Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96432
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡沛學zh_TW
dc.contributor.advisorPei-Shiue Tsaien
dc.contributor.author魏妤亘zh_TW
dc.contributor.authorYu-Syuan Weien
dc.date.accessioned2025-02-13T16:26:41Z-
dc.date.available2025-02-14-
dc.date.copyright2025-02-13-
dc.date.issued2025-
dc.date.submitted2025-02-07-
dc.identifier.citation1. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int, 2024. 105(4s): p. S117-s314.
2. Kovesdy, C.P., Epidemiology of chronic kidney disease: an update 2022. Kidney Int Suppl (2011), 2022. 12(1): p. 7-11.
3. Charles, C. and A.H. Ferris, Chronic Kidney Disease. Prim Care, 2020. 47(4): p. 585-595.
4. Meyer, T.W. and T.H. Hostetter, Uremia. N Engl J Med, 2007. 357(13): p. 1316-25.
5. Gupta, R., K. Woo, and J.A. Yi, Epidemiology of end-stage kidney disease. Semin Vasc Surg, 2021. 34(1): p. 71-78.
6. Himmelfarb, J., et al., The current and future landscape of dialysis. Nat Rev Nephrol, 2020. 16(10): p. 573-585.
7. Teitelbaum, I., Peritoneal Dialysis. N Engl J Med, 2021. 385(19): p. 1786-1795.
8. Andreoli, M.C.C. and C. Totoli, Peritoneal Dialysis. Rev Assoc Med Bras (1992), 2020. 66Suppl 1(Suppl 1): p. s37-s44.
9. Karl, Z.J.T., et al., Peritoneal Equilibration Test. Peritoneal Dialysis International, 1987. 7(3): p. 138-148.
10. Twardowski, Z.J., Clinical value of standardized equilibration tests in CAPD patients. Blood Purif, 1989. 7(2-3): p. 95-108.
11. van Baal, J.O., et al., The histophysiology and pathophysiology of the peritoneum. Tissue Cell, 2017. 49(1): p. 95-105.
12. do Amaral, R., et al., The Peritoneum: Health, Disease, and Perspectives regarding Tissue Engineering and Cell Therapies. Cells Tissues Organs, 2017. 204(5-6): p. 211-217.
13. Kawanishi, K., Diverse properties of the mesothelial cells in health and disease. Pleura Peritoneum, 2016. 1(2): p. 79-89.
14. Rippe, B., A three-pore model of peritoneal transport. Perit Dial Int, 1993. 13 Suppl 2: p. S35-8.
15. Devuyst, O. and B. Rippe, Water transport across the peritoneal membrane. Kidney Int, 2014. 85(4): p. 750-8.
16. Davies, S.J., et al., Clinical evaluation of the peritoneal equilibration test: a population-based study. Nephrol Dial Transplant, 1993. 8(1): p. 64-70.
17. Henderson, N.C., F. Rieder, and T.A. Wynn, Fibrosis: from mechanisms to medicines. Nature, 2020. 587(7835): p. 555-566.
18. Rockey, D.C., P.D. Bell, and J.A. Hill, Fibrosis--a common pathway to organ injury and failure. N Engl J Med, 2015. 372(12): p. 1138-49.
19. Wynn, T.A. and T.R. Ramalingam, Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med, 2012. 18(7): p. 1028-40.
20. Antar, S.A., et al., Fibrosis: Types, Effects, Markers, Mechanisms for Disease Progression, and Its Relation with Oxidative Stress, Immunity, and Inflammation. Int J Mol Sci, 2023. 24(4).
21. Pakshir, P., et al., The myofibroblast at a glance. J Cell Sci, 2020. 133(13).
22. Younesi, F.S., et al., Fibroblast and myofibroblast activation in normal tissue repair and fibrosis. Nat Rev Mol Cell Biol, 2024. 25(8): p. 617-638.
23. Kuppe, C., et al., Decoding myofibroblast origins in human kidney fibrosis. Nature, 2021. 589(7841): p. 281-286.
24. Li, X., et al., Transformation of macrophages into myofibroblasts in fibrosis-related diseases: emerging biological concepts and potential mechanism. Front Immunol, 2024. 15: p. 1474688.
25. Zhao, M., et al., Targeting fibrosis, mechanisms and cilinical trials. Signal Transduct Target Ther, 2022. 7(1): p. 206.
26. Roehlen, N., E. Crouchet, and T.F. Baumert, Liver Fibrosis: Mechanistic Concepts and Therapeutic Perspectives. Cells, 2020. 9(4).
27. Gibb, A.A., M.P. Lazaropoulos, and J.W. Elrod, Myofibroblasts and Fibrosis: Mitochondrial and Metabolic Control of Cellular Differentiation. Circ Res, 2020. 127(3): p. 427-447.
28. Tai, Y., et al., Myofibroblasts: Function, Formation, and Scope of Molecular Therapies for Skin Fibrosis. Biomolecules, 2021. 11(8).
29. Darby, I.A. and T.D. Hewitson, Fibroblast differentiation in wound healing and fibrosis. Int Rev Cytol, 2007. 257: p. 143-79.
30. Hinz, B., Myofibroblasts. Exp Eye Res, 2016. 142: p. 56-70.
31. Falke, L.L., et al., Diverse origins of the myofibroblast—implications for kidney fibrosis. Nat Rev Nephrol, 2015. 11(4): p. 233-44.
32. Teitelbaum, I., Ultrafiltration failure in peritoneal dialysis: a pathophysiologic approach. Blood Purif, 2015. 39(1-3): p. 70-3.
33. Heimbürger, O., et al., Peritoneal transport in CAPD patients with permanent loss of ultrafiltration capacity. Kidney Int, 1990. 38(3): p. 495-506.
34. Kawaguchi, Y., et al., Issues affecting the longevity of the continuous peritoneal dialysis therapy. Kidney Int Suppl, 1997. 62: p. S105-7.
35. Smit, W., Estimates of peritoneal membrane function--new insights. Nephrol Dial Transplant, 2006. 21 Suppl 2: p. ii16-9.
36. Davies, S.J., Longitudinal relationship between solute transport and ultrafiltration capacity in peritoneal dialysis patients. Kidney Int, 2004. 66(6): p. 2437-45.
37. Ni, J., et al., Aquaporin-1 plays an essential role in water permeability and ultrafiltration during peritoneal dialysis. Kidney Int, 2006. 69(9): p. 1518-25.
38. Zhang, W., et al., Novel Endothelial Cell-Specific AQP1 Knockout Mice Confirm the Crucial Role of Endothelial AQP1 in Ultrafiltration during Peritoneal Dialysis. PLoS One, 2016. 11(1): p. e0145513.
39. Fusshoeller, A., Histomorphological and functional changes of the peritoneal membrane during long-term peritoneal dialysis. Pediatr Nephrol, 2008. 23(1): p. 19-25.
40. Ito, Y., et al., Pathophysiological Mechanisms of Peritoneal Fibrosis and Peritoneal Membrane Dysfunction in Peritoneal Dialysis. Int J Mol Sci, 2024. 25(16).
41. Alston, H., S. Fan, and M. Nakayama, Encapsulating Peritoneal Sclerosis. Semin Nephrol, 2017. 37(1): p. 93-102.
42. Abelardo, A., et al., The Mesothelial to Mesenchymal Transition a Pathogenic and Therapeutic Key for Peritoneal Membrane Failure, in The Latest in Peritoneal Dialysis, P. Abelardo Aguilera, Editor. 2013, IntechOpen: Rijeka. p. Ch. 2.
43. Williams, J.D., et al., Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol, 2002. 13(2): p. 470-479.
44. Combet, S., et al., Chronic uremia induces permeability changes, increased nitric oxide synthase expression, and structural modifications in the peritoneum. J Am Soc Nephrol, 2001. 12(10): p. 2146-2157.
45. Kihm, L.P., et al., Benfotiamine protects against peritoneal and kidney damage in peritoneal dialysis. J Am Soc Nephrol, 2011. 22(5): p. 914-26.
46. Jörres, A., Glucose degradation products in peritoneal dialysis: from bench to bedside. Kidney Blood Press Res, 2003. 26(2): p. 113-7.
47. Mittelmaier, S., T. Niwa, and M. Pischetsrieder, Chemical and physiological relevance of glucose degradation products in peritoneal dialysis. J Ren Nutr, 2012. 22(1): p. 181-5.
48. Schwenger, V., GDP and AGE receptors: mechanisms of peritoneal damage. Contrib Nephrol, 2006. 150: p. 77-83.
49. Honda, K., et al., Accumulation of advanced glycation end products in the peritoneal vasculature of continuous ambulatory peritoneal dialysis patients with low ultra-filtration. Nephrol Dial Transplant, 1999. 14(6): p. 1541-9.
50. Kim, Y.L., et al., Systemic and local impact of glucose and glucose degradation products in peritoneal dialysis solution. J Ren Nutr, 2013. 23(3): p. 218-22.
51. Bajo, M.A., et al., Low-GDP peritoneal dialysis fluid ('balance') has less impact in vitro and ex vivo on epithelial-to-mesenchymal transition (EMT) of mesothelial cells than a standard fluid. Nephrol Dial Transplant, 2011. 26(1): p. 282-91.
52. Bender, T.O., et al., Peritoneal dialysis fluids can alter HSP expression in human peritoneal mesothelial cells. Nephrol Dial Transplant, 2011. 26(3): p. 1046-52.
53. Kihm, L.P., et al., Increased peritoneal damage in glyoxalase 1 knock-down mice treated with peritoneal dialysis. Nephrol Dial Transplant, 2015. 30(3): p. 401-9.
54. Vila Cuenca, M., et al., Differences in peritoneal response after exposure to low-GDP bicarbonate/lactate-buffered dialysis solution compared to conventional dialysis solution in a uremic mouse model. Int Urol Nephrol, 2018. 50(6): p. 1151-1161.
55. Miyata, T., et al., Advanced glycation and lipidoxidation of the peritoneal membrane: respective roles of serum and peritoneal fluid reactive carbonyl compounds. Kidney Int, 2000. 58(1): p. 425-35.
56. Witowski, J., et al., Glucose degradation products in peritoneal dialysis fluids: do they harm? Kidney Int Suppl, 2003(84): p. S148-51.
57. Roumeliotis, S., et al., Unfavorable Effects of Peritoneal Dialysis Solutions on the Peritoneal Membrane: The Role of Oxidative Stress. Biomolecules, 2020. 10(5).
58. Oberacker, T., et al., Enhanced Oxidative DNA-Damage in Peritoneal Dialysis Patients via the TXNIP/TRX Axis. Antioxidants (Basel), 2022. 11(6).
59. Yamaji, Y., et al., Oxidative stress induced by iron released from transferrin in low pH peritoneal dialysis solution. Nephrol Dial Transplant, 2004. 19(10): p. 2592-7.
60. Basso, A., et al., Glucose-Free Solutions Mediated Inhibition of Oxidative Stress and Oxidative Stress-Related Damages in Peritoneal Dialysis: A Promising Solution. Life (Basel), 2024. 14(9).
61. Liakopoulos, V., et al., Oxidative Stress in Patients Undergoing Peritoneal Dialysis: A Current Review of the Literature. Oxid Med Cell Longev, 2017. 2017: p. 3494867.
62. Lai, K.N., et al., Growth factors in continuous ambulatory peritoneal dialysis effluent. Their relation with peritoneal transport of small solutes. Am J Nephrol, 1999. 19(3): p. 416-22.
63. Margetts, P.J., et al., Gene transfer of transforming growth factor-beta1 to the rat peritoneum: effects on membrane function. J Am Soc Nephrol, 2001. 12(10): p. 2029-2039.
64. Loureiro, J., et al., Blocking TGF-β1 protects the peritoneal membrane from dialysate-induced damage. J Am Soc Nephrol, 2011. 22(9): p. 1682-95.
65. Lho, Y., et al., Effects of TGF-β1 Receptor Inhibitor GW788388 on the Epithelial to Mesenchymal Transition of Peritoneal Mesothelial Cells. Int J Mol Sci, 2021. 22(9).
66. Kinashi, H., et al., Roles of the TGF-β⁻VEGF-C Pathway in Fibrosis-Related Lymphangiogenesis. Int J Mol Sci, 2018. 19(9).
67. Kariya, T., et al., TGF-β1-VEGF-A pathway induces neoangiogenesis with peritoneal fibrosis in patients undergoing peritoneal dialysis. Am J Physiol Renal Physiol, 2018. 314(2): p. F167-f180.
68. Balzer, M.S., Molecular pathways in peritoneal fibrosis. Cell Signal, 2020. 75: p. 109778.
69. Padwal, M. and P.J. Margetts, Experimental systems to study the origin of the myofibroblast in peritoneal fibrosis. Kidney Res Clin Pract, 2016. 35(3): p. 133-41.
70. Ramazani, Y., et al., Connective tissue growth factor (CTGF) from basics to clinics. Matrix Biol, 2018. 68-69: p. 44-66.
71. Sakai, N., et al., Inhibition of CTGF ameliorates peritoneal fibrosis through suppression of fibroblast and myofibroblast accumulation and angiogenesis. Sci Rep, 2017. 7(1): p. 5392.
72. de Almeida, L.G.N., et al., Matrix Metalloproteinases: From Molecular Mechanisms to Physiology, Pathophysiology, and Pharmacology. Pharmacol Rev, 2022. 74(3): p. 712-768.
73. Hirahara, I., et al., Matrix metalloproteinase levels in the drained dialysate reflect the peritoneal solute transport rate: a multicentre study in Japan. Nephrol Dial Transplant, 2011. 26(5): p. 1695-701.
74. Padwal, M., et al., Matrix metalloproteinase 9 is associated with peritoneal membrane solute transport and induces angiogenesis through β-catenin signaling. Nephrol Dial Transplant, 2017. 32(1): p. 50-61.
75. Ucar, E., et al., The effects of interferon alpha2b on chemically-induced peritoneal fibrosis and on peritoneal tissue MMP-2 and TIMP-2 levels in rats. J Int Med Res, 2010. 38(1): p. 187-94.
76. Saglam, F., et al., Pioglitazone reduces peritoneal fibrosis via inhibition of TGF-β, MMP-2, and MMP-9 in a model of encapsulating peritoneal sclerosis. Ren Fail, 2012. 34(1): p. 95-102.
77. Ishimura, T., et al., Matrix metalloproteinase-10 deficiency has protective effects against peritoneal inflammation and fibrosis via transcription factor NFκΒ pathway inhibition. Kidney Int, 2023. 104(5): p. 929-942.
78. Li, J., Y. Liu, and J. Liu, A review of research progress on mechanisms of peritoneal fibrosis related to peritoneal dialysis. Front Physiol, 2023. 14: p. 1220450.
79. Rodrigues-Díez, R., et al., IL-17A is a novel player in dialysis-induced peritoneal damage. Kidney Int, 2014. 86(2): p. 303-15.
80. Krane, S.M. and M.B. Goldring, Potential role for interleukin-1 in fibrosis associated with chronic ambulatory peritoneal dialysis. Blood Purif, 1988. 6(3): p. 173-7.
81. Cho, Y., et al., Dialysate interleukin-6 predicts increasing peritoneal solute transport rate in incident peritoneal dialysis patients. BMC Nephrol, 2014. 15: p. 8.
82. Catar, R., et al., IL-6 Trans-Signaling Links Inflammation with Angiogenesis in the Peritoneal Membrane. J Am Soc Nephrol, 2017. 28(4): p. 1188-1199.
83. de Lima, S.M., et al., Inflammation, neoangiogenesis and fibrosis in peritoneal dialysis. Clin Chim Acta, 2013. 421: p. 46-50.
84. Li, X.R., et al., Relationship between peritoneal solute transport and dialysate inflammatory markers in peritoneal dialysis patients: A cross-sectional study. Nefrologia (Engl Ed), 2023. 43(3): p. 335-343.
85. Zhang, Y., et al., Parthenolide alleviates peritoneal fibrosis by inhibiting inflammation via the NF-κB/ TGF-β/Smad signaling axis. Lab Invest, 2022. 102(12): p. 1346-1354.
86. Lüdemann, W.M., et al., TNF Signaling in Peritoneal Mesothelial Cells: Pivotal Role of cFLIP(L). Perit Dial Int, 2017. 37(3): p. 250-258.
87. Korucu, B., et al., Association of longitudinal high-sensitive C-reactive protein levels with changing membrane characteristics in peritoneal dialysis. Artif Organs, 2023. 47(3): p. 547-553.
88. Liu, S.H., et al., High-sensitivity C-reactive protein predicts mortality and technique failure in peritoneal dialysis patients. PLoS One, 2014. 9(3): p. e93063.
89. Bajo, M.A., G. Del Peso, and I. Teitelbaum, Peritoneal Membrane Preservation. Semin Nephrol, 2017. 37(1): p. 77-92.
90. Low, S. and A. Liew, Peritoneal dialysis fluids. Semin Dial, 2024. 37(1): p. 10-23.
91. Htay, H., et al., Biocompatible dialysis fluids for peritoneal dialysis. Cochrane Database Syst Rev, 2018. 10(10): p. Cd007554.
92. Morelle, J., et al., ISPD recommendations for the evaluation of peritoneal membrane dysfunction in adults: Classification, measurement, interpretation and rationale for intervention. Perit Dial Int, 2021. 41(4): p. 352-372.
93. Zhou, Q., et al., Preventing peritoneal membrane fibrosis in peritoneal dialysis patients. Kidney Int, 2016. 90(3): p. 515-24.
94. Jing, S., et al., Effect of renin-angiotensin system inhibitors on prevention of peritoneal fibrosis in peritoneal dialysis patients. Nephrology (Carlton), 2010. 15(1): p. 27-32.
95. Kolesnyk, I., et al., A positive effect of AII inhibitors on peritoneal membrane function in long-term PD patients. Nephrol Dial Transplant, 2009. 24(1): p. 272-7.
96. Kolesnyk, I., et al., Impact of ACE inhibitors and AII receptor blockers on peritoneal membrane transport characteristics in long-term peritoneal dialysis patients. Perit Dial Int, 2007. 27(4): p. 446-53.
97. Du, Z. and C.M. Lovly, Mechanisms of receptor tyrosine kinase activation in cancer. Mol Cancer, 2018. 17(1): p. 58.
98. Trenker, R. and N. Jura, Receptor tyrosine kinase activation: From the ligand perspective. Curr Opin Cell Biol, 2020. 63: p. 174-185.
99. Liu, F. and S. Zhuang, Role of Receptor Tyrosine Kinase Signaling in Renal Fibrosis. Int J Mol Sci, 2016. 17(5).
100. Reichert, D., et al., Improved Recovery from Liver Fibrosis by Crenolanib. Cells, 2021. 10(4).
101. Song, Y., et al., Tyrosine kinase receptor B attenuates liver fibrosis by inhibiting TGF-β/SMAD signaling. Hepatology, 2023. 78(5): p. 1433-1447.
102. Wollin, L., et al., Antifibrotic and anti-inflammatory activity of the tyrosine kinase inhibitor nintedanib in experimental models of lung fibrosis. J Pharmacol Exp Ther, 2014. 349(2): p. 209-20.
103. Velioglu, A., et al., Role of tyrosine kinase inhibition with imatinib in an encapsulating peritoneal sclerosis rat model. Ren Fail, 2013. 35(4): p. 531-7.
104. Liu, F., et al., Nintedanib attenuates peritoneal fibrosis by inhibiting mesothelial-to-mesenchymal transition, inflammation and angiogenesis. J Cell Mol Med, 2021. 25(13): p. 6103-14.
105. Cui, B., et al., Delayed Administration of Nintedanib Ameliorates Fibrosis Progression in CG-Induced Peritoneal Fibrosis Mouse Model. Kidney Dis (Basel), 2022. 8(4): p. 319-333.
106. Nikitidou, O., et al., Animal models in peritoneal dialysis. Front Physiol, 2015. 6: p. 244.
107. Leypoldt, J.K., C.D. Kamerath, and J.F. Gilson, Acute peritonitis in a C57BL/6 mouse model of peritoneal dialysis. Adv Perit Dial, 2007. 23: p. 66-70.
108. Hoff, C.M., Experimental animal models of encapsulating peritoneal sclerosis. Perit Dial Int, 2005. 25 Suppl 4: p. S57-66.
109. Fu, Y., et al., Rodent models of AKI-CKD transition. Am J Physiol Renal Physiol, 2018. 315(4): p. F1098-f1106.
110. van Gelder, M.K., et al., A Uremic Goat Model Created by Subtotal Renal Artery Embolization and Gentamicin. Biology (Basel), 2021. 10(4).
111. de Vries, J.C., et al., A Uremic Pig Model for Peritoneal Dialysis. Toxins (Basel), 2022. 14(9).
112. Wang, J., et al., A review of rodent models of peritoneal dialysis and its complications. Int Urol Nephrol, 2015. 47(1): p. 209-15.
113. Rubin, J., et al., A model of long-term peritoneal dialysis in the dog. Nephron, 1983. 35(4): p. 259-63.
114. Slow, S., et al., Dimethylthetin treatment causes diffuse alveolar lung damage: a pilot study in a sheep model of Continuous Ambulatory Peritoneal Dialysis (CAPD). Exp Toxicol Pathol, 2007. 58(5): p. 285-90.
115. Li, L., et al., Inhibiting core fucosylation attenuates glucose-induced peritoneal fibrosis in rats. Kidney Int, 2018. 93(6): p. 1384-1396.
116. Yan, P., et al., Tamoxifen attenuates dialysate-induced peritoneal fibrosis by inhibiting GSK-3β/β-catenin axis activation. Biosci Rep, 2018. 38(6).
117. Yoshimine, H., et al., Hepatocyte growth factor ameliorates methylglyoxal-induced peritoneal inflammation and fibrosis in mouse model. Clin Exp Nephrol, 2021. 25(9): p. 935-943.
118. Chang, M.Y., et al., A Mice Model of Chlorhexidine Gluconate-Induced Peritoneal Damage. J Vis Exp, 2022(182).
119. Nishimura, H., et al., Mineralocorticoid receptor blockade ameliorates peritoneal fibrosis in new rat peritonitis model. Am J Physiol Renal Physiol, 2008. 294(5): p. F1084-93.
120. Kato, H., et al., Atrial natriuretic peptide ameliorates peritoneal fibrosis in rat peritonitis model. Nephrol Dial Transplant, 2012. 27(2): p. 526-36.
121. Mak, I.W., N. Evaniew, and M. Ghert, Lost in translation: animal models and clinical trials in cancer treatment. Am J Transl Res, 2014. 6(2): p. 114-8.
122. Seok, J., et al., Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A, 2013. 110(9): p. 3507-12.
123. Kalla, D., A. Kind, and A. Schnieke, Genetically Engineered Pigs to Study Cancer. Int J Mol Sci, 2020. 21(2).
124. Stricker-Krongrad, A., C.R. Shoemake, and G.F. Bouchard, The Miniature Swine as a Model in Experimental and Translational Medicine. Toxicol Pathol, 2016. 44(4): p. 612-23.
125. Singh, V.K., K.D. Thrall, and M. Hauer-Jensen, Minipigs as models in drug discovery. Expert Opin Drug Discov, 2016. 11(12): p. 1131-1134.
126. Bergen, W.G., Pigs (Sus Scrofa) in Biomedical Research. Adv Exp Med Biol, 2022. 1354: p. 335-343.
127. Lunney, J.K., Advances in swine biomedical model genomics. Int J Biol Sci, 2007. 3(3): p. 179-84.
128. Swindle, M.M., et al., Swine as models in biomedical research and toxicology testing. Vet Pathol, 2012. 49(2): p. 344-56.
129. Schomberg, D.T., et al., Miniature Swine for Preclinical Modeling of Complexities of Human Disease for Translational Scientific Discovery and Accelerated Development of Therapies and Medical Devices. Toxicol Pathol, 2016. 44(3): p. 299-314.
130. Saur, D. and A. Schnieke, Porcine cancer models for clinical translation. Nat Rev Cancer, 2022. 22(7): p. 375-376.
131. Mair, K.H., et al., The porcine innate immune system: an update. Dev Comp Immunol, 2014. 45(2): p. 321-43.
132. Dawson, H.D., et al., An in-depth comparison of the porcine, murine and human inflammasomes; lessons from the porcine genome and transcriptome. Vet Microbiol, 2017. 202: p. 2-15.
133. Bendixen, E., et al., Advances in porcine genomics and proteomics--a toolbox for developing the pig as a model organism for molecular biomedical research. Brief Funct Genomics, 2010. 9(3): p. 208-19.
134. Walters, E.M., et al., Completion of the swine genome will simplify the production of swine as a large animal biomedical model. BMC Med Genomics, 2012. 5: p. 55.
135. Schook, L.B., et al., Unraveling the swine genome: implications for human health. Annu Rev Anim Biosci, 2015. 3: p. 219-44.
136. Wei, J., et al., Application of the transgenic pig model in biomedical research: A review. Front Cell Dev Biol, 2022. 10: p. 1031812.
137. Hsu, Y.T., et al., Hypochlorite-induced porcine model of peritoneal fibrosis through the activation of IL1beta-CX3CL1-TGFbeta1 signal axis. Sci Rep, 2020. 10(1): p. 11496.
138. Nagai, T., et al., Linagliptin Ameliorates Methylglyoxal-Induced Peritoneal Fibrosis in Mice. PLoS One, 2016. 11(8): p. e0160993.
139. Shinkai, Y., et al., Selective activation of PPARα by pemafibrate mitigates peritoneal inflammation and fibrosis through suppression of NLRP3 inflammasome and modulation of inflammation. Sci Rep, 2024. 14(1): p. 23816.
140. Ha, H. and H.B. Lee, Effect of high glucose on peritoneal mesothelial cell biology. Perit Dial Int, 2000. 20 Suppl 2: p. S15-8.
141. Noh, H., et al., Oxidative stress during peritoneal dialysis: implications in functional and structural changes in the membrane. Kidney Int, 2006. 69(11): p. 2022-8.
142. Shin, H.S., et al., Metformin ameliorates the Phenotype Transition of Peritoneal Mesothelial Cells and Peritoneal Fibrosis via a modulation of Oxidative Stress. Sci Rep, 2017. 7(1): p. 5690.
143. Yool, A.J., et al., AqF026 is a pharmacologic agonist of the water channel aquaporin-1. J Am Soc Nephrol, 2013. 24(7): p. 1045-52.
144. La Milia, V., et al., Peritoneal transport assessment by peritoneal equilibration test with 3.86% glucose: a long-term prospective evaluation. Kidney Int, 2006. 69(5): p. 927-33.
145. Waniewski, J., et al., Changes of peritoneal transport parameters with time on dialysis: assessment with sequential peritoneal equilibration test. Int J Artif Organs, 2017. 40(11): p. 595-601.
146. Jiang, C. and W.K. Lo, Trend of peritoneal transport and impact on patient survival: A 10-year follow-up cohort study. Clin Nephrol, 2018. 89(5): p. 349-357.
147. Akiba, T., et al., Water channel AQP1, 3, and 4 in the human peritoneum and peritoneal dialysate. Adv Perit Dial, 1997. 13: p. 3-6.
148. Fang, W., et al., Expression of aquaporin-1 in the human peritoneum and the effect of peritoneal dialysis on its expression. Chin Med J (Engl), 2003. 116(9): p. 1370-3.
149. Wilson, C. and C. González-Billault, Regulation of cytoskeletal dynamics by redox signaling and oxidative stress: implications for neuronal development and trafficking. Front Cell Neurosci, 2015. 9: p. 381.
150. Krediet, R.T., Prevention and treatment of peritoneal dialysis membrane failure. Adv Ren Replace Ther, 1998. 5(3): p. 212-7.
151. Meng, X.M., D.J. Nikolic-Paterson, and H.Y. Lan, TGF-β: the master regulator of fibrosis. Nat Rev Nephrol, 2016. 12(6): p. 325-38.
152. Frangogiannis, N., Transforming growth factor-β in tissue fibrosis. J Exp Med, 2020. 217(3): p. e20190103.
153. Raby, A.C., et al., Toll-Like Receptors 2 and 4 Are Potential Therapeutic Targets in Peritoneal Dialysis-Associated Fibrosis. J Am Soc Nephrol, 2017. 28(2): p. 461-478.
154. Tokgoz, B., Clinical advantages of peritoneal dialysis. Perit Dial Int, 2009. 29 Suppl 2: p. S59-61.
155. Sukul, N., et al., Patient-reported advantages and disadvantages of peritoneal dialysis: results from the PDOPPS. BMC Nephrol, 2019. 20(1): p. 116.
156. Goffin, E., Peritoneal membrane structural and functional changes during peritoneal dialysis. Semin Dial, 2008. 21(3): p. 258-65.
157. Chen, J.H.C., et al., Association between causes of peritoneal dialysis technique failure and all-cause mortality. Sci Rep, 2018. 8(1): p. 3980.
158. Chaudhary, K., Peritoneal Dialysis Drop-out: Causes and Prevention Strategies. Int J Nephrol, 2011. 2011: p. 434608.
159. Kawaguchi, Y., et al., Searching for the reasons for drop-out from peritoneal dialysis: a nationwide survey in Japan. Perit Dial Int, 2003. 23 Suppl 2: p. S175-7.
160. Lunney, J.K., et al., Importance of the pig as a human biomedical model. Sci Transl Med, 2021. 13(621): p. eabd5758.
161. Uncanin, S., et al., Peritoneal Transport Characteristics at the Beginning and in Long Term Peritoneal Dialysis: a Single Center Experience. Mater Sociomed, 2020. 32(2): p. 99-104.
162. Mehrotra, R., et al., Peritoneal Equilibration Test and Patient Outcomes. Clin J Am Soc Nephrol, 2015. 10(11): p. 1990-2001.
163. Davies, S.J., Peritoneal solute transport and inflammation. Am J Kidney Dis, 2014. 64(6): p. 978-86.
164. Combet, S., et al., Vascular proliferation and enhanced expression of endothelial nitric oxide synthase in human peritoneum exposed to long-term peritoneal dialysis. J Am Soc Nephrol, 2000. 11(4): p. 717-728.
165. Shi, Y., et al., Different patterns of inflammatory and angiogenic factors are associated with peritoneal small solute transport and peritoneal protein clearance in peritoneal dialysis patients. BMC Nephrol, 2018. 19(1): p. 119.
166. Davies, S.J., et al., Determinants of peritoneal membrane function over time. Semin Nephrol, 2011. 31(2): p. 172-82.
167. Perl, J. and J.M. Bargman, Peritoneal dialysis: from bench to bedside and bedside to bench. Am J Physiol Renal Physiol, 2016. 311(5): p. F999-f1004.
168. Krediet, R.T., D. Lopes Barreto, and D.G. Struijk, Can Free Water Transport Be Used as a Clinical Parameter for Peritoneal Fibrosis in Long-Term PD Patients? Perit Dial Int, 2016. 36(2): p. 124-8.
169. Smit, W., et al., Quantification of free water transport in peritoneal dialysis. Kidney Int, 2004. 66(2): p. 849-54.
170. Smit, W., et al., Analysis of the prevalence and causes of ultrafiltration failure during long-term peritoneal dialysis: a cross-sectional study. Perit Dial Int, 2004. 24(6): p. 562-70.
171. La Milia, V., et al., The peritoneal sieving of sodium: a simple and powerful test to rule out the onset of encapsulating peritoneal sclerosis in patients undergoing peritoneal dialysis. J Nephrol, 2018. 31(1): p. 137-145.
172. Morelle, J., et al., Interstitial Fibrosis Restricts Osmotic Water Transport in Encapsulating Peritoneal Sclerosis. J Am Soc Nephrol, 2015. 26(10): p. 2521-33.
173. Morelle, J., et al., AQP1 Promoter Variant, Water Transport, and Outcomes in Peritoneal Dialysis. N Engl J Med, 2021. 385(17): p. 1570-1580.
174. Ishibashi, Y., et al., Glucose dialysate induces mitochondrial DNA damage in peritoneal mesothelial cells. Perit Dial Int, 2002. 22(1): p. 11-21.
175. Du, X., K. Stocklauser-Färber, and P. Rösen, Generation of reactive oxygen intermediates, activation of NF-kappaB, and induction of apoptosis in human endothelial cells by glucose: role of nitric oxide synthase? Free Radic Biol Med, 1999. 27(7-8): p. 752-63.
176. Günal, A.I., et al., The effect of oxidative stress inhibition with trimetazidine on the peritoneal alterations induced by hypertonic peritoneal dialysis solution. J Nephrol, 2003. 16(2): p. 225-30.
177. Kuo, H.T., et al., Heat shock response protects human peritoneal mesothelial cells from dialysate-induced oxidative stress and mitochondrial injury. Nephrol Dial Transplant, 2009. 24(6): p. 1799-809.
178. Ciszewicz, M., et al., Changes in peritoneal mesothelial cells phenotype after chronic exposure to glucose or N-acetylglucosamine. Transl Res, 2007. 150(6): p. 337-42.
179. Shiozawa, A., Characterization of reactive oxygen species generated from the mixture of NaClO and H2O2 used as root canal irrigants. J Endod, 2000. 26(1): p. 11-5.
180. Li, R., Z. Jia, and M.A. Trush, Defining ROS in Biology and Medicine. React Oxyg Species (Apex), 2016. 1(1): p. 9-21.
181. Bedard, K. and K.H. Krause, The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev, 2007. 87(1): p. 245-313.
182. Jiménez-Uribe, A.P., et al., Backstage players of fibrosis: NOX4, mTOR, HDAC, and S1P; companions of TGF-β. Cell Signal, 2021. 87: p. 110123.
183. Ko, J., et al., Paricalcitol attenuates TGF-β1-induced phenotype transition of human peritoneal mesothelial cells (HPMCs) via modulation of oxidative stress and NLRP3 inflammasome. Faseb j, 2019. 33(2): p. 3035-3050.
184. Zhao, T., et al., Tamoxifen exerts anti-peritoneal fibrosis effects by inhibiting H19-activated VEGFA transcription. J Transl Med, 2023. 21(1): p. 614.
185. Maeda, K., et al., Inhibition of H3K9 methyltransferase G9a ameliorates methylglyoxal-induced peritoneal fibrosis. PLoS One, 2017. 12(3): p. e0173706.
186. Onishi, A., et al., Attenuation of methylglyoxal-induced peritoneal fibrosis: immunomodulation by interleukin-10. Lab Invest, 2015. 95(12): p. 1353-62.
187. Kapetanovic, R., et al., Pig bone marrow-derived macrophages resemble human macrophages in their response to bacterial lipopolysaccharide. J Immunol, 2012. 188(7): p. 3382-94.
188. Álvarez, B., et al., Porcine Macrophage Markers and Populations: An Update. Cells, 2023. 12(16).
189. Si, M., et al., Inhibition of hyperglycolysis in mesothelial cells prevents peritoneal fibrosis. Sci Transl Med, 2019. 11(495).
190. Hu, W., et al., Single-cell sequencing reveals peritoneal environment and insights into fibrosis in CAPD patients. iScience, 2023. 26(4): p. 106336.
191. Zhang, J., et al., Single-cell transcriptomics provides new insights into the role of fibroblasts during peritoneal fibrosis. Clin Transl Med, 2021. 11(3): p. e321.
192. Li, Y., Z.H. Gao, and X.J. Qu, The adverse effects of sorafenib in patients with advanced cancers. Basic Clin Pharmacol Toxicol, 2015. 116(3): p. 216-21.
193. Keating, G.M. and A. Santoro, Sorafenib: a review of its use in advanced hepatocellular carcinoma. Drugs, 2009. 69(2): p. 223-40.
194. Hahn, O. and W. Stadler, Sorafenib. Curr Opin Oncol, 2006. 18(6): p. 615-21.
195. Gong, L., et al., PharmGKB summary: sorafenib pathways. Pharmacogenet Genomics, 2017. 27(6): p. 240-246.
196. Ma, R., et al., Sorafenib: A potential therapeutic drug for hepatic fibrosis and its outcomes. Biomed Pharmacother, 2017. 88: p. 459-468.
197. Yuan, S., et al., Sorafenib attenuates liver fibrosis by triggering hepatic stellate cell ferroptosis via HIF-1α/SLC7A11 pathway. Cell Prolif, 2022. 55(1): p. e13158.
198. Jia, L., et al., Sorafenib ameliorates renal fibrosis through inhibition of TGF-β-induced epithelial-mesenchymal transition. PLoS One, 2015. 10(2): p. e0117757.
199. Ma, W., et al., Sorafenib Inhibits Renal Fibrosis Induced by Unilateral Ureteral Obstruction via Inhibition of Macrophage Infiltration. Cell Physiol Biochem, 2016. 39(5): p. 1837-1849.
200. Stavenuiter, A.W., et al., Angiogenesis in peritoneal dialysis. Kidney Blood Press Res, 2011. 34(4): p. 245-52.
201. Claesson-Welsh, L., Vascular permeability--the essentials. Ups J Med Sci, 2015. 120(3): p. 135-43.
202. Wautier, J.L. and M.P. Wautier, Vascular Permeability in Diseases. Int J Mol Sci, 2022. 23(7).
203. Flessner, M.F., Endothelial glycocalyx and the peritoneal barrier. Perit Dial Int, 2008. 28(1): p. 6-12.
204. Sugiyama, N., et al., Low-GDP, pH-neutral solutions preserve peritoneal endothelial glycocalyx during long-term peritoneal dialysis. Clin Exp Nephrol, 2021. 25(9): p. 1035-1046.
205. Reitsma, S., et al., The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch, 2007. 454(3): p. 345-59.
206. Helmke, A., et al., CX3CL1-CX3CR1 interaction mediates macrophage-mesothelial cross talk and promotes peritoneal fibrosis. Kidney Int, 2019. 95(6): p. 1405-1417.
207. Huang, Q., et al., Extracellular vesicle-packaged ILK from mesothelial cells promotes fibroblast activation in peritoneal fibrosis. J Extracell Vesicles, 2023. 12(7): p. e12334.
208. Amore, A., et al., Glucose degradation products increase apoptosis of human mesothelial cells. Nephrol Dial Transplant, 2003. 18(4): p. 677-88.
209. Hong, F.Y., et al., Methylglyoxal and advanced glycation end-products promote cytokines expression in peritoneal mesothelial cells via MAPK signaling. Am J Med Sci, 2015. 349(2): p. 105-9.
210. D'Urso, M. and N.A. Kurniawan, Mechanical and Physical Regulation of Fibroblast-Myofibroblast Transition: From Cellular Mechanoresponse to Tissue Pathology. Front Bioeng Biotechnol, 2020. 8: p. 609653.
211. Terri, M., et al., Mechanisms of Peritoneal Fibrosis: Focus on Immune Cells-Peritoneal Stroma Interactions. Front Immunol, 2021. 12: p. 607204.
212. Raby, A.C. and M.O. Labéta, Preventing Peritoneal Dialysis-Associated Fibrosis by Therapeutic Blunting of Peritoneal Toll-Like Receptor Activity. Front Physiol, 2018. 9: p. 1692.
213. Su, H., et al., Sterile inflammation of peritoneal membrane caused by peritoneal dialysis: focus on the communication between immune cells and peritoneal stroma. Front Immunol, 2024. 15: p. 1387292.
214. Chen, Y.T., et al., Inflammatory macrophages switch to CCL17-expressing phenotype and promote peritoneal fibrosis. J Pathol, 2020. 250(1): p. 55-66.
215. Sutherland, T.E., et al., Ongoing Exposure to Peritoneal Dialysis Fluid Alters Resident Peritoneal Macrophage Phenotype and Activation Propensity. Front Immunol, 2021. 12: p. 715209.
216. Li, Q., et al., A pathogenetic role for M1 macrophages in peritoneal dialysis-associated fibrosis. Mol Immunol, 2018. 94: p. 131-139.
217. Shi, J., et al., The Role of TLR4 in M1 Macrophage-Induced Epithelial-Mesenchymal Transition of Peritoneal Mesothelial Cells. Cell Physiol Biochem, 2016. 40(6): p. 1538-1548.
218. Tian, L., et al., Epithelial-mesenchymal Transition of Peritoneal Mesothelial Cells Is Enhanced by M2c Macrophage Polarization. Immunol Invest, 2022. 51(2): p. 301-315.
219. Ferrantelli, E., et al., A Novel Mouse Model of Peritoneal Dialysis: Combination of Uraemia and Long-Term Exposure to PD Fluid. Biomed Res Int, 2015. 2015: p. 106902.
220. Li, Z., et al., Pharmacological inhibition of heparin-binding EGF-like growth factor promotes peritoneal angiogenesis in a peritoneal dialysis rat model. Clin Exp Nephrol, 2018. 22(2): p. 257-265.
221. Bao, Y.W., et al., Kidney disease models: tools to identify mechanisms and potential therapeutic targets. Zool Res, 2018. 39(2): p. 72-86.
222. Chade, A.R., et al., A translational model of chronic kidney disease in swine. Am J Physiol Renal Physiol, 2018. 315(2): p. F364-f373.
223. Chade, A.R. and A. Eirin, Cardiac micro-RNA and transcriptomic profile of a novel swine model of chronic kidney disease and left ventricular diastolic dysfunction. Am J Physiol Heart Circ Physiol, 2022. 323(4): p. H659-h669.
224. Lee, Y.J., et al., Alleviating chronic kidney disease progression through modulating the critical genus of gut microbiota in a cisplatin-induced Lanyu pig model. J Food Drug Anal, 2020. 28(1): p. 103-114.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96432-
dc.description.abstract慢性腎病是現代常見的慢性病之一,泛指長達三個月以上的腎功能問題,並通常按照腎絲球過濾率(Glomerular filtration rate,GFR)的數值被分為五期。其中,第五期又被稱為末期腎病(End-stage kidney disease,ESKD)或是腎衰竭,此時期病患的腎臟已無法負擔正常的代謝與體液平衡,會出現尿毒症的症狀,需要使用腎臟替代療法,如腎臟移植、血液透析或是腹膜透析(Peritoneal dialysis,PD)等來維持生命。腹膜透析的原理是利用患者本身的腹膜作為半透膜,透過高張透析液的灌入、存留與排出,來交換出體內多餘的毒素與水分。研究發現,在多年進行腹膜透析的病患身上,經常觀察到腹膜纖維化(Peritoneal fibrosis)與腹膜功能改變等現象,若嚴重可能導致超過濾失敗(Ultrafiltration failure)的發生,使病患必須終止使用腹膜透析,轉往血液透析或是等待腎臟移植。纖維化的腹膜組織,相較於健康的腹膜,常可見間皮細胞(Mesothelial cells)的脫落、細胞外基質(Extracellular Matrix,ECM)的沉積與血管新生(Angiogenesis)等病變。葡萄糖透析液是傳統上最常使用的腹膜透析液,然而這類的透析液被發現在加熱與儲存的過程中,易產生葡萄糖降解產物(Glucose degradation products, GDPs),引起腹膜發炎反應並導致腹膜產生纖維化病變。目前在臨床上用來治療腹膜纖維化的藥物相當有限,許多開發中的藥物仍停留在動物實驗的階段,並以使用嚙齒類等小型動物的實驗動物為主。然而,囓齒類的實驗動物在解剖、生理等構造上與人類有一定的差異,這些差異經常使得研究結果難以順利轉譯到人類臨床應用。本篇博士論文以建立腹膜纖維化的大動物模式來協助相關藥物篩選與機制探討出發,嘗試建立豬的腹膜纖維化動物模式(Porcine peritoneal fibrosis model),建立後測試有潛力的抗纖維化藥物蕾莎瓦(Sorafenib),也使用細胞實驗探討腹膜纖維化相關機制。
首先,我們在豬身上建立了能夠即時評估腹膜功能的腹膜平衡試驗(Peritoneal equilibration test,PET),也建立以一週內兩劑低濃度的次氯酸鈉腹腔注射來引起腹膜纖維化的豬動物模式。這個動物模式除了可見腹膜纖維化的組織病變,也有發生相似於長期腹膜透析病患腹膜功能上的異常,如Small solute的運輸速率上升、鹽篩濾(Sodium sieving)現象消失等。針對鹽篩濾現象的消失,我們進一步確認了纖維化腹膜組織上水通道蛋白1號(Aquaporin 1,AQP1)的含量與分佈,並使用間皮細胞(Mesothelial cells)與血管內皮細胞(Endothelial cells)的細胞株進行實驗。認為次氯酸鈉在細胞上所引起的氧化壓力(Oxidative stress),很有可能是進一步導致細胞骨架改變與水通道蛋白運輸受損的來源,才會進一步導致鹽篩濾現象的消失。
為了建立更接近臨床病患的豬腹膜纖維化模式,我們接著使用2.5%的葡萄糖腹膜透析液加入葡萄糖降解產物之一的甲基乙二醛(Methylglyoxal,MGO)來建立第二個豬腹膜纖維化模式。成功建立豬模式後,我們嘗試使用此動物模式測試口服蕾莎瓦在腹膜纖維化的療效。實驗結果顯示,口服蕾莎瓦能夠有效減緩腹膜的增厚、肌纖維母細胞(Myofibroblast)的增加與血管新生,然而,對於間皮細胞與腹膜功能的保護則相當有限。我們認為單獨使用口服蕾莎瓦治療腹膜纖維化的療效有限,建議需要搭配其他藥物一起使用。
從嘗試使用蕾莎瓦的結果當中,我們發現藥物可能僅對於腹膜纖維化的部分參與細胞有干涉,因此後續使用間皮細胞與纖維母細胞(Fibroblast)細胞株希望先探討甲基乙二醛可能引起腹膜纖維化的背後機制,以及這兩種細胞在纖維化過程的互動關係。期望在更加瞭解背後機制後,能夠尋找到關鍵的治療點來決定與開發藥物。首先我們將甲基乙二醛刺激下的間皮細胞進行次世代定序(Next generation sequencing,NGS),發現間皮細胞的轉錄體在細胞凋亡(Apoptosis)、促發炎反應(Pro-inflammatory response)與纖維化相關的路徑上有明顯的改變。另外,我們發現若將甲基乙二醛刺激間皮細胞後的上清液濃縮,加入纖維母細胞的培養液,會使得纖維母細胞的細胞骨骼發生改變、增加分泌細胞外基質的能力,被活化成前驅肌纖維母細胞(Proto-myofibroblasts)。然而,因著並未出現平滑肌肌動蛋白(Alpha smooth muscle actin, α-SMA)的表現,可以確認其尚未轉換成造成纖維化的重要細胞——肌纖維母細胞。推測可能還需要其他細胞的參與或因子,才能夠使纖維母細胞完全轉換成肌纖維母細胞。
zh_TW
dc.description.abstractEnd-stage kidney disease (ESKD) is the severest state of chronic kidney disease that patients with ESKD cannot survive without the intervention of renal replacement therapy. Belongs to renal replacement therapy, peritoneal dialysis (PD) maintains 11% of ESKD patients’ lives around the world. With high osmotic dialysate in the peritoneal cavity, the peritoneum is used as the semipermeable membrane to remove excess fluids and wastes from the body during PD. However, pathological changes in peritoneal morphology and function, which is termed peritoneal fibrosis, were often observed during long-term PD and can gradually result in the termination of PD. Peritoneal fibrosis, characterized by denudation of mesothelial cells, infiltration of myofibroblasts, and angiogenesis, is considered to result from the repeated inflammation caused by the components in the dialysate. To date, only a limited number of therapeutic options could be provided to patients with peritoneal fibrosis in clinical. Most of the newly developed treatments for peritoneal fibrosis have been tested in rodent-based models; however, no large animal models can be applied to bridge the discrepancies between rodents and humans or validate of which treatment may have better and more effective potential in humans. Therefore, establishing porcine peritoneal fibrosis models was aimed at accelerating the development and screening of therapeutic options for peritoneal fibrosis in this doctoral dissertation.
Firstly, a peritoneal equilibration test (PET) for evaluating instant changes of peritoneal function was established on pigs. By intraperitoneal administrations of 0.1% NaClO, histological features of peritoneal fibrosis and altered function on the peritoneum were both observed. Correlated to defects of sodium sieving in PET on NaClO-injured pigs, decreased amounts of aquaporin1 (AQP1) in the fibrotic peritoneum were noted. Based on in vivo and in vitro results, we proposed that disruption of the cytoskeleton induced by excessive reactive oxygen species defected intracellular transport of AQP 1 and resulted in the disappearance of sodium sieving.
Next, we established a novel and clinically relevant porcine model of peritoneal fibrosis induced by 40 mM methylglyoxal (MGO) in 2.5% glucose-based dialysate. Upon successful establishment of the MGO-induced peritoneal fibrosis pig model, sorafenib, a tyrosine kinase inhibitor with the potential to treat peritoneal fibrosis, was given orally to evaluate its therapeutic efficacy. We observed that sorafenib effectively alleviated the thickening of the peritoneum, angiogenesis, myofibroblasts infiltration, and decreased endothelial glycocalyx. However, therapeutic efficacy in ameliorating the loss of mesothelial cells, decreased ultrafiltration volume and elevated solutes transport rates was limited. These results demonstrated that applying sorafenib alone was not sufficient to fully rescue MGO-induced peritoneal defects.
Since the distinct responses from different cell types upon sorafenib treatment were observed, we further unveiled the roles and interactions between participated cells in MGO-induced peritoneal fibrosis. The transcriptomic data from the MGO-stimulated mesothelial cells showed a significant upregulation of genes involved in pro-inflammatory, apoptotic, and fibrotic pathways. As for fibroblasts, no phenotypic changes were noted after direct stimulation of MGO, whereas supernatant from MGO-stimulated mesothelial cells promoted fibroblasts transforming into proto-myofibroblasts, the first stage of activation toward myofibroblasts. However, additional involvement of other factors or cells (e.g., macrophages) may be needed for a complete transformation of fibroblasts into myofibroblasts.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-13T16:26:41Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-13T16:26:41Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
致謝 II
中文摘要 III
Abstract VI
Contents IX
List of figures XIV
Chapter 1 Introduction 1
1.1 End-stage kidney disease (ESKD) 1
1.2 Peritoneal dialysis 2
1.3 Physiology of the peritoneum 3
1.4 Fibrosis 6
1.5 Peritoneal fibrosis 8
1.5.1 Functional and structural changes on peritoneum during long-term PD 8
1.5.2 Causes for peritoneal fibrosis 11
1.5.3 Critical molecules and pathways involved in peritoneal fibrosis 12
1.5.4 Current therapeutic options for peritoneal fibrosis 16
1.5.5 Receptor tyrosine kinases as potential therapeutic targets for peritoneal fibrosis 17
1.6 Animal models of peritoneal fibrosis 18
1.7 Porcine model application in the biomedical field 19
1.8 Study aim 21
Chapter 2 Materials and Methods 23
2.1 Induction of peritoneal fibrosis by sodium hypochlorite (NaClO) on pigs 23
2.2 Induction of peritoneal fibrosis by MGO and sorafenib administration on pigs 23
2.3 PET in pigs 26
2.4 Necropsy evaluation of peritoneum and the peritoneal organs 27
2.5 Quantitative assessments on peritoneal thickness 28
2.6 Quantitative assessments on mesothelium integrity, infiltration of myofibroblasts and angiogenesis 28
2.7 Indirect immunofluorescence staining (IFA) 29
2.8 Cell culture 29
2.9 Cell viability assay 30
2.10 Cellular ROS detection 31
2.11 Collagen gel contraction assay 32
2.12 Collect and concentrate the cultured supernatant from MGO-stimulated mesothelial cells 33
2.13 Self-defined membrane distribution assay for intracellular AQP1 33
2.14 Western blotting 34
2.15 Next-generation sequencing 35
2.16 Bioinformatic analysis 36
2.17 Chemicals, reagents, antibodies 36
2.18 Statistical Analyses 38
Chapter 3 Results 39
3.1 Functional changes of peritoneum were detected upon PET after two NaClO administrations 39
3.2 Thickening of peritoneum, loss of mesothelial cells and accumulation of myofibroblasts were apparent after two NaClO administrations 40
3.3 Increased oxidative damages on both parietal mesothelium and vessel endothelium in NaClO-injured pigs 43
3.4 Peritoneum AQP1 expression was significantly decreased in NaClO-injured pigs 44
3.5 In vitro investigation of potential signaling pathways for NaClO-induced oxidative stress 47
3.6 Disruption of cytoskeleton and alteration of cellular localization of AQP1 were observed under NaClO co-incubation 51
3.7 Hypothetical model of oxidative stress-induced disruption on the cellular transport of AQP1 54
3.8 Sorafenib alleviated MGO-induced peritoneal bleeding and organ adhesions 56
3.9 Sorafenib ameliorated MGO-induced peritoneum thickening and reduced the glycoprotein deposition on the parietal peritoneum surface 58
3.10 Sorafenib reduced myofibroblast infiltration but showed limited protective effects for mesothelium on the peritoneum 62
3.11 MGO- and dialysate-induced angiogenesis on peritoneum was alleviated by sorafenib 65
3.12 Sorafenib exerted limited effects on ultrafiltration volume 67
3.13 Sorafenib maintained endothelial glycocalyx but did not rescue MGO-induced small solutes transport defects 69
3.14 Direct MGO stimulation did not induce fibroblast-to-myofibroblast transition 72
3.15 Transcriptomic analysis revealed a time-dependent activation of inflammatory pathways in MGO-treated mesothelial cells 77
3.16 Genes involved in pro-inflammatory and fibrosis-related pathways were significantly upregulated upon MGO stimulation on mesothelial cells 80
3.17 Stimulation of MGO-treated mesothelial cells altered the distribution of actin filaments on fibroblasts 84
3.18 Supernatant from MGO-treated mesothelial cells promoted fibroblasts to proto-myofibroblasts transition 86
Chapter 4 Discussion 91
Chapter 5 Conclusion 110
List of abbreviations 111
References 114
Published Manuscripts 129
-
dc.language.isoen-
dc.subject豬動物模式zh_TW
dc.subject前驅肌纖維母細胞zh_TW
dc.subject間皮細胞zh_TW
dc.subject蕾莎瓦zh_TW
dc.subject甲基乙二醛zh_TW
dc.subject腹膜纖維化zh_TW
dc.subjectsorafeniben
dc.subjectmethylglyoxalen
dc.subjectpig modelen
dc.subjectPeritoneal fibrosisen
dc.subjectproto-myofibroblastsen
dc.subjectmesothelial cellsen
dc.title以豬隻模式探討腹膜纖維化分子機制與評估治療效能zh_TW
dc.titlePorcine Model of Peritoneal Fibrosis for Mechanistic Investigation and Therapeutic Efficacy Evaluationen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee蔡素宜;林水龍;陳怡婷;劉浩屏zh_TW
dc.contributor.oralexamcommitteeSu-Yi Tsai;Shuei-Liong Lin;Yi-Ting Chen;Hao-Ping Liuen
dc.subject.keyword腹膜纖維化,豬動物模式,甲基乙二醛,蕾莎瓦,間皮細胞,前驅肌纖維母細胞,zh_TW
dc.subject.keywordPeritoneal fibrosis,pig model,methylglyoxal,sorafenib,mesothelial cells,proto-myofibroblasts,en
dc.relation.page130-
dc.identifier.doi10.6342/NTU202500473-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-02-07-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept獸醫學系-
dc.date.embargo-lift2025-02-14-
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf38.03 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved