J. P. Labat, 2010. Isotopic niches and trophic levels of myctophid fishes and their predators in the Southern Ocean. Limnology and Oceanography 55:324-332 https://doi.org/DOI 10.4319/lo.2010.55.1.0324. Chiou, W.-D. & L.-K. Lee, 2004. Migration of kawakawa Euthynnus affinis in the waters near Taiwan. Fisheries Science 70:746-757 https://doi.org/10.1111/j.1444-2906.2004.00867.x. Chiu, C. C., T. C. Kuo & K. Y. Chang, 2022. Optimising the benefit-cost ratio of fishing grounds for a multi-species fishery in the waters of northern Taiwan. Fisheries Management and Ecology 29:858-879 https://doi.org/10.1111/fme.12588. Costello, M. J., Z. Basher, R. Sayre, S. Breyer & D. J. Wright, 2018. Stratifying ocean sampling globally and with depth to account for environmental variability. Sci Rep 8:11259 https://doi.org/10.1038/s41598-018-29419-1. Costello, M. J. & C. Chaudhary, 2017. Marine Biodiversity, Biogeography, Deep-Sea Gradients, and Conservation. Current Biology 27:2051 https://doi.org/10.1016/j.cub.2017.06.015. Cowen, R. K., C. B. Paris & A. Srinivasan, 2006. Scaling of connectivity in marine populations. Science 311:522-7 https://doi.org/10.1126/science.1122039. Danovaro, R., 2024. Understanding marine biodiversity patterns and drivers: The fall of Icarus. Marine Ecology-an Evolutionary Perspective https://doi.org/10.1111/maec.12814. De Roos, A. M., L. Persson & E. McCauley, 2003. The influence of size‐dependent life‐history traits on the structure and dynamics of populations and communities. Ecology Letters 6:473-487 https://doi.org/10.1046/j.1461-0248.2003.00458.x. Denis, V., J. W. Chen, Q. Chen, Y. E. Hsieh, Y. V. Lin, C. W. Wang et al., 2019. Biogeography of functional trait diversity in the Taiwanese reef fish fauna. Ecology and Evolution 9:522-532 https://doi.org/10.1002/ece3.4771. Djurhuus, A., C. J. Closek, R. P. Kelly, K. J. Pitz, R. P. Michisaki, H. A. Starks et al., 2020. Environmental DNA reveals seasonal shifts and potential interactions in a marine community. Nat Commun 11:254 https://doi.org/10.1038/s41467-019-14105-1. Duffy, J. E., 2009. Why biodiversity is important to the functioning of real-world ecosystems. Frontiers in Ecology and the Environment 7:437-444 https://doi.org/10.1890/070195. Dur, G., J. S. Hwang, S. Souissi, L. C. Tseng, C. H. Wu, S. H. Hsiao et al., 2007. An overview of the influence of hydrodynamics on the spatial and temporal patterns of calanoid copepod communities around Taiwan. Journal of Plankton Research 29:I97-I116 https://doi.org/10.1093/plankt/fbl070. Eble, J. A., T. S. Daly-Engel, J. D. DiBattista, A. Koziol & M. R. Gaither, 2020. Marine environmental DNA: Approaches, applications, and opportunities. Advances in Marine Biology, Vol 86 86:141-169 https://doi.org/10.1016/bs.amb.2020.01.001. Edgar, R. C., 2016. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. BioRxiv081257. European Union-Copernicus Marine Service, 2020b. Multi Observation Global Ocean Sea Surface Salinity and Sea Surface Density https://doi.org/10.48670/MOI-00051. Accessed March 19, 2024. European Union-Copernicus Marine Service, 2022. Global Ocean Colour (Copernicus-GlobColour), Bio-Geo-Chemical, L4 (monthly and interpolated) from Satellite Observations (1997-ongoing). https://doi.org/10.48670/MOI-00281. Accessed March 20, 2024. FAO, 2011. Review of the state of world marine fishery resources. FAO Fisheries and Aquaculture Technical Paper No. 569, Rome. FAO, 2024. International markets for fisheries and aquaculture products. GLOBEFISH Highlights, No. 1–2024, Rome. Finn, R. N. & B. G. Kapoor, 2020. Fish Larval Physiology. CRC Press, Boca Raton. Folke, C., S. Carpenter, B. Walker, M. Scheffer, T. Elmqvist, L. Gunderson et al., 2004. Regime shifts, resilience, and biodiversity in ecosystem management. Annual Review of Ecology Evolution and Systematics 35:557-581 https://doi.org/10.1146/annurev.ecolsys.35.021103.105711. Frederiksen, M., M. Edwards, A. J. Richardson, N. C. Halliday & S. Wanless, 2006. From plankton to top predators: bottom-up control of a marine food web across four trophic levels. Journal of Animal Ecology 75:1259-68 https://doi.org/10.1111/j.1365-2656.2006.01148.x. Froese, R. & D. Pauly, 2024. FishBase. World Wide Web electronic publication. http://www.fishbase.org, version(10/2024). GoldZ, C., KacevD,FrableB,BurtonR,etal., 2020. FishCARD: fish 12S California Current specific reference database for enhanced metabarcoding efforts. Authorea. Hanafi-Portier, M., S. Samadi, L. Corbari, T. Y. Chan, W. J. Chen, J. N. Chen et al., 2021. When Imagery and Physical Sampling Work Together: Toward an Integrative Methodology of Deep-Sea Image-Based Megafauna Identification. Frontiers in Marine Science 8: https://doi.org/ARTN 74907810.3389/fmars.2021.749078. Harrison, J. B., J. M. Sunday & S. M. Rogers, 2019. Predicting the fate of eDNA in the environment and implications for studying biodiversity. Proc Biol Sci 286:20191409 https://doi.org/10.1098/rspb.2019.1409. Hays, G. C., 2017. Ocean currents and marine life. Current Biology 27:R470-R473 https://doi.org/10.1016/j.cub.2017.01.044. Hewitt, J. E., S. F. Thrush & K. E. Ellingsen, 2016. The role of time and species identities in spatial patterns of species richness and conservation. Conservation Biology 30:1080-8 https://doi.org/10.1111/cobi.12716. Holmlund, C. M. & M. Hammer, 1999. Ecosystem services generated by fish populations. Ecological Economics 29:253-268 https://doi.org/Doi10.1016/S0921-8009(99)00015-4. Hsieh, H. Y., W. T. Lo, D. C. Liu & W. C. Su, 2010. Influence of hydrographic features on larval fish distribution during the south-westerly monsoon in the waters of Taiwan, western North Pacific Ocean. Journal of Fish Biology 76:2521-39 https://doi.org/10.1111/j.1095-8649.2010.02643.x. Hsieh, H. Y., W. T. Lo, L. J. Wu & D. C. Liu, 2012. Larval fish assemblages in the Taiwan Strait, western North Pacific: linking with monsoon-driven mesoscale current system. Fisheries Oceanography 21:125-147 https://doi.org/10.1111/j.1365-2419.2011.00612.x. Hsieh, H. Y., W. T. Lo, L. J. Wu, D. C. Liu & W. C. Su, 2011a. Monsoon-driven succession of the larval fish assemblage in the East China Sea shelf waters off northern Taiwan. Journal of Oceanography 67:159-172 https://doi.org/10.1007/s10872-011-0015-6. Hsieh, H. Y., W. T. Lo, L. J. Wu, D. C. Lu & W. C. Su, 2011b. Comparison of Distribution Patterns of Larval Fish Assemblages in the Taiwan Strait between the Northeasterly and Southwesterly Monsoons. Zoological Studies 50:491-505. Hsieh, R. J., H. Y. Hsieh & W. T. Lo, 2016a. Succession of Monsoons and Water Mass Influences on Euphausiid Assemblages in the Waters Around Taiwan, Western North Pacific Ocean. Zoological Studies 55:e46 https://doi.org/10.6620/ZS.2016.55-46. Hsieh, T. C., K. H. Ma & A. Chao, 2016b. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution 7:1451-1456 https://doi.org/10.1111/2041-210x.12613. Hsu, P. C., H. J. Lee & C. Y. Lu, 2021. Impacts of the Kuroshio and Tidal Currents on the Hydrological Characteristics of Yilan Bay, Northeastern Taiwan. Remote Sensing 13: https://doi.org/ARTN 434010.3390/rs13214340. Hsu, T. H. T., W. J. Chen & V. Denis, 2023. Navigating the scales of diversity in subtropical and coastal fish assemblages ascertained by eDNA and visual surveys. Ecological Indicators 148: https://doi.org/ARTN11004410.1016/j.ecolind.2023.110044. Hu, J. Y. & X. H. Wang, 2016. Progress on upwelling studies in the China seas. Reviews of Geophysics 54:653-673 https://doi.org/10.1002/2015rg000505. Hyder, K., C. D. Maravelias, M. Kraan, Z. Radford & R. Prellezo, 2020. Marine recreational fisheries - current state and future opportunities Introduction. Ices Journal of Marine Science 77:2171-2180 https://doi.org/10.1093/icesjms/fsaa147. Jan, S., D. D. Sheu & H. M. Kuo, 2006. Water mass and throughflow transport variability in the Taiwan Strait. Journal of Geophysical Research-Oceans 111: https://doi.org/Artn C1201210.1029/2006jc003656. Jan, S., Y. H. Tseng & D. E. Dietrich, 2010. Sources of Water in the Taiwan Strait. Journal of Oceanography 66:211-221 https://doi.org/DOI 10.1007/s10872-010-0019-7. Jan, S., J. Wang, C. S. Chern & S. Y. Chao, 2002. Seasonal variation of the circulation in the Taiwan Strait. Journal of Marine Systems 35:249-268 https://doi.org/Pii S0924-7963(02)00130-6Doi 10.1016/S0924-7963(02)00130-6. Jeunen, G. J., M. D. Lamare, M. Knapp, H. G. Spencer, H. R. Taylor, M. Stat et al., 2019. Water stratification in the marine biome restricts vertical environmental DNA (eDNA) signal dispersal. Environmental DNA 2:99-111 https://doi.org/10.1002/edn3.49. Jones, G. P., M. Srinivasan & G. R. Almany, 2007. Population Connectivity and Conservation of Marine Biodiversity. Oceanography 20:100-111 https://doi.org/DOI 10.5670/oceanog.2007.33. Kimura, S., M. Nakai & T. Sugimoto, 1997. Migration of albacore, Thunnus alalunga, in the North Pacific Ocean in relation to large oceanic phenomena. Fisheries Oceanography 6:51-57 https://doi.org/DOI 10.1046/j.1365-2419.1997.00029.x. Kotze, J. D. F., H. B. Beukes & T. Seifert, 2019. Essential environmental variables to include in a stratified sampling design for a national-level invasive alien tree survey. Iforest-Biogeosciences and Forestry 12:418-426 https://doi.org/10.3832/ifor2767-012. Kraft, N. J. B., P. B. Adler, O. Godoy, E. C. James, S. Fuller & J. M. Levine, 2015. Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology 29:592-599 https://doi.org/10.1111/1365-2435.12345. Langan, J. A., G. Puggioni, C. A. Oviatt, M. E. Henderson & J. S. Collie, 2021. Climate alters the migration phenology of coastal marine species. Marine Ecology Progress Series 660:1-18 https://doi.org/10.3354/meps13612. Liang, W. D., T. Y. Tang, Y. J. Yang, M. T. Ko & W. S. Chuang, 2003. Upper-ocean currents around Taiwan. Deep-Sea Research Part Ii-Topical Studies in Oceanography 50:1085-1105 https://doi.org/10.1016/S0967-0645(03)00011-0. Liao, Z. H., H. Y. Hsieh & W. T. Lo, 2013. Influence of monsoon-driven hydrographic features on thaliacean distribution in waters around Taiwan, western North Pacific Ocean. Zoological Studies 52: https://doi.org/Artn 4910.1186/1810-522x-52-49. Lin, S. M., L. C. Tseng, P. O. Ang, J. Bolton & L. C. Liu, 2018. Long-term study on seasonal changes in floristic composition and structure of marine macroalgal communities along the coast of Northern Taiwan, southern East China Sea. Marine Biology 165: https://doi.org/ARTN 8310.1007/s00227-018-3344-9. Lin, Y. V., W. V. Hsiao, W. J. Chen & V. Denis, 2022. Habitat change and its consequences on reef fish specialization in biogeographic transition zones. Journal of Biogeography 49:1549-1561 https://doi.org/10.1111/jbi.14450. Lo, W. T., H. Y. Hsieh, L. J. Wu, H. B. Jian, D. C. Liu & W. C. Su, 2010. Comparison of larval fish assemblages between during and after northeasterly monsoon in the waters around Taiwan, western North Pacific. Journal of Plankton Research 32:1079-1095 https://doi.org/10.1093/plankt/fbq034. Lo, W. T., S. F. Yu & H. Y. Hsieh, 2013. Effects of summer mesoscale hydrographic features on epipelagic siphonophore assemblages in the surrounding waters of Taiwan, western North Pacific Ocean. Journal of Oceanography 69:495-509 https://doi.org/10.1007/s10872-013-0188-2. Lynam, C. P., M. Llope, C. Mollmann, P. Helaouet, G. A. Bayliss-Brown & N. C. Stenseth, 2017. Interaction between top-down and bottom-up control in marine food webs. Proc Natl Acad Sci U S A 114:1952-1957 https://doi.org/10.1073/pnas.1621037114. Marques, V., T. Milhau, C. Albouy, T. Dejean, S. Manel, D. Mouillot et al., 2021. GAPeDNA: Assessing and mapping global species gaps in genetic databases for eDNA metabarcoding. Diversity and Distributions 27:1880-1892 https://doi.org/10.1111/ddi.13142. Martinez Arbizu, P., 2020. pairwiseAdonis: Pairwise multilevel comparison using adonis. R package version 0.4. McClanahan, T. R., J. Maina & J. Davies, 2005. Perceptions of resource users and managers towards fisheries management options in Kenyan coral reefs. Fisheries Management and Ecology 12:105-112 https://doi.org/DOI 10.1111/j.1365-2400.2004.00431.x. McGowan, J. A., 1998. Climate-ocean variability and ecosystem response in the northeast Pacific (vol 281, pg 210, 1998). Science 282:417-417. Meera, K. M., V. N. Sanjeevan, R. R. Prakash & M. Hashim, 2024. An updated checklist of Myctophids of Western Indian Ocean with 6 new records. Regional Studies in Marine Science 73: https://doi.org/ARTN 10345010.1016/j.rsma.2024.103450. Miya, M., 2022. Environmental DNA Metabarcoding: A Novel Method for Biodiversity Monitoring of Marine Fish Communities. Ann Rev Mar Sci 14:161-185 https://doi.org/10.1146/annurev-marine-041421-082251. Miya, M., R. O. Gotoh & T. Sado, 2020. MiFish metabarcoding: a high-throughput approach for simultaneous detection of multiple fish species from environmental DNA and other samples. Fisheries Science 86:939-970 https://doi.org/10.1007/s12562-020-01461-x. Miyata, K., Y. Inoue, Y. Amano, T. Nishioka, M. Yamane, T. Kawaguchi et al., 2021. Fish environmental RNA enables precise ecological surveys with high positive predictivity. Ecological Indicators 128: https://doi.org/ARTN 10779610.1016/j.ecolind.2021.107796. Mok, H. K., 2008. Ecological Environment in the Area along the Kuroshio in Taiwan. Murphy, H. M. & G. P. Jenkins, 2010. Observational methods used in marine spatial monitoring of fishes and associated habitats: a review. Marine and Freshwater Research 61:236-252 https://doi.org/10.1071/Mf09068. NASA OBPG, 2020a. MODIS Aqua Global Level 3 Mapped SST. https://doi.org/10.5067/MODSA-MO4D9. Accessed March 19, 2024. Neter, J., M. H. Kutner, C. J. Nachtsheim & W. Wasserman, 1996. Applied linear statistical models, 4th ed. McGraw-Hill, New York. Oka, S. i., H. Doi, K. Miyamoto, N. Hanahara, T. Sado & M. Miya, 2020. Environmental DNA metabarcoding for biodiversity monitoring of a highly diverse tropical fish community in a coral reef lagoon: Estimation of species richness and detection of habitat segregation. Environmental DNA 3:55-69 https://doi.org/10.1002/edn3.132. Oksanen, J., G. Simpson, F. Blanchet, R. Kindt, P. Legendre, P. Minchin et al., 2024. vegan: Community Ecology Package. R package version 2.7-0, https://github.com/vegandevs/vegan. Ottersen, G., S. Kim, G. Huse, J. J. Polovina & N. C. Stenseth, 2010. Major pathways by which climate may force marine fish populations. Journal of Marine Systems 79:343-360 https://doi.org/10.1016/j.jmarsys.2008.12.013. Petitgas, P., A. D. Rijnsdorp, M. Dickey-Collas, G. H. Engelhard, M. A. Peck, J. K. Pinnegar et al., 2013. Impacts of climate change on the complex life cycles of fish. Fisheries Oceanography 22:121-139 https://doi.org/10.1111/fog.12010. Piacenza, S. E., A. K. Barner, C. E. Benkwitt, K. S. Boersma, E. B. Cerny-Chipman, K. E. Ingeman et al., 2015. Patterns and Variation in Benthic Biodiversity in a Large Marine Ecosystem. Plos One 10:e0135135 https://doi.org/10.1371/journal.pone.0135135. Pikitch, E. K., K. J. Rountos, T. E. Essington, C. Santora, D. Pauly, R. Watson et al., 2014. The global contribution of forage fish to marine fisheries and ecosystems. Fish and Fisheries 15:43-64 https://doi.org/10.1111/faf.12004. Roland Pitcher, C., P. Lawton, N. Ellis, S. J. Smith, L. S. Incze, C. L. Wei et al., 2012. Exploring the role of environmental variables in shaping patterns of seabed biodiversity composition in regional-scale ecosystems. Journal of Applied Ecology 49:670-679 https://doi.org/10.1111/j.1365-2664.2012.02148.x. Sahu, A., N. Kumar, C. Pal Singh & M. Singh, 2023. Environmental DNA (eDNA): Powerful technique for biodiversity conservation. Journal for Nature Conservation 71: https://doi.org/10.1016/j.jnc.2022.126325. Shao, K. T., 2024. Taiwan Fish Database. WWW Web electronic publication. Shao, K. T., Chen, J. P. & Wang, S. C., 1999. Biogeography and database of marine fishes in Taiwan waters. Paper presented at the Proc 5th Indo-Pac Fish Conf, Nouméa. Shaw, J. L. A., L. J. Clarke, S. D. Wedderburn, T. C. Barnes, L. S. Weyrich & A. Cooper, 2016. Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system. Biological Conservation 197:131-138 https://doi.org/10.1016/j.biocon.2016.03.010. Sigsgaard, E. E., I. B. Nielsen, H. Carl, M. A. Krag, S. W. Knudsen, Y. C. Xing et al., 2017. Seawater environmental DNA reflects seasonality of a coastal fish community. Marine Biology 164: https://doi.org/ARTN 12810.1007/s00227-017-3147-4. Socolar, J. B., J. J. Gilroy, W. E. Kunin & D. P. Edwards, 2016. How Should Beta-Diversity Inform Biodiversity Conservation? Trends in Ecology & Evolution 31:67-80 https://doi.org/10.1016/j.tree.2015.11.005. Soininen, J., J. Heino & J. J. Wang, 2018. A meta-analysis of nestedness and turnover components of beta diversity across organisms and ecosystems. Global Ecology and Biogeography 27:96-109 https://doi.org/10.1111/geb.12660. Stoddard, J. L., 2004. Use of ecological regions in aquatic assessments of ecological condition. Environmental Management 34 Suppl 1:S61-70 https://doi.org/10.1007/s00267-003-0193-0. Stoeckle, M. Y., J. Adolf, Z. Charlop-Powers, K. J. Dunton, G. Hinks & S. M. VanMorter, 2021. Trawl and eDNA assessment of marine fish diversity, seasonality, and relative abundance in coastal New Jersey, USA. Ices Journal of Marine Science 78:293-304 https://doi.org/10.1093/icesjms/fsaa225. Stoeckle, M. Y., L. Soboleva & Z. Charlop-Powers, 2017. Aquatic environmental DNA detects seasonal fish abundance and habitat preference in an urban estuary. Plos One 12:e0175186 https://doi.org/10.1371/journal.pone.0175186. Su, W. C., W. T. Lo, D. C. Liu, L. J. Wu & H. Y. Hsieh, 2011. Larval Fish Assemblages in the Kuroshio Waters East of Taiwan during Two Distinct Monsoon Seasons. Bulletin of Marine Science 87:13-29 https://doi.org/10.5343/bms.2010.1010. Sydeman, W. J., E. Poloczanska, T. E. Reed & S. A. Thompson, 2015. Climate change and marine vertebrates. Science 350:772-7 https://doi.org/10.1126/science.aac9874. Taberlet, P., E. Coissac, M. Hajibabaei & L. H. Rieseberg, 2012. Environmental DNA. Molecular Ecology 21:1789-93 https://doi.org/10.1111/j.1365294X.2012.05542.x. Takeuchi, I. & H. Yamashiro, 2023. Coral reefs of Eastern Asia under anthropogenic impacts, vol 17. Springer Nature, New York. Team, R. C., 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria., https://www.R-project.org/. Thomsen, P. F., J. Kielgast, L. L. Iversen, P. R. Moller, M. Rasmussen & E. Willerslev, 2012. Detection of a diverse marine fish fauna using environmental DNA from seawater samples. Plos One 7:e41732 https://doi.org/10.1371/journal.pone.0041732. Tittensor, D. P., C. Mora, W. Jetz, H. K. Lotze, D. Ricard, E. V. Berghe et al., 2010. Global patterns and predictors of marine biodiversity across taxa. Nature 466:1098-101 https://doi.org/10.1038/nature09329. Trenkel, V. M., S. Vaz, C. Albouy, A. Brind'Amour, E. Duhamel, P. Laffargue et al., 2019. We can reduce the impact of scientific trawling on marine ecosystems. Marine Ecology Progress Series 609:277-282 https://doi.org/10.3354/meps12834. Valdivia-Carrillo, T., A. Rocha-Olivares, H. Reyes-Bonilla, J. F. Dominguez-Contreras & A. Munguia-Vega, 2021. Integrating eDNA metabarcoding and simultaneous underwater visual surveys to describe complex fish communities in a marine biodiversity hotspot. Molecular Ecology Resources 21:1558-1574 https://doi.org/10.1111/1755-0998.13375. Veron, P., R. Rozanski, V. Marques, S. Joost, M. E. Deschez, V. M. Trenkel et al., 2023. Environmental DNA complements scientific trawling in surveys of marine fish biodiversity. Ices Journal of Marine Science 80:2150-2165 https://doi.org/10.1093/icesjms/fsad139. Vilas, D., M. G. Pennino, J. M. Bellido, J. Navarro, I. Palomera & M. Coll, 2020. Seasonality of spatial patterns of abundance, biomass, and biodiversity in a demersal community of the NW Mediterranean Sea. Ices Journal of Marine Science 77:567-580 https://doi.org/10.1093/icesjms/fsz197. Wang, J. & S. Tabeta, 2023. MaxEnt modeling to show patterns of coastal habitats of reef-associated fish in the South and East China Seas. Frontiers in Ecology and Evolution 11: https://doi.org/ARTN 102761410.3389/fevo.2023.1027614. West, G. B., 1999. The origin of universal scaling laws in biology. Physica a-Statistical Mechanics and Its Applications 263:104-113 https://doi.org/Doi 10.1016/S0378-4371(98)00639-6. Yamamoto, S., R. Masuda, Y. Sato, T. Sado, H. Araki, M. Kondoh et al., 2017. Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea. Sci Rep 7:40368 https://doi.org/10.1038/srep40368. Yen, K. W., C. I. Pan, C. H. Chen & W. H. Lien, 2022. Spatiotemporal Characteristics of Fish Larvae and Juveniles in the Waters around Taiwan from 2007 to 2019. Animals (Basel) 12: https://doi.org/10.3390/ani12151890. Yin, W. B. & D. J. Huang, 2019. Short-Term Variations in the Surface Upwelling off Northeastern Taiwan Observed via Satellite Data. Journal of Geophysical Research-Oceans 124:939-954 https://doi.org/10.1029/2018jc014537. Zhou, D., Y.-B. Liang & C.-K. Zeng, 2012. Oceanology of China Seas (p. 579). Springer Netherlands, Netherland. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96445 | - |
dc.description.abstract | 前人研究顯示,臺灣海域海洋生物的空間與季節性分佈之波動,主要受到其周圍三大水團的匯聚以及季風變化的影響。然而,針對海洋魚類群聚模式的研究大多侷限於稚魚的研究,這在一定程度上是由於採樣的限制。為了解決這一問題,本研究運用環境DNA高通量複合分子條碼技術,克服傳統方法的侷限,對臺灣的海洋魚類多樣性以多尺度的方式進行全面的評估,並進一步探討驅動時空變動的潛在環境因素。本研究於2023年成功完成了為期一年的季節性採樣,其範圍涵蓋了臺灣周圍的24個離岸採樣點。基於先前的研究結果,本分析將臺灣劃分為西部和東部兩個地理區域進行研究。91個採集樣本的分析共偵測到1,026種海洋魚類,包含了從小型底棲和中上水層魚類到大型掠食性大洋性魚類的多樣物種。透過基於距離的冗餘分析檢測到群聚組成在空間上和季節性的顯著差異,此結果推測是受各自區域獨特的海洋條件所影響。在西部海域,北部群聚在組成上呈現出明顯的季節性變化,反映了溫暖的南海表層水團和低溫的中國沿岸水團之間的交替主導,而南部群聚在組成上的變化較小,顯示其全年受到溫暖南海表層水團和黑潮分支水團的持續影響。在東部海域,魚類群聚組成之季節性變化受到黑潮動態的驅動。值得注意的是,在北部採樣點觀察到一個獨特的模式,這可能是由於黑潮撞擊大陸棚引發的湧升流所帶來的環境效應所致。本研究結果為臺灣海域在時空上,由不同的海洋現象影響下形成的海洋魚類多樣性模式提供了新的見解,對未來針對有效管理海洋生態系統的長期調查提供了寶貴的資料。 | zh_TW |
dc.description.abstract | Earlier studies have shown that the spatial and seasonal distribution and fluctuations of marine organisms in Taiwan are primarily influenced by the three water masses converging in its surrounding areas, as well as by monsoon dynamics. However, research on the patterns of marine fish communities has largely been limited to the studies of larval fishes, partly due to sampling constraints. To address this gap, this study employs environmental DNA (eDNA) metabarcoding to comprehensively assess fish diversity at various scales in Taiwan, aiming to overcome the limitations of conventional methods and further identify the potential environmental factors driving spatiotemporal variations. Throughout this study, a year-long seasonal sampling was successfully conducted across 24 offshore sites around Taiwan in 2023. Based on previous findings, the analysis delineates two geographic regions of Taiwan—the West and the East—for the investigation. Through the analyses of 91 collected samples, a total of 1,026 marine fish taxa are detected, representing a diverse range of species from small benthic and pelagic fish to large predatory oceanic species. Significant spatial and seasonal differences in the community composition are detected, influenced by distinct oceanographic conditions in each region as revealed by distance-based redundancy analysis. In the West, the northern communities exhibited clear seasonal shifts between the dominance of warm South China Sea Surface Water and cold China Coastal Water, while southern communities showed less variation, reflecting the year-round influence of warm South China Sea Surface Water and Kuroshio Branch Water. In the East, seasonal changes in fish community composition are driven by the dynamics of Kuroshio Current. It is noteworthy that a unique pattern was observed at the northern sampling sites, which may be attributed to the environmental effects caused by upwelling triggered by the Kuroshio Current colliding with the continental shelf. These findings provide new insights into the patterns of marine fish diversity in the Taiwan’s waters, shaped by various oceanographic processes over time and space, offering valuable information for future long-term surveys aimed at effective marine ecosystem management. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-18T16:10:08Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-18T16:10:08Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 論文口試委員審定書 i
致謝 ii 摘要 iii ABSTRACT v Contents vii LIST OF FIGURES ix LIST OF TABLES x 1. Introduction 1 2. Material and methods 7 2.1 Sample collection 7 2.2 Extraction 8 2.3 Library preparation 9 2.4 Bioinformatics 11 2.5 Environmental parameters 14 2.6 Data analysis 15 2.6.1 Rarefaction and extrapolation curves 15 2.6.2 β-diversity analysis 16 3. Results 18 3.1 Fish diversity 18 3.2 β-diversity 19 4. Discussion 23 4.1 Comprehensive investigations of the marine fish communities using eDNA metabarcoding 23 4.2 Linking spatiotemporal patterns of fish diversity to complex oceanography in Taiwan 26 4.3 Perspectives of methodology: limitations and future directions 30 4.4 Conclusion 34 5. Figures 36 6. Tables 43 7. References 50 8. Appendix 61 | - |
dc.language.iso | en | - |
dc.title | 利用環境DNA高通量複合分子條碼技術以探究臺灣東部及西部外海魚類群聚在空間和季節上之差異 | zh_TW |
dc.title | Environmental DNA metabarcoding reveals distinct spatial and seasonal patterns in offshore fish communities in eastern and western Taiwan | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 三木健;單偉彌;魏志潾 | zh_TW |
dc.contributor.oralexamcommittee | Takeshi Miki;Vianney Denis;Chih-Lin Wei | en |
dc.subject.keyword | 環境 DNA,高通量分子條碼,12S rRNA,海洋魚類,海洋學,生物多樣性,時空模式,生態系管理, | zh_TW |
dc.subject.keyword | eDNA,Metabarcoding,12S rRNA,Marine fish,Oceanography,Biodiversity,Spatio-temporal pattern,Ecosystem management, | en |
dc.relation.page | 175 | - |
dc.identifier.doi | 10.6342/NTU202500220 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2025-01-22 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 海洋研究所 | - |
dc.date.embargo-lift | 2029-01-02 | - |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 目前未授權公開取用 | 2.64 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。