請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96441完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭如忠 | zh_TW |
| dc.contributor.advisor | Ru-Jong Jeng | en |
| dc.contributor.author | 顏禎里 | zh_TW |
| dc.contributor.author | Zhen-Li Yan | en |
| dc.date.accessioned | 2025-02-18T16:08:47Z | - |
| dc.date.available | 2025-02-19 | - |
| dc.date.copyright | 2025-02-18 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2025-02-04 | - |
| dc.identifier.citation | 1. Akkerman, Q. A.; Manna, L., What Defines a Halide Perovskite? ACS Energy Letters 2020, 5 (2), 604-610.
2. Lin, H.; Zhou, C.; Tian, Y.; Siegrist, T.; Ma, B., Low-Dimensional Organometal Halide Perovskites. ACS Energy Letters 2018, 3 (1), 54-62. 3. Liu, Y.; Yuan, S.; Zheng, H.; Wu, M.; Zhang, S.; Lan, J.; Li, W.; Fan, J., Structurally Dimensional Engineering in Perovskite Photovoltaics. Advanced Energy Materials 2023, 13 (23), 2300188. 4. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V., Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Letters 2015, 15 (6), 3692-3696. 5. Shamsi, J.; Urban, A. S.; Imran, M.; De Trizio, L.; Manna, L., Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modifications, and Their Optical Properties. Chemical Reviews 2019, 119 (5), 3296-3348. 6. Umebayashi, T.; Asai, K.; Kondo, T.; Nakao, A., Electronic structures of lead iodide based low-dimensional crystals. Physical Review B 2003, 67 (15), 155405. 7. Schulz, P.; Edri, E.; Kirmayer, S.; Hodes, G.; Cahen, D.; Kahn, A., Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy & Environmental Science 2014, 7 (4), 1377-1381. 8. Brennan, M. C.; Herr, J. E.; Nguyen-Beck, T. S.; Zinna, J.; Draguta, S.; Rouvimov, S.; Parkhill, J.; Kuno, M., Origin of the Size-Dependent Stokes Shift in CsPbBr3 Perovskite Nanocrystals. Journal of the American Chemical Society 2017, 139 (35), 12201-12208. 9. Koscher, B. A.; Swabeck, J. K.; Bronstein, N. D.; Alivisatos, A. P., Essentially Trap-Free CsPbBr3 Colloidal Nanocrystals by Postsynthetic Thiocyanate Surface Treatment. Journal of the American Chemical Society 2017, 139 (19), 6566-6569. 10. du Fossé, I.; Mulder, J. T.; Almeida, G.; Spruit, A. G. M.; Infante, I.; Grozema, F. C.; Houtepen, A. J., Limits of Defect Tolerance in Perovskite Nanocrystals: Effect of Local Electrostatic Potential on Trap States. Journal of the American Chemical Society 2022, 144 (25), 11059-11063. 11. Bohn, B. J.; Tong, Y.; Gramlich, M.; Lai, M. L.; Döblinger, M.; Wang, K.; Hoye, R. L. Z.; Müller-Buschbaum, P.; Stranks, S. D.; Urban, A. S.; Polavarapu, L.; Feldmann, J., Boosting Tunable Blue Luminescence of Halide Perovskite Nanoplatelets through Postsynthetic Surface Trap Repair. Nano Letters 2018, 18 (8), 5231-5238. 12. Talapin, D. V.; Lee, J.-S.; Kovalenko, M. V.; Shevchenko, E. V., Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications. Chemical Reviews 2010, 110 (1), 389-458. 13. Sichert, J. A.; Tong, Y.; Mutz, N.; Vollmer, M.; Fischer, S.; Milowska, K. Z.; García Cortadella, R.; Nickel, B.; Cardenas-Daw, C.; Stolarczyk, J. K.; Urban, A. S.; Feldmann, J., Quantum Size Effect in Organometal Halide Perovskite Nanoplatelets. Nano Letters 2015, 15 (10), 6521-6527. 14. Gong, X.; Voznyy, O.; Jain, A.; Liu, W.; Sabatini, R.; Piontkowski, Z.; Walters, G.; Bappi, G.; Nokhrin, S.; Bushuyev, O.; Yuan, M.; Comin, R.; McCamant, D.; Kelley, S. O.; Sargent, E. H., Electron–phonon interaction in efficient perovskite blue emitters. Nature Materials 2018, 17 (6), 550-556. 15. Weidman, M. C.; Goodman, A. J.; Tisdale, W. A., Colloidal Halide Perovskite Nanoplatelets: An Exciting New Class of Semiconductor Nanomaterials. Chemistry of Materials 2017, 29 (12), 5019-5030. 16. Stoumpos, C. C.; Cao, D. H.; Clark, D. J.; Young, J.; Rondinelli, J. M.; Jang, J. I.; Hupp, J. T.; Kanatzidis, M. G., Ruddlesden–Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors. Chemistry of Materials 2016, 28 (8), 2852-2867. 17. Zhan, Y.; Cheng, Q.; Song, Y.; Li, M., Micro-Nano Structure Functionalized Perovskite Optoelectronics: From Structure Functionalities to Device Applications. Advanced Functional Materials 2022, 32 (24), 2200385. 18. Tang, H.; Shang, Y.; Zhou, W.; Peng, Z.; Ning, Z., Energy Level Tuning of PEDOT:PSS for High Performance Tin-Lead Mixed Perovskite Solar Cells. Solar RRL 2019, 3 (2), 1800256. 19. Zuo, C.; Bolink, H. J.; Han, H.; Huang, J.; Cahen, D.; Ding, L., Advances in Perovskite Solar Cells. Advanced Science 2016, 3 (7), 1500324. 20. Gao, F.; Zhao, Y.; Zhang, X.; You, J., Recent Progresses on Defect Passivation toward Efficient Perovskite Solar Cells. Advanced Energy Materials 2020, 10 (13), 1902650. 21. Wang, D.; Wright, M.; Elumalai, N. K.; Uddin, A., Stability of perovskite solar cells. Solar Energy Materials and Solar Cells 2016, 147, 255-275. 22. Dou, L.; Yang, Y.; You, J.; Hong, Z.; Chang, W.-H.; Li, G.; Yang, Y., Solution-processed hybrid perovskite photodetectors with high detectivity. Nature Communications 2014, 5 (1), 5404. 23. Tian, W.; Zhou, H.; Li, L., Hybrid Organic–Inorganic Perovskite Photodetectors. Small 2017, 13 (41), 1702107. 24. Zhang, Q.; Shang, Q.; Su, R.; Do, T. T. H.; Xiong, Q., Halide Perovskite Semiconductor Lasers: Materials, Cavity Design, and Low Threshold. Nano Letters 2021, 21 (5), 1903-1914. 25. Jia, Y.; Kerner, R. A.; Grede, A. J.; Rand, B. P.; Giebink, N. C., Factors that Limit Continuous-Wave Lasing in Hybrid Perovskite Semiconductors. Advanced Optical Materials 2020, 8 (2), 1901514. 26. Cadelano, M.; Sarritzu, V.; Sestu, N.; Marongiu, D.; Chen, F.; Piras, R.; Corpino, R.; Carbonaro, C. M.; Quochi, F.; Saba, M.; Mura, A.; Bongiovanni, G., Can Trihalide Lead Perovskites Support Continuous Wave Lasing? Advanced Optical Materials 2015, 3 (11), 1557-1564. 27. Fakharuddin, A.; Gangishetty, M. K.; Abdi-Jalebi, M.; Chin, S.-H.; bin Mohd Yusoff, A. R.; Congreve, D. N.; Tress, W.; Deschler, F.; Vasilopoulou, M.; Bolink, H. J., Perovskite light-emitting diodes. Nature Electronics 2022, 5 (4), 203-216. 28. Jiang, Y.; Qin, C.; Cui, M.; He, T.; Liu, K.; Huang, Y.; Luo, M.; Zhang, L.; Xu, H.; Li, S.; Wei, J.; Liu, Z.; Wang, H.; Kim, G.-H.; Yuan, M.; Chen, J., Spectra stable blue perovskite light-emitting diodes. Nature Communications 2019, 10 (1), 1868. 29. Noel, N. K.; Abate, A.; Stranks, S. D.; Parrott, E. S.; Burlakov, V. M.; Goriely, A.; Snaith, H. J., Enhanced Photoluminescence and Solar Cell Performance via Lewis Base Passivation of Organic–Inorganic Lead Halide Perovskites. ACS Nano 2014, 8 (10), 9815-9821. 30. Abdi-Jalebi, M.; Andaji-Garmaroudi, Z.; Pearson, A. J.; Divitini, G.; Cacovich, S.; Philippe, B.; Rensmo, H.; Ducati, C.; Friend, R. H.; Stranks, S. D., Potassium- and Rubidium-Passivated Alloyed Perovskite Films: Optoelectronic Properties and Moisture Stability. ACS Energy Letters 2018, 3 (11), 2671-2678. 31. Ling, Y.; Tian, Y.; Wang, X.; Wang, J. C.; Knox, J. M.; Perez-Orive, F.; Du, Y.; Tan, L.; Hanson, K.; Ma, B.; Gao, H., Enhanced Optical and Electrical Properties of Polymer-Assisted All-Inorganic Perovskites for Light-Emitting Diodes. Advanced Materials 2016, 28 (40), 8983-8989. 32. Xing, G.; Wu, B.; Wu, X.; Li, M.; Du, B.; Wei, Q.; Guo, J.; Yeow, E. K. L.; Sum, T. C.; Huang, W., Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nature Communications 2017, 8 (1), 14558. 33. Yoon, S. J.; Kuno, M.; Kamat, P. V., Shift Happens. How Halide Ion Defects Influence Photoinduced Segregation in Mixed Halide Perovskites. ACS Energy Letters 2017, 2 (7), 1507-1514. 34. Yan, Z.-L.; Benas, J.-S.; Chueh, C.-C.; Chen, W.-C.; Liang, F.-C.; Zhang, Z.-X.; Lin, B.-H.; Su, C.-J.; Chiba, T.; Kido, J.; Kuo, C.-C., Stable blue perovskite light-emitting diodes achieved by optimization of crystal dimension through zinc bromide addition. Chemical Engineering Journal 2021, 414, 128774. 35. Lee, S.; Kim, J.; Kim, H.; Kim, C.; Kim, S.; Kim, C.; Lee, H.; Choi, B.; Muthu, C.; Kim, T.; Lee, J.; Lee, S.; Ihee, H.; Lee, J.-Y., Brightening deep-blue perovskite light-emitting diodes: A path to Rec. 2020. Science Advances 2024, 10 (20), eadn8465. 36. Chen, A. Z.; Shiu, M.; Ma, J. H.; Alpert, M. R.; Zhang, D.; Foley, B. J.; Smilgies, D.-M.; Lee, S.-H.; Choi, J. J., Origin of vertical orientation in two-dimensional metal halide perovskites and its effect on photovoltaic performance. Nature Communications 2018, 9 (1), 1336. 37. Huang, P.; Kazim, S.; Wang, M.; Ahmad, S., Toward Phase Stability: Dion–Jacobson Layered Perovskite for Solar Cells. ACS Energy Letters 2019, 4 (12), 2960-2974. 38. Luo, D.; Li, X.; Dumont, A.; Yu, H.; Lu, Z.-H., Recent Progress on Perovskite Surfaces and Interfaces in Optoelectronic Devices. Advanced Materials 2021, 33 (30), 2006004. 39. Sim, K.; Jun, T.; Bang, J.; Kamioka, H.; Kim, J.; Hiramatsu, H.; Hosono, H., Performance boosting strategy for perovskite light-emitting diodes. Applied Physics Reviews 2019, 6 (3), 031402. 40. Lee, K. J.; Merdad, N. A.; Maity, P.; El-Demellawi, J. K.; Lui, Z.; Sinatra, L.; Zhumekenov, A. A.; Hedhili, M. N.; Min, J.-W.; Min, J.-H.; Gutiérrez-Arzaluz, L.; Anjum, D. H.; Wei, N.; Ooi, B. S.; Alshareef, H. N.; Mohammed, O. F.; Bakr, O. M., Engineering Band-Type Alignment in CsPbBr3 Perovskite-Based Artificial Multiple Quantum Wells. Advanced Materials 2021, 33 (17), 2005166. 41. Yan, Z.-L.; Liang, F.-C.; Yeh, C.-Y.; Kurniawan, D.; Benas, J.-S.; Chen, W.-C.; Cho, C. J.; Chiang, W.-H.; Jeng, R.-J.; Kuo, C.-C., Optimization of the carrier recombination and transmission properties in perovskite LEDs by doping poly (4-vinylpyridine) and graphene quantum dots made of chitin. Chemical Engineering Journal 2022, 444, 136518. 42. Zou, C.; Liu, Y.; Ginger, D. S.; Lin, L. Y., Suppressing Efficiency Roll-Off at High Current Densities for Ultra-Bright Green Perovskite Light-Emitting Diodes. ACS Nano 2020, 14 (5), 6076-6086. 43. Zhao, L.; Roh, K.; Kacmoli, S.; Al Kurdi, K.; Jhulki, S.; Barlow, S.; Marder, S. R.; Gmachl, C.; Rand, B. P., Thermal Management Enables Bright and Stable Perovskite Light-Emitting Diodes. Advanced Materials 2020, 32 (25), 2000752. 44. Zuo, L.; Guo, H.; deQuilettes, D. W.; Jariwala, S.; De Marco, N.; Dong, S.; DeBlock, R.; Ginger, D. S.; Dunn, B.; Wang, M.; Yang, Y., Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Science Advances 2017, 3 (8), e1700106. 45. Han, T.-H.; Lee, J.-W.; Choi, C.; Tan, S.; Lee, C.; Zhao, Y.; Dai, Z.; De Marco, N.; Lee, S.-J.; Bae, S.-H.; Yuan, Y.; Lee, H. M.; Huang, Y.; Yang, Y., Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells. Nature Communications 2019, 10 (1), 520. 46. Yuan, M.; Quan, L. N.; Comin, R.; Walters, G.; Sabatini, R.; Voznyy, O.; Hoogland, S.; Zhao, Y.; Beauregard, E. M.; Kanjanaboos, P.; Lu, Z.; Kim, D. H.; Sargent, E. H., Perovskite energy funnels for efficient light-emitting diodes. Nature Nanotechnology 2016, 11 (10), 872-877. 47. Singldinger, A.; Gramlich, M.; Gruber, C.; Lampe, C.; Urban, A. S., Nonradiative Energy Transfer between Thickness-Controlled Halide Perovskite Nanoplatelets. ACS Energy Letters 2020, 5 (5), 1380-1385. 48. Lei, L.; Seyitliyev, D.; Stuard, S.; Mendes, J.; Dong, Q.; Fu, X.; Chen, Y.-A.; He, S.; Yi, X.; Zhu, L.; Chang, C.-H.; Ade, H.; Gundogdu, K.; So, F., Efficient Energy Funneling in Quasi-2D Perovskites: From Light Emission to Lasing. Advanced Materials 2020, 32 (16), 1906571. 49. Li, H.; Zhao, Y.; Lu, J.; Feng, J.; Zhao, J.; Lin, K.; Feng, W.; Jiang, L.; Wei, Z.; Du, Z.; Wu, Y., Phase Engineering Reinforced Energy Transfer for High-Performance Blue Perovskite Light-Emitting Diodes. Small 2024, 20 (27), 2308616. 50. Gu, L.; Wen, K.; Peng, Q.; Huang, W.; Wang, J., Surface-Plasmon-Enhanced Perovskite Light-Emitting Diodes. Small 2020, 16 (30), 2001861. 51. Cai, C.; Wang, X.; Ling, L.; Bi, G.; Xu, Z.; Wu, H., Photoluminescence enhancement in wide spectral range excitation in CsPbBr3 nanocrystal/Ag nanostructure via surface plasmon coupling. Opt. Lett. 2019, 44 (3), 658-661. 52. Fernández-Tena, A.; Pérez-Camargo, R. A.; Coulembier, O.; Sangroniz, L.; Aranburu, N.; Guerrica-Echevarria, G.; Liu, G.; Wang, D.; Cavallo, D.; Müller, A. J., Effect of Molecular Weight on the Crystallization and Melt Memory of Poly(ε-caprolactone) (PCL). Macromolecules 2023, 56 (12), 4602-4620. 53. Yang, J.; Liang, R.; Chen, Y.; Zhang, C.; Zhang, R.; Wang, X.; Kong, R.; Chen, Q., Using a Self-Assemblable Nucleating Agent To Tailor Crystallization Behavior, Crystal Morphology, Polymorphic Crystalline Structure, and Biodegradability of Poly(1,4-butylene adipate). Industrial & Engineering Chemistry Research 2017, 56 (28), 7910-7919. 54. Bao, J.; Fan, H.; Xue, X.; Xie, Q.; Pan, P., Temperature-dependent crystalline structure and phase transition of poly(butylene adipate) end-functionalized by multiple hydrogen-bonding groups. Physical Chemistry Chemical Physics 2018, 20 (41), 26479-26488. 55. Saidaminov, M. I.; Abdelhady, A. L.; Maculan, G.; Bakr, O. M., Retrograde solubility of formamidinium and methylammonium lead halide perovskites enabling rapid single crystal growth. Chemical Communications 2015, 51 (100), 17658-17661. 56. Yan, Z.-L.; Huang, H.-Y.; Benas, J.-S.; Yang, C.-W.; Su, C.-J.; Liang, F.-C.; Chen, W.-C.; Tsai, H.; Jeng, R.-J.; Kuo, C.-C., Optimizing Emission Stability in Blue Perovskite Light-Emitting Diodes via Oxygen-Plasma Treatment of NiO Hole Transport Layer. Advanced Optical Materials 2024, 12 (11), 2302358. 57. Nicolet, T., Introduction to Fourier Transform Infrared Spectrometry. 58. Lindon, J. C., NMR Spectrometers. 2010. 59. Tougaard, S., SURFACE ANALYSIS | X-ray Photoelectron Spectroscopy☆. In Encyclopedia of Analytical Science (Third Edition), Worsfold, P.; Poole, C.; Townshend, A.; Miró, M., Eds. Academic Press: Oxford, 2013; pp 400-409. 60. Choudhary, R. C.; Kumari, S.; Kumaraswamy, R. V.; Pal, A.; Raliya, R.; Biswas, P.; Saharan, V., Characterization Methods for Chitosan-Based Nanomaterials. In Plant Nanobionics: Volume 1, Advances in the Understanding of Nanomaterials Research and Applications, Prasad, R., Ed. Springer International Publishing: Cham, 2019; pp 103-116. 61. Hou, Y. Y.; Kassim, H. O., Instrument techniques for rheometry. Review of Scientific Instruments 2005, 76 (10), 101101. 62. Manova, D.; Mändl, S., In situ XRD measurements to explore phase formation in the near surface region. Journal of Applied Physics 2019, 126 (20), 200901. 63. Steele, J. A.; Solano, E.; Hardy, D.; Dayton, D.; Ladd, D.; White, K.; Chen, P.; Hou, J.; Huang, H.; Saha, R. A.; Wang, L.; Gao, F.; Hofkens, J.; Roeffaers, M. B. J.; Chernyshov, D.; Toney, M. F., How to GIWAXS: Grazing Incidence Wide Angle X-Ray Scattering Applied to Metal Halide Perovskite Thin Films. Advanced Energy Materials 2023, 13 (27), 2300760. 64. Smilgies, D.-M., Grazing-Incidence Small-Angle Scattering (GISAXS). Heimo Schnabelegger and Yashveer Sing:“The SAXS Guide, 4th Edition”(Anton Paar GmbH, 2017, ISBN 18012013) Chapter 2017, 6. 65. Ford, B. J. J., David C. Bradbury, Savile., transmission electron microscope. Encyclopedia Britannica 2024, 26 66. Mohammed, A.; Abdullah, A. In Scanning electron microscopy (SEM): A review, Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX, Băile Govora, Romania, 2018; pp 7-9. 67. Wang, Y. F.; Kilpatrick, J. I.; Jarvis, S. P.; Boland, F. M. F.; Kokaram, A.; Corrigan, D., Double-Tip Artifact Removal From Atomic Force Microscopy Images. IEEE Transactions on Image Processing 2016, 25 (6), 2774-2788. 68. Davidson, M. W.; Abramowitz, M., Optical Microscopy. In Encyclopedia of Imaging Science and Technology, 2002. 69. Kwok, D. Y.; Neumann, A. W., Contact angle measurement and contact angle interpretation. Advances in Colloid and Interface Science 1999, 81 (3), 167-249. 70. Skoog, D. A.; Holler, F. J.; Crouch, S. R., Principles of Instrumental Analysis. Cengage Learning: 2017. 71. Granger, R. M.; Yochum, H. M.; Granger, J. N.; Sienerth, K. D., Instrumental Analysis. Oxford University Press: 2017. 72. Cannas, M.; Vaccaro, L., Time-Resolved Photoluminescence. In Spectroscopy for Materials Characterization, 2021; pp 35-63. 73. Whitten, J. E., Ultraviolet photoelectron spectroscopy: Practical aspects and best practices. Applied Surface Science Advances 2023, 13, 100384. 74. Pastoriza-Santos, I.; Liz-Marzán, L. M., N,N-Dimethylformamide as a Reaction Medium for Metal Nanoparticle Synthesis. Advanced Functional Materials 2009, 19 (5), 679-688. 75. Pastoriza-Santos, I.; Liz-Marzán, L. M., Reduction of silver nanoparticles in DMF. Formation of monolayers and stable colloids. Pure and Applied Chemistry 2000, 72 (1/2), 83-90. 76. Dennis, N. W.; Muhoberac, B. B.; Newton, J. C.; Kumbhar, A.; Sardar, R., Correlated Optical Spectroscopy and Electron Microscopy Studies of the Slow Ostwald-Ripening Growth of Silver Nanoparticles under Controlled Reducing Conditions. Plasmonics 2014, 9 (1), 111-120. 77. Lee, J.; Nakouzi, E.; Xiao, D.; Wu, Z.; Song, M.; Ophus, C.; Chun, J.; Li, D., Interplay between Short- and Long-Ranged Forces Leading to the Formation of Ag Nanoparticle Superlattice. Small 2019, 15 (33), 1901966. 78. Hu, S.; Li, W.-X., Influence of Particle Size Distribution on Lifetime and Thermal Stability of Ostwald Ripening of Supported Particles. ChemCatChem 2018, 10 (13), 2900-2907. 79. Zhu, S.; Wen, L.; Xiao, Y.; Lang, M., Poly(ε-caprolactone) with pH and UCST responsiveness as a 5-fluorouracil carrier. Polymer Chemistry 2020, 11 (32), 5173-5180. 80. Onder, O. C.; Yilgor, E.; Yilgor, I., Preparation of monolithic polycaprolactone foams with controlled morphology. Polymer 2018, 136, 166-178. 81. Hoogenboom, R., 2 - Temperature-responsive polymers: properties, synthesis and applications. In Smart Polymers and their Applications, Aguilar, M. R.; San Román, J., Eds. Woodhead Publishing: 2014; pp 15-44. 82. Shubin, V. A.; Kim, W.; Safonov, V. P.; Sarychev, A. K.; Armstrong, R. L.; Shalaev, V. M., Surface-plasmon-enhanced radiation effects in confined photonic systems. Journal of Lightwave Technology 1999, 17 (11), 2183-2190. 83. Stanfield, L. D.; Powell, A. W.; Horsley, S. A. R.; Sambles, J. R.; Hibbins, A. P., Microwave demonstration of Purcell effect enhanced radiation efficiency. Scientific Reports 2023, 13 (1), 5065. 84. Romeira, B.; Fiore, A., Purcell Effect in the Stimulated and Spontaneous Emission Rates of Nanoscale Semiconductor Lasers. IEEE Journal of Quantum Electronics 2018, 54 (2), 1-12. 85. Iwase, H.; Englund, D.; Vučković, J., Analysis of the Purcell effect in photonic and plasmonic crystals with losses. Opt. Express 2010, 18 (16), 16546-16560. 86. Lodge, T. P.; Muthukumar, M., Physical Chemistry of Polymers: Entropy, Interactions, and Dynamics. The Journal of Physical Chemistry 1996, 100 (31), 13275-13292. 87. Baer, A.; Wawra, S. E.; Bielmeier, K.; Uttinger, M. J.; Smith, D. M.; Peukert, W.; Walter, J.; Smith, A.-S., The Stokes–Einstein–Sutherland Equation at the Nanoscale Revisited. Small 2024, 20 (6), 2304670. 88. Lu, H.; Shinzawa, H.; Kazarian, S. G., Intermolecular Interactions in the Polymer Blends Under High-Pressure CO2 Studied Using Two-Dimensional Correlation Analysis and Two-Dimensional Disrelation Mapping. Appl. Spectrosc. 2021, 75 (3), 250-258. 89. Newberry, R. W.; Raines, R. T., The n→π* Interaction. Accounts of Chemical Research 2017, 50 (8), 1838-1846. 90. Panwaria, P.; Das, A., Modulation of n → π* Interaction in the Complexes of p-Substituted Pyridines with Aldehydes: A Theoretical Study. The Journal of Physical Chemistry A 2023, 127 (29), 6081-6090. 91. Gao, Q.; Qi, J.; Chen, K.; Xia, M.; Hu, Y.; Mei, A.; Han, H., Halide Perovskite Crystallization Processes and Methods in Nanocrystals, Single Crystals, and Thin Films. Advanced Materials 2022, 34 (52), 2200720. 92. Wu, Z.; Sang, S.; Zheng, J.; Gao, Q.; Huang, B.; Li, F.; Sun, K.; Chen, S., Crystallization Kinetics of Hybrid Perovskite Solar Cells. Angewandte Chemie International Edition 2024, 63 (17), e202319170. 93. Lampert, M. A., Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps. Physical Review 1956, 103 (6), 1648-1656. 94. Ben-Moshe, A.; Wolf, S. G.; Sadan, M. B.; Houben, L.; Fan, Z.; Govorov, A. O.; Markovich, G., Enantioselective control of lattice and shape chirality in inorganic nanostructures using chiral biomolecules. Nature Communications 2014, 5 (1), 4302. 95. Chen, W.; Zhang, S.; Zhou, M.; Zhao, T.; Qin, X.; Liu, X.; Liu, M.; Duan, P., Two-Photon Absorption-Based Upconverted Circularly Polarized Luminescence Generated in Chiral Perovskite Nanocrystals. The Journal of Physical Chemistry Letters 2019, 10 (12), 3290-3295. 96. Mukhina, M. V.; Maslov, V. G.; Baranov, A. V.; Fedorov, A. V.; Orlova, A. O.; Purcell-Milton, F.; Govan, J.; Gun’ko, Y. K., Intrinsic Chirality of CdSe/ZnS Quantum Dots and Quantum Rods. Nano Letters 2015, 15 (5), 2844-2851. 97. Zhang, Z.; Liang, W.; Xue, J.; Li, X.; Wu, K.; Lu, H., Induced Circularly Polarized Luminescence and Exciton Fine Structure Splitting in Magnetic-Doped Chiral Perovskites. ACS Nano 2024, 18 (7), 5890-5897. 98. Zhang, M.; Guo, Q.; Li, Z.; Zhou, Y.; Zhao, S.; Tong, Z.; Wang, Y.; Li, G.; Jin, S.; Zhu, M.; Zhuang, T.; Yu, S.-H., Processable circularly polarized luminescence material enables flexible stereoscopic 3D imaging. Science Advances 2023, 9 (43), eadi9944. 99. Hashim, P. K.; Tamaoki, N., Enantioselective Photochromism under Circularly Polarized Light. ChemPhotoChem 2019, 3 (6), 347-355. 100. Pu, J.; Zhang, W.; Matsuoka, H.; Kobayashi, Y.; Takaguchi, Y.; Miyata, Y.; Matsuda, K.; Miyauchi, Y.; Takenobu, T., Room-Temperature Chiral Light-Emitting Diode Based on Strained Monolayer Semiconductors. Advanced Materials 2021, 33 (36), 2100601. 101. McDonald, L. T.; Finlayson, E. D.; Wilts, B. D.; Vukusic, P., Circularly polarized reflection from the scarab beetle Chalcothea smaragdina: light scattering by a dual photonic structure. Interface Focus 2017, 7 (4), 20160129. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96441 | - |
| dc.description.abstract | 本研究致力於提升鈣鈦礦發光二極體 (PeLEDs) 的光電性能,同時構建具光學邏輯特性的半導體應用。在現今半導體元件的發展中,光電訊號的增益和邏輯性在提升資訊讀取與加密功能方面具有關鍵作用。鈣鈦礦材料因其優異的光電轉換效率、可調控的波長範圍及高純度的光學性質,成為新一代半導體技術的理想材料。然而,進一步增強其放光強度、穩定性及實現光學邏輯特性仍是當前研究的挑戰。
本研究提出兩大創新策略,分別針對增強鈣鈦礦放光性能及調控其晶體結構來實現光學邏輯特性。在第一部分中,我們利用聚己內酯 (PCL) 封端的銀奈米粒子 (AgNPs) 製備出穩定且高效的放光增益層。該增益層通過 Förster Resonance Energy Transfer (FRET) 機制,將鈣鈦礦次相發出的能量轉移至主相,大幅提高放光強度。此外,該增益層還具有 Purcell 效應,通過增強 plasmonic-excitons 來提升 PeLED 的自發輻射速率,使其在亮度和外部量子效率 (EQE) 方面取得顯著提升,展示出在高性能鈣鈦礦光電元件中的應用潛力。 在第二部分研究中,我們將結晶性酯基聚合物 (ester polymer) 與鈣鈦礦混摻,通過離子-偶極子相互作用 (ion-dipole interaction) 調控鈣鈦礦晶體的生長與尺寸,實現不同波段的放光邏輯特性。研究結果表明,酯基聚合物不僅有效改善了鈣鈦礦晶體的形貌和穩定性,還通過調節晶體結構提升了光致發光性能,特別是在高結晶性酯基聚合物 (hc-ester polymer) 的輔助下,光邏輯特性得到了進一步增強。此外,該系統展現出作為動態光邏輯傳感器的潛力,適用於未來柔性光電元件的應用。 期望本研究通過開發具有放光增益的鈣鈦礦-聚合物複合材料,並調控其晶體尺寸來構建多波段光學邏輯特性,能為新一代柔性光電元件的設計與應用提供全新思路。 | zh_TW |
| dc.description.abstract | This research is dedicated to improving the optoelectronic performance of perovskite light-emitting diodes (PeLEDs) and constructing semiconductor applications with optical logic properties. In the development of today's semiconductor components, the gain and logic of photoelectric signals play a crucial role in improving information reading and encryption functions. Perovskite materials have become ideal materials for the new generation of semiconductor technology due to their excellent photoelectric conversion efficiency, controllable wavelength range, and high-purity optical properties. However, further enhancing its luminous intensity and stability and realizing optical logic properties are still challenges in current research.
This study proposes two innovative strategies to enhance perovskite's light emission performance and regulate its crystal structure to achieve optical logic properties. In the first part, we prepare a stable and efficient light-emitting gain layer using polycaprolactone (PCL)-terminated silver nanoparticles (AgNPs). This gain layer transfers the energy emitted by the perovskite minor phase to the main phase through the Förster Resonance Energy Transfer (FRET) mechanism, significantly increasing the emission intensity. In addition, the gain layer also has the Purcell effect, which enhances the spontaneous emission rate of PeLED by enhancing plasmonic-excitons, resulting in significant improvements in brightness and external quantum efficiency (EQE), demonstrating its application potential in high-performance perovskite optoelectronic components. In the second part of the study, we mixed a crystalline ester polymer with a quasi-two-dimensional perovskite and controlled the growth and size of the perovskite crystal through ion-dipole interaction to achieve luminescence in different wavelength bands with logical characteristics. Research results show that ester-based polymers not only effectively improve the morphology and stability of perovskite crystals but also improve the photoluminescence performance by adjusting the crystal structure. Especially with the assistance of highly crystalline ester-based polymers, the optical logic properties of perovskites are further enhanced. Furthermore, the system shows potential as a dynamic optical logic sensor for future applications in flexible optoelectronic components. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-18T16:08:46Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-18T16:08:47Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員會審定書 i
謝辭 ii 中文摘要 iii 英文摘要 iv 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 1 第二章 文獻回顧 3 2.1 鈣鈦礦材料 3 2.2 鈣鈦礦之光電性質 4 2.3 鈣鈦礦之光電半導體元件應用 7 2.4 鈣鈦礦發光二極體 11 2.5 有機高分子與金屬陽離子之 ion-dipole interaction 19 2.6 以 Energy transfer 提升鈣鈦礦發光二極體之放光表現 21 2.7 以金屬奈米粒子 Surface plasmon resonance優化鈣鈦礦發光二極體 22 2.8 本研究採用不同結晶程度之 Ester polymer 24 第三章 實驗方法與研究鑑定分析 26 實驗方法 26 3.1 鈣鈦礦材料 26 3.1.1 單晶鈣鈦礦 26 3.1.2 三維 (3D-Bulk) 鈣鈦礦 27 3.1.3 準二維 (Quasi-2D) 鈣鈦礦 28 3.1.4 量子點 (Quantum dot) 鈣鈦礦及雙齒性配體 (Bidentate ligand) 合成 31 3.1.5 奈米片 (Nanoplates) 鈣鈦礦 37 3.1.6 特殊結構鈣鈦礦 39 3.2 高吸收穩定性之銀奈米粒子 39 3.2.1 微波加熱法 39 3.2.2 Capping agent後添加法 40 3.3 鈣鈦礦發光二極體 40 3.3.1 綠光波長鈣鈦礦發光二極體 40 3.3.2 藍光波長鈣鈦礦發光二極體 41 3.3.3 紅光波長鈣鈦礦發光二極體 41 3.3.4 本研究高 EQE 綠光發光二極體 42 3.4 以 hc-ester P.V.S.K. 製備柔性可撓式發光二極體 43 3.5 PDMS軟板基材之可拉伸鈣鈦礦薄膜 43 研究鑑定分析 44 3.6 鈣鈦礦與polymer ion-dipole interaction 及 ligand bonding分析 44 3.6.1 傅立葉轉換紅外光譜Fourier transform infrared spectroscopy (FTIR) 44 3.6.2 核磁共振光譜 Nuclear magnetic resonance spectroscopy (NMR) 46 3.6.3 X-ray光電子能譜 X-ray photoelectron spectroscopy (XPS) 47 3.6.4 動態光散射Dynamic light scattering DLS及界達電位 Zeta potential 49 3.6.5 流變 Rheology 51 3.7 鈣鈦礦結晶晶相與orientation分析 53 3.7.1 X光繞射光譜 X-ray diffraction (XRD) 53 3.7.2 掠角入射 X-ray 廣角散射Grazing-incidence wide-angle x-ray scattering (GIWAXS) 54 3.7.3 掠角入射 X-ray 小角散射Grazing-incidence small-angle x-ray scattering (GISAXS) 55 3.7.4 穿透式電子顯微鏡 Transmission electron microscopy (TEM) 57 3.8 鈣鈦礦薄膜表面形貌分析 58 3.8.1 掃描式電子顯微鏡 Scanning electron microscope (SEM) 58 3.8.2 原子力顯微鏡 Atomic force microscopy (AFM) 60 3.8.3 光學顯微鏡 Optical microscope (OM) 61 3.8.4 接觸角 Contact angle 63 3.8.5 缺陷密度 Trap density 64 3.9 鈣鈦礦光學性質分析 65 3.9.1 紫外-可見光光譜 UV-Vis absorption 66 3.9.2 螢光分光光譜儀 Photoluminescence spectroscopy (PL) 及光致發光量子產率 Photoluminescence quantum yield (PLQY) 67 3.9.3 時間解析螢光光譜 Time-resolved photoluminescence spectroscopy (TR-PL) 69 3.9.4 紫外光電子能譜 Ultraviolet photoelectron spectroscopy (UPS) 71 3.10 鈣鈦礦發光二極體性能分析 72 實驗藥品與儀器操作分析參數 72 3.11 使用具有 Förster Resonance Energy Transfer 和 Purcell Effects 的聚己內酯 (PCL)-銀奈米粒子來建構鈣鈦礦發光二極體的發光增益層 72 3.11.1 藥品 72 3.11.2 儀器操作分析參數 73 3.12 透過混摻結晶性酯基聚合物以對準二維鈣鈦礦晶體進行尺寸控制來建構光學邏輯特性 74 3.12.1 藥品 74 3.12.2 儀器操作分析參數 74 第四章 結果與討論 77 4.1 使用具有 Förster Resonance Energy Transfer 和 Purcell Effects 的聚己內酯 (PCL)-銀奈米粒子來建構鈣鈦礦發光二極體的發光增益層 77 4.1.1 Homogeneous 銀奈米粒子 (AgNPs) 的製備 77 4.1.2 AgNPs 的吸收長期穩定性 83 4.1.3 AgNPs 薄膜的表面形貌 86 4.1.4 用於強 Förster Resonance Energy Transfer 的發光增益層 89 4.1.5 使用 PCL@AgNPs-P 層製造具有高效輻射發光的 PeLED 95 4.2 透過混摻結晶性酯基聚合物以對準二維鈣鈦礦晶體進行尺寸控制來建構光學邏輯特性 99 4.2.1 酯基聚合物與鈣鈦礦之間的 ion-dipole interaction 99 4.2.2 不同結晶性酯基聚合物與鈣鈦礦產生 ion-dipole interaction 後之鏈動態行為 104 4.2.3 Ion-dipole interaction對於酯基聚合物-鈣鈦礦複合物結晶性行為之影響 109 4.2.4 酯基聚合物-鈣鈦礦複合物之光學性質探討 114 4.2.5 酯基聚合物-鈣鈦礦複合物之發光二極體應用 119 4.2.6 具邏輯放光訊號的柔性動態響應元件 123 第五章 結論 132 5.1 使用具有 Förster Resonance Energy Transfer 和 Purcell Effects 的聚己內酯 (PCL)-銀奈米粒子來建構鈣鈦礦發光二極體的發光增益層-結論 132 5.2 透過混摻結晶性酯基聚合物以對準二維鈣鈦礦晶體進行尺寸控制來建構光學邏輯特性-結論 132 第六章 未來展望 134 第七章 參考文獻 135 附錄 145 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 離子-偶極作用力 | zh_TW |
| dc.subject | 激子能量轉移 | zh_TW |
| dc.subject | 螢光共振能量轉移 | zh_TW |
| dc.subject | 聚己內酯 | zh_TW |
| dc.subject | 鈣鈦礦發光二極體 | zh_TW |
| dc.subject | 柔性光電元件 | zh_TW |
| dc.subject | 珀塞爾效應 | zh_TW |
| dc.subject | Exciton energy transfer | en |
| dc.subject | Perovskite light-emitting diodes | en |
| dc.subject | Flexible optoelectronic devices | en |
| dc.subject | Polycaprolactone | en |
| dc.subject | Förster Resonance Energy Transfer | en |
| dc.subject | Purcell effect | en |
| dc.subject | Ion-dipole interaction | en |
| dc.title | 以酯基聚合物構建無機鹵化物鈣鈦礦之放光增益與邏輯特性 | zh_TW |
| dc.title | Framing the Emission Gain and Logic Characteristics of All Inorganic Halide Perovskite via Ester-Based Polymers | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 郭霽慶 | zh_TW |
| dc.contributor.coadvisor | Chi-Ching Kuo | en |
| dc.contributor.oralexamcommittee | 童世煌;闕居振;劉偉仁;黃英治 | zh_TW |
| dc.contributor.oralexamcommittee | Shih-Huang Tung;Chu-Chen Chueh;Wei-Ren Liu;Ying-Chi Huang | en |
| dc.subject.keyword | 鈣鈦礦發光二極體,柔性光電元件,聚己內酯,螢光共振能量轉移,珀塞爾效應,離子-偶極作用力,激子能量轉移, | zh_TW |
| dc.subject.keyword | Perovskite light-emitting diodes,Flexible optoelectronic devices,Polycaprolactone,Förster Resonance Energy Transfer,Purcell effect,Ion-dipole interaction,Exciton energy transfer, | en |
| dc.relation.page | 153 | - |
| dc.identifier.doi | 10.6342/NTU202500350 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-02-04 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | - |
| dc.date.embargo-lift | 2027-02-03 | - |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 22.2 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
