Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96416
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor邱祈榮zh_TW
dc.contributor.advisorChyi-Rong Chiouen
dc.contributor.author黃紀晴zh_TW
dc.contributor.authorChi-Ching Huangen
dc.date.accessioned2025-02-13T16:22:25Z-
dc.date.available2025-02-14-
dc.date.copyright2025-02-13-
dc.date.issued2025-
dc.date.submitted2025-02-08-
dc.identifier.citationCSRone永續智庫、國立政治大學商學院信義書院、資誠永續發展服務股份有限公司 (2023年3月24日)。2023臺灣暨亞太永續報告現況與趨勢。https://csrone.com/reports/5777
丁宗蘇、吳森雄、吳建龍、阮錦松、林瑞興、楊玉祥、蔡乙榮 (2023)。2023年臺灣鳥類名錄。中華民國野鳥學會。臺北。
中國信託 (2023)。2022自然相關財務揭露報告書。中國信託官網。https://www.ctbcholding.com/content/dam/twhoo/file/csr/report/TNFD_1226-1.pdf
中華航空公司 (無日期)。生物多樣性風險管理。中華航空公司官網。瀏覽於2024年7月1日。https://calec.china-airlines.com/csr/environment/biodiversity-risk-management.html
方德琳 (2016年4月20日)。台灣森林保育黑洞:炸山毀林的採礦者。報導者。https://www.twreporter.org/a/taiwan-forest-protect
台達電子 (2023)。2022台達電子永續報告書。台達電子官網。https://filecenter.deltaww.com/about/download/2022_Delta_ESG_Report_CH.pdf
台灣水泥 (2023)。2022自然與生物多樣性報告。台灣水泥官網。https://media.taiwancement.com/web_tcc/tw/report/tnfd/report_2022_all.pdf
台灣水泥 (2024)。台灣水泥自然相關財務揭露報告:從無淨損失到淨正向影響。台灣水泥官網。https://media.taiwancement.com/web_tcc/tw/report/tnfd/report_2023_all.pdf
台灣生物多樣性網絡 (無日期)。TBN首頁https://www.tbn.org.tw/。瀏覽於2024/05/10。農業部生物多樣性研究所。
玉山金控 (2022)。2021氣候暨自然環境報告書。玉山金控官網。https://www.esunfhc.com/zh-tw/-/media/ESUNFHC/Files/CSR/FHC-CSR-Report/2021-Climate-Report.pdf
吳采諭 (2012)。臺灣繁殖鳥類之空間分布,保護區涵蓋及熱點分析 [博士論文,國立臺灣大學生態學與演化生物學研究所]。華藝線上圖書館。
吳采諭、林瑞興 (2017)。熱點重要生物多樣性地點的保育參考工具。自然保育季刊,(100),14-26。
李育欣 (2009)。台灣環境影響評估在生態調查部分之研究 [碩士論文,國立臺灣大學生態學與演化生物學研究所]。華藝線上圖書館。
亞洲水泥 (2023)。2022企業永續報告書。亞洲水泥官網。https://esg.acc.com.tw/esg_development/environmental/mining_mountain_and_biodiversity/engage_and_communicate
林大利、呂翊維、潘森識 (編)。吳建龍、林大利 (譯)(2020)。臺灣國家鳥類報告。行政院農業委員會特有生物研究保育中心、社團法人中華民國野鳥學會。臺灣。
林良恭、姜博仁、王豫煌 (2017)。重要石虎棲地保育評析 (2/2)。行政院農業委員會林務局 (105-林發-07.1-保-30),68頁。
林春富、楊正雄、林瑞興 (2017)。2016臺灣兩棲類紅皮書名錄。行政院農業委員會特有生物研究保育中心、行政院農業委員會林務局。南投。
林瑞興、呂亞融、楊正雄、曾子榮、柯智仁、陳宛均 (2016)。2016臺灣鳥類紅皮書名錄。行政院農業委員會特有生物研究保育中心、行政院農業委員會林務局。南投。
林瑞興、邱承慶、潘森識 (2024)。2024臺灣鳥類紅皮書名錄。農業部生物多樣性研究所。南投。
邱祈榮 (2024)。臺灣生物多樣性觀測網精進及推廣計畫-陸域。農業部林業及自然保育署 (112林發--08.1-保-07)。
金昌石礦股份有限公司 (2019)。金昌石礦申請核定暨變更核定礦業用地案 (金昌、寶來及合盛原石礦三礦聯合開採) 採礦期間環境監測報告書108年第4季。
金融監督管理委員會 (2024年2月22日)。公司治理3.0-永續發展藍圖。金融監督管理委員會證券期貨局官網。https://www.sfb.gov.tw/ch/home.jsp?id=992&parentpath=0,8,882,884
香港中華煤氣及港華智慧能源 (2022年11月11日)。氣候相關及自然相關指導文件。香港中華煤氣及港華智慧能源官網。https://www.towngas.com/getmedia/480c44cf-0a29-4265-8d1f-9ee04af25e23/cw_01083Guide-11112022.pdf.aspx?ext=.pdf
香港商南德產品驗證顧問有限公司臺灣分公司 (2023年6月29日)。中華電信生物多樣性 (自然資本議定書) 審查報告。中華電信官網。https://www.cht.com.tw/zh-TW/home/cht/-/media/Web/Images/ESG2023/2023-7-8-2_new.pdf?la=zh-TW
孫敬閔 (2023)。2023年臺灣穿山甲保育行動計畫。行政院農業委員會林務局、行政院農業委員會特有生物研究保育中心。臺灣。
財團法人台灣生態工法發展基金會 (2020年11月)。國土生態綠網藍圖規劃及發展計畫。行政院農業委員會林務局。
國泰金控 (2023)。2022年氣候策略暨自然風險管理報告書。國泰金控官網。https://www.cathayholdings.com/holdings/-/media/cde703a3264d4a3b87d164f19ad06d60.pdf?sc_lang=zh-tw
陳王時 (2003)。臺灣31種蛙類圖鑑。社團法人台北市野鳥學會出版。
陳宛均 (2023)。臺灣生物分布資料樣態與轉化為空間資訊後的保育應用。自然保育季刊,(123),4-17。https://www.airitilibrary.com/Article/Detail?DocID=16072928-N202310040017-00001
陳宛均、張安瑜、吳采諭 (2018)。從開放資料到保育應用-以臺灣陸域脊椎動物生物多樣性熱點為例。台灣生物多樣性研究,20(2),95-139。
陳宛均、羅祈鈞、蔡富安、張安瑜 (2020)。運用開放資料建置臺灣陸域環境因子多時序資料集。台灣生物多樣性研究,22(1),13-44。
黃怡菁、吳嘉堡 (2019年12月30日)。蘇花改通車在即 沿線生態環評遭質疑。公視新聞網。https://news.pts.org.tw/article/460741
楊子欣、蘇維翎、王銘源、翁源泉 (2022)。生態資料庫於生態檢核作業之應用-以水土保持治理工程為例。中華水土保持學報,53(3),213-219。https://doi.org/10.29417/jcswc.202209_53(3).0007
楊綿傑 (2017年6月20日)。悼念齊柏林 環團籲10年不擾山林。自由時報。https://news.ltn.com.tw/news/life/breakingnews/2106120
楊懿如、向高世、李承恩 (2008)。台灣兩棲動物野外調查手冊(精)。農業部。
農業部林業與自然保育署 (2023年5月12日)。布局全臺空間保育策略「國土生態綠網圖資」正式上線 歡迎各界下載使用。農業部林業與自然保育署官網。https://www.forest.gov.tw/forest-news/0071433
福邦工程顧問有限公司 (2023年1月)。台灣水泥股份有限公司太白山礦區及信大水泥股份有限公司第二礦場礦區公界及毗鄰區域聯合開採計畫環境監測報告書。
劉威廷、張毓琦、鍾昆典、林佳宏、許詩涵、黃于禎禧、許永暉、陳柏豪、王正安、成允聖、丁子宭、侯穎霖、陳易昇、丁方元、徐菀佐、江品君、鄭暐、黃于玻、陳佑真、黃屏 (無日期)。觀察家生態顧問有限公司紅外線自動相機調查資料,TBN研管中心。出現紀錄資料集:https://www.tbn.org.tw/dataset/3f4b0183-5018-40a0-afbf-c697b7395fc1
劉建男、林育秀 (2023)。2023年石虎保育行動計畫。行政院農業委員會林務局 、行政院農業委員會特有生物研究保育中心。臺灣。
緯創資通股份有限公司 (無日期)。自然與生物多樣性。緯創資通股份有限公司官網。瀏覽於2024年7月1日。https://esg.wistron.com/ch/environment/NatureandBiodiversity
蔡穗、劉懿慧(2017)。採礦水汙染模擬-以石灰石礦場為例。鑛冶:中國鑛冶工程學會會刊,61(2),27-37。
鄭錫奇、張簡琳玟、林瑞興、楊正雄、張仕緯 (2017)。2016臺灣陸域哺乳類紅皮書名錄。行政院農業委員會特有生物研究保育中心。南投。
聯華電子 (無日期)。環境共生。聯華電子官網。瀏覽於2024年6月20日。https://www.umc.com/zh-TW/Html/eco_echo_ecological_conservation_hope_project
Addison, P. F., Bull, J. W., & Milner‐Gulland, E. J. (2019). Using conservation science to advance corporate biodiversity accountability. Conservation Biology, 33(2), 307-318.
Akoglu, H. (2018). User's guide to correlation coefficients. Turkish journal of emergency medicine, 18(3), 91-93.
Albuquerque, F. S. d., & Gregory, A. (2017). The geography of hotspots of rarity-weighted richness of birds and their coverage by Natura 2000. PloS one, 12(4), e0174179.
Asefa, A., Delellegn, Y., Debella, A. R., Mario, M., Dalle, G., Wakjira, K., Vergez, A., Curet, F., & Tessema, M. (2023). Optimizing application of the Species Threat Abatement and Restoration (STAR) metric in meeting national biodiversity conservation targets. https://doi.org/10.21203/rs.3.rs-3342867/v1
Chang, A.-Y., Chen, W.-J., He, R.-Y., Lin, D.-L., Lin, Y.-L., Lin, T.-E., Chou, S.-P., Lin, C.-F., Lin, R.-S., & ChangChien, L.-W. (2022). Range map datasets for terrestrial vertebrates across Taiwan. Data in Brief, 42, 108060.
Chaudhary, A., Mair, L., Strassburg, B. B., Brooks, T. M., Menon, V., & McGowan, P. J. (2022). Subnational assessment of threats to Indian biodiversity and habitat restoration opportunities. Environmental Research Letters, 17(5), 054022.
Convention on Biological Diversity (2022, December 19). 15/4. Kunming-Montreal Global Biodiversity Framework. https://www.cbd.int/doc/decisions/cop-15/cop-15-dec-04-en.pdf
Elith, J., & Leathwick, J. R. (2009). Species distribution models: ecological explanation and prediction across space and time. Annual review of ecology, evolution, and systematics, 40, 677-697.
ENCORE (n.d.). Exploring Natural Capital Opportunities, Risks and Exposure. 2024/06/20. https://www.encorenature.org/en
FAO (2018). Why bees matter: The importance of bees and other pollinators for food and agriculture. FAO publishing. https://www.fao.org/3/i9527en/i9527en.pdf
Ghimirey, Y., Petersen, W., Jahed, N., Akash, M., Lynam, A.J., Kun, S., Din, J., Nawaz, M.A., Singh, P., Dhendup, T., Chua, M.A.H., Gray, T.N.E. & Phyoe Kyaw, P. (2023). Prionailurus bengalensis (amended version of 2022 assessment). The IUCN Red List of Threatened Species 2023: e.T223138747A226150742. https://dx.doi.org/10.2305/IUCN.UK.2023-1.RLTS.T223138747A226150742.en. Downloaded on 9 November 2024.
Graham, I. D., Logan, J., Harrison, M. B., Straus, S. E., Tetroe, J., Caswell, W., & Robinson, N. (2006). Lost in knowledge translation: time for a map?. Journal of continuing education in the health professions, 26(1), 13-24.
Grenyer, R., Orme, C. D. L., Jackson, S. F., Thomas, G. H., Davies, R. G., Davies, T. J., Jones, K. E., Olson, V. A., Ridgely, R. S., Rasmussen, P. C., Ding, T.S., Bennett, P. M., Blackburn, T. M., Gaston, K. J., Gittleman, J. L. & Owens, I. P. F. (2006). Global distribution and conservation of rare and threatened vertebrates. Nature, 444(7115), 93-96.
Hawkins, F., Beatty, C. R., Brooks, T. M., Church, R., Elliott, W., Kiss, E., Macfarlane, N. B., Pugliesi, J., Schipper, A. M., & Walsh, M. (2023). Bottom‐up global biodiversity metrics needed for businesses to assess and manage their impact. Conservation Biology.
Herweijer, C., Evison, W., Mariam, S., Khatri, A., Albani, M., Semov, A., & Long, E. (2020). Nature risk rising: Why the crisis engulfing nature matters for business and the economy. World Economic Forum and PwC. http://www3. weforum. org/docs/WEF_New_ Nature_Economy_Report_2020. pdf,
IBAT (2021, June). Species Threat Abatement and Restoration (STAR) data layer Business User Guidance. https://www.ibat-alliance.org/pdf/star-business-user-guidance.pdf
IBAT (2024a). Collaborating to drive investment into landscape and biodiversity regeneration. https://www.ibat-alliance.org/pdf/ibat-cultivo-case-study.pdf
IBAT (2024b). Iberdrola’s commitment to preserving and enhancing Biodiversity through IBAT. https://ibat-assets-production.s3.eu-west-2.amazonaws.com/pdf/IBAT+x+Iberdrola+Case+Study+v0.6.pdf
IBAT (n.d.). Integrated Biodiversity Assessment Tool: The world's most authoritative biodiversity data for your world-shaping decisions. 2024/07/14.https://www.ibat-alliance.org/?locale=en
IPBES (2019). Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. S. Díaz, J. Settele, E. S. Brondízio, H. T. Ngo, M. Guèze, J. Agard, A. Arneth, P. Balvanera, K. A. Brauman, S. H. M. Butchart, K. M. A. Chan, L. A. Garibaldi, K. Ichii, J. Liu, S. M. Subramanian, G. F. Midgley, P. Miloslavich, Z. Molnár, D. Obura, A. Pfaff, S. Polasky, A. Purvis, J. Razzaque, B. Reyers, R. Roy Chowdhury, Y. J. Shin, I. J. Visseren-Hamakers, K. J. Willis, & C. N. Zayas (eds.). IPBES secretariat, Bonn, Germany. 56 pages. https://doi.org/10.5281/zenodo.3553579
Irwin, A., Geschke, A., Brooks, T. M., Siikamaki, J., Mair, L., & Strassburg, B. B. (2022). Quantifying and categorising national extinction-risk footprints. Scientific reports, 12(1), 5861.
IUCN (2012). Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. IUCN, Gland, Switzerland and Cambridge, UK.
IUCN (2024a). mapping standards and data quality for the IUCN red list spatial data.Version 1.20.
IUCN (2024b). Terrestrial Mammals. The IUCN Red List of Threatened Species. Version 2024-2. https://www.iucnredlist.org/resources/spatial-data-download. Downloaded on 16 November 2024.
IUCN (n.d.). Species Richness and Rarity-Weighted Richness Data. 2024/11/20. https://www.iucnredlist.org/resources/other-spatial-downloads
Katic, P. G., Cerretelli, S., Haggar, J., Santika, T., & Walsh, C. (2023). Mainstreaming biodiversity in business decisions: Taking stock of tools and gaps. Biological Conservation, 277, 109831.
Komaki, S., Lin, S. M., Nozawa, M., Oumi, S., Sumida, M., & Igawa, T. (2017). Fine‐scale demographic processes resulting from multiple overseas colonization events of the Japanese stream tree frog, Buergeria japonica. Journal of Biogeography, 44(7), 1586-1597.
Layman, H., Akçakaya, H. R., Irwin, A., zu Ermgassen, S., Addison, P., & Burgman, M. (2024). Short‐term solutions to biodiversity conservation in portfolio construction: Forward‐looking disclosure and classification‐based metrics. Business Strategy and the Environment, 33(3), 1778-1793.
Lomolino, M. V., Riddle, B. R., Whittaker, R. J. (2017). Biogeography, fifth edition. (5), 730. Sunderland, MA: Oxford University Press.
Mair, L., Amorim, E., Bicalho, M., Brooks, T. M., Calfo, V., de T. Capellão, R., Clubbe, C., Evju, M., Fernandez, E. P., & Ferreira, G. C. (2023). Quantifying and mapping species threat abatement opportunities to support national target setting. Conservation Biology, 37(1), e14046.
Mair, L., Bennun, L. A., Brooks, T. M., Butchart, S. H., Bolam, F. C., Burgess, N. D., Ekstrom, J. M., Milner-Gulland, E., Hoffmann, M., & Ma, K. (2021). A metric for spatially explicit contributions to science-based species targets. Nature Ecology & Evolution, 5(6), 836-844.
Marques, A., Robuchon, M., Hellweg, S., Newbold, T., Beher, J., Bekker, S., Essl, F., Ehrlich, D., Hill, S., & Jung, M. (2021). A research perspective towards a more complete biodiversity footprint: a report from the World Biodiversity Forum. The International Journal of Life Cycle Assessment, 26, 238-243.
Matsui, M., & Tominaga, A. (2020). A new species of Buergeria from the southern Ryukyus and northwestern Taiwan (Amphibia: Rhacophoridae). Current Herpetology, 39(2), 160-172. METHODOLOGY DOCUMENTATION. https://cdn.kettufy.io/prod-fra-1.kettufy.io/documents/riskfilter.org/BiodiversityRiskFilter_Methodology.pdf
NCC (2021). Natural Capital Protocol.
https://capitalscoalition.org/wp-content/uploads/2021/01/NCC_Protocol.pdf
Oakleaf, J. R., Kennedy, C. M., Boucher, T., & Kiesecker, J. (2013). Tailoring global data to guide corporate investments in biodiversity, environmental assessments and sustainability. Sustainability, 5(10), 4444-4460.
Orme, C. D. L., Davies, R. G., Burgess, M., Eigenbrod, F., Pickup, N., Olson, V. A., Webster, A. J., Ding, T. S., Rasmussen, P. C., Ridgely, R. S., Stattersfield, A. J., Bennett, P. M., Blackburn, T. M., Gaston, K. J. & Owens, I. P. F. (2005). Global hotspots of species richness are not congruent with endemism or threat. Nature, 436(7053), 1016-1019.
Patterson, D. H., Schmitt, S., Izquierdo, P., Tibaldeschi, P., Bellfield, H., Wang, D., O'Reilly Gurhy, B., d'Aspremont, A., Tello, P., & Bonfils-Bierer, C. (2022). Geospatial ESG: The Emerging Application of Geospatial Data for Gaining 'Environmental' Insights on the Asset, Corporate and Sovereign Level (English). Washington, D.C. : World Bank Group. http://documents.worldbank.org/curated/en/444921645686541299/Geospatial-ESG-The-Emerging-Application-of-Geospatial-Data-for-Gaining-Environmental-Insights-on-the-Asset-Corporate-and-Sovereign-Level.
PBAF (2022, June). Taking biodiversity into account PBAF Standard v 2022 Biodiversity impact assessment - Overview of approaches. https://pbafglobal.com/files/downloads/PBAF_OA2022.pdf
Strassburg, B. B., Iribarrem, A., Beyer, H. L., Cordeiro, C. L., Crouzeilles, R., Jakovac, C. C., Braga Junqueira, A., Lacerda, E., Latawiec, A. E., & Balmford, A. (2020). Global priority areas for ecosystem restoration. Nature, 586(7831), 724-729.
Studds, C. E., Kendall, B. E., Murray, N. J., Wilson, H. B., Rogers, D. I., Clemens, R. S., Gosbell K., Hassell C.J., Jessop R., Melville D.S., Milton D. A., Minton C. D. T., Possingham H. P., Riegen A. C., Straw P., Woehler E.J. & Fuller, R. A. (2017). Rapid population decline in migratory shorebirds relying on Yellow Sea tidal mudflats as stopover sites. Nature communications, 8(1), 14895.
TNFD (2023a, September). Recommendations of the Taskforce on Nature-related Financial Disclosures (Version 1.0). TNFD publishing. https://tnfd.global/publication/recommendations-of-the-taskforce-on-nature-related-financial-disclosures/#publication-content
TNFD (2023b, Octorber). Guidance on the identification and assessment of nature-related issues: the LEAP approach (Version 1.1). TNFD publishing. https://tnfd.global/publication/additional-guidance-on-assessment-of-nature-related-issues-the-leap-approach/#publication-content
TNFD (2024a, March). BOARD-LEVEL OVERVIEW: TNFD in a Box: (Version 1.1). TNFD publishing. https://tnfd.global/workshop/tnfd-in-a-box/
TNFD (n.d.). TNFD Early Adopters. 2024/06/22. https://tnfd.global/engage/inaugural-tnfd-early-adopters/
TRUE Group (2023, June). The implementation of biodiversity & zero deforestation commitment. https://www.true.th/true-corporation/site/assets/truecorp/pdf/en/TrueBiodiversityApproach_EN.pdf
Usui, T. & Angert, A. (2018). Species Ranges. Reference Module in Life Sciences. Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.90400-X
Wang, Y.-H., Hsiao, Y.-W., Lee, K.-H., Tseng, H.-Y., Lin, Y.-P., Komaki, S., & Lin, S.-M. (2017). Acoustic differentiation and behavioral response reveals cryptic species within Buergeria treefrogs (Anura, Rhacophoridae) from Taiwan. PloS one, 12(9), e0184005.
Williams, P., Gibbons, D., Margules, C., Rebelo, A., Humphries, C., & Pressey, R. (1996). A comparison of richness hotspots, rarity hotspots, and complementary areas for conserving diversity of British birds. Conservation Biology, 10(1), 155-174.
WWF Biodiversity Risk Filter (2023, January). WWF Biodiversity Risk Filter Methodology Documentation. https://cdn.kettufy.io/prod-fra-1.kettufy.io/documents/riskfilter.org/BiodiversityRiskFilter_Methodology.pdf
Yu, Y.T., Kong, P. Y., Li, C.H., Chung, C.T., Tse, Y.L., Moulin, A.L. (2024). International Black-faced Spoonbill Census 2024. The Hong Kong Bird Watching Society. Hong Kong. https://cms.hkbws.org.hk/cms/component/phocadownload/file/878-bfs-census-report-2024-trad
Zurell, D., Franklin, J., König, C., Bouchet, P. J., Dormann, C. F., Elith, J., Fandos, G., Feng, X., Guillera‐Arroita, G., & Guisan, A. (2020). A standard protocol for reporting species distribution models. Ecography, 43(9), 1261-1277.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96416-
dc.description.abstract隨著環境、社會、治理 (environment, social, and governance, ESG) 的發展,生物多樣性逐漸受到企業重視,自然相關財務揭露 (Taskforce on Nature-related Financial Disclosures, TNFD) 已成為企業管理生物多樣性風險的主流框架。然而 TNFD所建議之全球指標工具在臺灣適用性有限,因此有必要建立在地化指標。本研究聚焦TNFD LEAP方法學「定位」與「評估」步驟所使用的物種滅絕指標,第一部分採用物種分布模型模擬的陸域動物分布範圍與臺灣紅皮書名錄,建立在地化稀有加權豐富度指標 (rarity-weighted richness, RWR) 與物種威脅減緩與復育指標 (species threat abatement and restoration, STAR),同時以全球尺度物種分布資料建立相對應指標,藉此評估指標在地化過程資料尺度的變化,並比較指標內不同生物類群與指標間表現之差異,以提供企業應用建議。第二部分為案例分析,應用在地化指標分析企業全臺據點生物多樣性重要度,並透過礦區現地調查資料驗證指標結果,探討指標使用於場址評估之適切性。
研究結果顯示,在地化RWR指標與STAR指標高分區域主要分布於沿海平原、流域與部分山區,比較使用全球與在地資料建立的指標,兩者分布截然不同。指標在地化過程有助於提高結果的精確性與空間解析度,並聚焦臺灣物種受脅情形,然而由於指標設計臺灣特有種的重要性則相對降低。此外,物種指標受到生物類群物種數之差異而產生偏頗,本研究指標整體結果與鳥類高度相似,建議指標工具可依照生物類群與物種呈現,提高工具使用之彈性。在地化RWR與STAR兩指標在地理空間上高度相關,部分區域則有較大差異,我們仍建議使用者根據保育目標應用指標。在案例分析,兩指標對於據點生物多樣性重要度的評估排序一致,提供TNFD「定位」步驟場址間分析之可比較性。針對場址尺度,物種指標提供礦區潛在出沒重要物種清單,作為影響減緩與保育行動之參考,而我們探討了現地調查資料與潛在分布預測差異之可能原因,包含模型資料限制、調查人力成本與野生動物調查本身之困難性等。本研究建立企業評估臺灣據點生物多樣性之可行工具,提供物種指標應用與發展之建議,未來建議持續建立與擴展物種分布資料,以期加強企業永續報告的科學基礎與數據支持。
zh_TW
dc.description.abstractWith the growing emphasis on environmental, social, and governance (ESG), biodiversity has gained increasing attention from corporations. The Taskforce on Nature-related Financial Disclosures (TNFD) has emerged as the mainstream framework for managing biodiversity-related risks. However, the global metrics tools recommended by TNFD have limited applicability in Taiwan, highlighting the need for localized metrics. This study focuses on the species extinction metrics used in the "Locate" and "Evaluate" steps of the TNFD LEAP methodology. In the first part, we developed localized Rarity-Weighted Richness (RWR) and Species Threat Abatement and Restoration (STAR) metrics by integrating species distribution models of terrestrial animals with the National Red List of Taiwan. Corresponding metrics were also established to assess the impact of data scale during localization and comparisons between taxonomic groups and metrics were conducted, providing recommendations for corporate applications. The second part presented a case study that applied these localized metrics to assess biodiversity importance at corporate sites across Taiwan. Field survey data from mining sites were analyzed to validate the metric results and explore their suitability for site-level assessments.
The study results indicate that the high-scoring areas of the localized RWR and STAR are primarily distributed across coastal plains, river basins, and certain mountainous regions. A comparison between metrics constructed of global and localized data reveals distinct differences in their spatial distribution. The localization process enhances the accuracy and spatial resolution of the results and allows a stronger focus on the threats faced by species in Taiwan. However, due to the metric design, the importance of Taiwan’s endemic species is relatively reduced. Additionally, species metrics may be biased due to differences in species numbers among biological groups. In this study, the overall metric results closely resemble those of birds, highlighting the importance of presenting metric tools separately for different biological groups and species to increase the flexibility of the tool. The localized RWR and STAR show a high degree of spatial correlation, although significant differences exist in certain areas. Therefore, we recommend that users select metrics based on their conservation objectives. In the case study, both metrics produce consistent rankings of biodiversity importance across operational sites, providing comparability for site-level assessments in the "Locate" phase of the TNFD framework. For mining sites, the species metrics offer a list of potentially important species present in these areas, serving as a reference for impact mitigation and conservation actions. We also examined the discrepancies between field survey data and potential distribution predictions, which may be influenced by factors such as model data limitations, survey costs, and difficulty in wildlife surveys. This study established a practical tool for businesses to evaluate biodiversity for sites in Taiwan and provided recommendations for further species metrics development. Additionally, we suggest continuously establishing and expanding species distribution data in the future to strengthen the scientific basis and data support for corporate sustainability reporting.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-13T16:22:25Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-13T16:22:25Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 I
謝辭 II
摘要 III
Abstract IV
目次 VI
圖次 VIII
表次 X
第一章 前言 1
1.1 研究背景與動機 1
1.2 研究目的 4
1.3 研究流程與方法 4
第二章 文獻回顧 6
2.1 TNFD揭露框架 6
2.2 全球物種指標與限制 13
2.3 臺灣生物多樣性圖資與工具平台 18
2.4 小結 21
第三章 研究方法 22
3.1 在地化物種指標計算 22
3.2 在地化物種指標評估 24
3.3 案例分析 26
第四章 結果 30
4.1 在地化物種指標 30
4.2 在地化物種指標評估 33
4.3 案例分析 38
第五章 討論 43
5.1 在地化物種指標之結果比較 43
5.2 指標在地化過程資料尺度之影響 44
5.3 物種指標中生物類群之表現與影響 45
5.4 RWR指標與STAR指標之比較 46
5.5 應用在地化物種指標於企業揭露之表現 47
第六章 結論與建議 52
6.1 結論 52
6.2 研究限制 53
6.3 建議 53
參考文獻 55
附錄1 TNFD描述自然相關依賴與影響的揭露指示類別說明 (翻譯自TNFD, 2023a) 64
附錄2 物種分析清單與在地化指標分數 65
附錄3 物種潛在分布範圍 79
附錄4 案例分析礦區在地化指標物種指標分數 80
附錄5 案例分析礦區物種清單 82
-
dc.language.isozh_TW-
dc.subject物種指標zh_TW
dc.subject自然相關財務揭露zh_TW
dc.subject物種分布範圍zh_TW
dc.subject企業永續報告zh_TW
dc.subject生物多樣性zh_TW
dc.subjectTNFDen
dc.subjectbiodiversityen
dc.subjectcorporate sustainability reportingen
dc.subjectspecies distribution rangeen
dc.subjectspecies metricsen
dc.title建立在地化物種指標於企業生物多樣性揭露zh_TW
dc.titleEstablishing Localized Species Metrics in Corporate Biodiversity Disclosureen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee葉欣誠;林大利zh_TW
dc.contributor.oralexamcommitteeShin-Cheng Yeh;Da-Li Linen
dc.subject.keyword生物多樣性,企業永續報告,物種分布範圍,物種指標,自然相關財務揭露,zh_TW
dc.subject.keywordbiodiversity,corporate sustainability reporting,species distribution range,species metrics,TNFD,en
dc.relation.page94-
dc.identifier.doi10.6342/NTU202500433-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-02-09-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept森林環境暨資源學系-
dc.date.embargo-lift2030-02-05-
Appears in Collections:森林環境暨資源學系

Files in This Item:
File SizeFormat 
ntu-113-1.pdf
  Restricted Access
4.09 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved