Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96407
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor于昌平zh_TW
dc.contributor.advisorChang-Ping Yuen
dc.contributor.author張育綺zh_TW
dc.contributor.authorYu-Chi Changen
dc.date.accessioned2025-02-13T16:19:58Z-
dc.date.available2025-02-14-
dc.date.copyright2025-02-13-
dc.date.issued2025-
dc.date.submitted2025-01-23-
dc.identifier.citationAlagha, O., Allazem, A., Bukhari, A. A., Anil, I., Mu, & azu, N. D. (2020). Suitability of SBR for Wastewater Treatment and Reuse: Pilot-Scale Reactor Operated in Different Anoxic Conditions. International Journal of Environmental Research and Public Health, 17(5).
Alpaydin, E. (2020). Introduction to machine learning (Fourth edition ed.). The MIT Press.
Arismendy, L., Cárdenas, C., Gómez, D., Maturana, A., Mejía, R., & Quintero M, C. G. (2020). Intelligent System for the Predictive Analysis of an Industrial Wastewater Treatment Process. Sustainability, 12(16).
Du, S., Chen, P., Han, H., & Qiao, J. (2023). Dissolved oxygen concentration control in wastewater treatment process based on reinforcement learning. Science China Technological Sciences, 66(9), 2549-2560. https://doi.org/10.1007/s11431-022-2403-8
Forhad, H. M., Uddin, M. R., Chakrovorty, R. S., Ruhul, A. M., Faruk, H. M., Kamruzzaman, S., Sharmin, N., Jamal, A. H. M. S. I. M., Haque, M. M.-U., & Morshed, A. M. (2024). IoT based real-time water quality monitoring system in water treatment plants (WTPs). Heliyon, 10(23), e40746. https://doi.org/https://doi.org/10.1016/j.heliyon.2024.e40746
Heo, S., Nam, K., Tariq, S., Lim, J. Y., Park, J., & Yoo, C. (2021). A hybrid machine learning–based multi-objective supervisory control strategy of a full-scale wastewater treatment for cost-effective and sustainable operation under varying influent conditions. Journal of Cleaner Production, 291, 125853. https://doi.org/https://doi.org/10.1016/j.jclepro.2021.125853
Icke, O., van Es, D. M., de Koning, M. F., Wuister, J. J. G., Ng, J., Phua, K. M., Koh, Y. K. K., Chan, W. J., & Tao, G. (2020). Performance improvement of wastewater treatment processes by application of machine learning. Water Science and Technology, 82(12), 2671-2680. https://doi.org/10.2166/wst.2020.382
Li, X., Wang, D., Zhao, M., & Qiao, J. (2024). Reinforcement learning control with n-step information for wastewater treatment systems. Engineering Applications of Artificial Intelligence, 133, 108033. https://doi.org/https://doi.org/10.1016/j.engappai.2024.108033
Lin, K., & Gao, Y. (2022). Model interpretability of financial fraud detection by group SHAP. Expert Systems with Applications, 210, 118354. https://doi.org/https://doi.org/10.1016/j.eswa.2022.118354
Lu, M., Hou, Q., Qin, S., Zhou, L., Hua, D., Wang, X., & Cheng, L. (2023). A Stacking Ensemble Model of Various Machine Learning Models for Daily Runoff Forecasting. Water, 15(7).
Luccarini, L., Pulcini, D., Sottara, D., Di Cosmo, R., & Canziani, R. (2017). Monitoring denitrification by means of pH and ORP in continuous-flow conventional activated sludge processes. Desalination and Water Treatment, 61, 319-325. https://doi.org/https://doi.org/10.5004/dwt.2017.11119
Lundberg, S. M., Nair, B., Vavilala, M. S., Horibe, M., Eisses, M. J., Adams, T., Liston, D. E., Low, D. K.-W., Newman, S.-F., Kim, J., & Lee, S.-I. (2018). Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nature Biomedical Engineering, 2(10), 749-760. https://doi.org/10.1038/s41551-018-0304-0
Newhart, K. B., Holloway, R. W., Hering, A. S., & Cath, T. Y. (2019). Data-driven performance analyses of wastewater treatment plants: A review. Water Research, 157, 498-513. https://doi.org/https://doi.org/10.1016/j.watres.2019.03.030
Otter, P., Hertel, S., Ansari, J., Lara, E., Cano, R., Arias, C., Gregersen, P., Grischek, T., Benz, F., Goldmaier, A., & Alvarez, J. A. (2020). Disinfection for decentralized wastewater reuse in rural areas through wetlands and solar driven onsite chlorination. Science of The Total Environment, 721, 137595. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.137595
Probst, P., Wright, M. N., & Boulesteix, A.-L. (2019). Hyperparameters and tuning strategies for random forest. WIREs Data Mining and Knowledge Discovery, 9(3), e1301. https://doi.org/https://doi.org/10.1002/widm.1301
Qambar, A. S., & Al Khalidy, M. M. (2022). Optimizing dissolved oxygen requirement and energy consumption in wastewater treatment plant aeration tanks using machine learning. Journal of Water Process Engineering, 50, 103237. https://doi.org/https://doi.org/10.1016/j.jwpe.2022.103237
Santín, I., Vilanova, R., Pedret, C., & Barbu, M. (2020). Global Internal Recirculation Alternative Operation to Reduce Nitrogen and Ammonia Limit Violations and Pumping Energy Costs in Wastewater Treatment Plants. Processes, 8(12).
Sarker, I. H. (2021). Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science, 2(3), 160. https://doi.org/10.1007/s42979-021-00592-x
Schafer, J. L., & Graham, J. W. (2002). Missing data: our view of the state of the art. Psychol Methods, 7(2), 147-177.
Shapley, L. S. (1953). A value for n‐person games. Contribution to the Theory of Games, 2, 61-66. https://doi.org/https://doi.org/10.1515/9781400881970-018
Silva, J. A. (2023). Wastewater Treatment and Reuse for Sustainable Water Resources Management: A Systematic Literature Review. Sustainability, 15(14).
Song, S. H., Yeom, S., Choi, S., & Yoo, Y. J. (2003). Effect of oxidation-reduction potential on denitrification by Ochrobactrum anthropi SY509. Journal of Microbiology and Biotechnology, 13, 473-476.
Sun, J., Xu, Y., Yang, H., Liu, J., & He, Z. (2024). Machine learning facilitated the conceptual design of an alum dosing system for phosphorus removal in a wastewater treatment plant. Chemosphere, 351, 141154. https://doi.org/https://doi.org/10.1016/j.chemosphere.2024.141154
Šverko, M., Galinac Grbac, T., & Mikuc, M. (2022). Supervisory Control and Data Acquisition (SCADA) Systems in Continuous Manufacturing Process Control (Focus on Steel Industry). IEEE Access, PP, 1-1. https://doi.org/10.1109/ACCESS.2022.3211288
Wang, D., Thunéll, S., Lindberg, U., Jiang, L., Trygg, J., & Tysklind, M. (2022). Towards better process management in wastewater treatment plants: Process analytics based on SHAP values for tree-based machine learning methods. Journal of Environmental Management, 301, 113941. https://doi.org/https://doi.org/10.1016/j.jenvman.2021.113941
Wang, F., Wang, Y., Zhang, K., Hu, M., Weng, Q., & Zhang, H. (2021). Spatial heterogeneity modeling of water quality based on random forest regression and model interpretation. Environmental Research, 202, 111660. https://doi.org/https://doi.org/10.1016/j.envres.2021.111660
Yan, X., Zheng, J., Han, Y., Liu, J., & Du, C. (2019). Effect of internal recycle ratio on the denitrification process and nirS-containing bacteria of an anaerobic/anoxic/oxic (A²/O) wastewater treatment process. Environment Protection Engineering, 45. https://doi.org/10.37190/epe190306
Zainurin, S., Wan Ismail, W. Z., Mahamud, S., Ismail, I., Jamaludin, J., Ariffin, K., & Kamil, W. (2022). Advancements in Monitoring Water Quality Based on Various Sensing Methods: A Systematic Review. International Journal of Environmental Research and Public Health, 19, 14080. https://doi.org/10.3390/ijerph192114080
Zhang, Y., Li, C., Duan, H., Yan, K., Wang, J., & Wang, W. (2023). Deep learning based data-driven model for detecting time-delay water quality indicators of wastewater treatment plant influent. Chemical Engineering Journal, 467, 143483. https://doi.org/https://doi.org/10.1016/j.cej.2023.143483
Zhong, S., Zhang, K., Bagheri, M., Burken, J. G., Gu, A., Li, B., Ma, X., Marrone, B. L., Ren, Z. J., Schrier, J., Shi, W., Tan, H., Wang, T., Wang, X., Wong, B. M., Xiao, X., Yu, X., Zhu, J.-J., & Zhang, H. (2021). Machine Learning: New Ideas and Tools in Environmental Science and Engineering. Environmental Science & Technology, 55(19), 12741-12754. https://doi.org/10.1021/acs.est.1c01339
Zhu, J.-J., Boehm, A. B., & Ren, Z. J. (2024). Environmental Machine Learning, Baseline Reporting, and Comprehensive Evaluation: The EMBRACE Checklist. Environmental Science & Technology, 58(45), 19909-19912. https://doi.org/10.1021/acs.est.4c09611
薛天一. (2020). 應用支援向量回歸於河川洪水預警之研究 —— 以朴子溪爲例﹝碩士論文。國立臺灣大學﹞臺灣博碩士論文知識加值系統. https://doi.org/https://hdl.handle.net/11296/7s75bc
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96407-
dc.description.abstract隨著全球水資源短缺問題的加劇,污水處理與智慧化技術的應用逐漸成為水資源管理的核心議題。溶氧濃度作為污水處理廠活性污泥槽(好氧槽)中反映曝氣效率與處理效果的重要指標,其準確預測對於提升污水處理效能至關重要。本研究利用機器學習技術建立好氧槽溶氧濃度預測模型,使用線性回歸(Linear Regression, LR)、隨機森林(Random Forest, RF)、梯度提升機(Gradient Boosting Machine, GBM)、極限梯度提升(eXtreme Gradient Boosting, XGB)以及支持向量回歸(Support Vector Regression, SVR)等多種模型,比較其預測性能,並探討數據品質與進流參數經過時間位移處理(例如使用前1小時的進流數據預測未來目標值)對模型表現的影響。以台灣中部某污水處理廠(簡稱中部A廠)連續30日的水質與操作數據為基礎,將數據分為10日組(高品質數據,經頻繁校正)與30日組(常規數據)進行分析與比較。結果顯示,10日組高品質數據相較於30日組能有效提升模型預測準確性,其中隨機森林模型在結合經滯後1小時之進流特徵(對進流數據進行時間位移處理,以使用前1小時的進流數據作為輸入)與其他槽體特徵的條件下表現最佳,經超參數調整後的R平方值達到0.975,展現出優異的預測性能。此外,本研究透過SHAP(SHapley Additive exPlanations)解釋模型的特徵重要性與交互作用,發現缺氧槽MLSS、硝化液迴流量、缺氧槽ORP等特徵對模型貢獻較大,強調數據分布特性對模型性能的重要影響,並利用 SHAP 進行特徵篩選,進一步簡化模型。
本研究強調數據品質控管與感測器校正對於機器學習模型應用的必要性,證明穩定且高品質的數據能顯著提升模型預測能力。同時,本研究提出以 SHAP 方法進行特徵篩選,提供污水處理廠智慧化管理與數據優化的新方向,期望實現高效、節能的污水處理目標。
zh_TW
dc.description.abstractWith the intensification of global water scarcity, wastewater treatment and the application of intelligent technologies have gradually become pivotal topics in water resource management. Dissolved oxygen concentration, a critical indicator of aeration efficiency and treatment effectiveness in activated sludge tanks (aerobic tanks) of wastewater treatment plants, plays a vital role in improving treatment performance. This study utilizes machine learning techniques to develop a predictive model for dissolved oxygen concentration in aerobic tanks. By employing various models, including Linear Regression (LR), Random Forest (RF), Gradient Boosting Machine (GBM), eXtreme Gradient Boosting (XGB), and Support Vector Regression (SVR), it evaluates and compares their predictive performance. Furthermore, the study examines the influence of data quality and time-lagged influent parameters (e.g., using influent data from one hour earlier) on model accuracy. Based on 30 days of continuous water quality and operational data collected from a wastewater treatment plant in central Taiwan (referred to as Central A Plant), the dataset was divided into two groups for analysis and comparison: a 10-day set with high-quality, frequently calibrated data, and a 30-day set with regular data. The results indicated that the high-quality 10-day set improved model prediction accuracy compared to the 30-day set. Among the models tested, the Random Forest model achieved the best performance by combining influent features shifted by one hour (i.e., using influent data from one hour earlier as input) with features from other tanks. After hyperparameter tuning, the model achieved an R-squared value of 0.975, demonstrating excellent predictive performance. Furthermore, SHAP(SHapley Additive exPlanations) analysis was used to interpret feature importance and interactions within the model, revealing that features such as anoxic tank MLSS, nitrate recycle flow rate, and anoxic tank ORP contributed substantially to the model, highlighting the critical impact of the range and variability of data distribution on model performance. SHAP was also utilized for feature selection, further simplifying the model while improving interpretability.
This study underscores the necessity of data quality control and sensor calibration in the application of machine learning models, demonstrating that stable, high-quality data can enhance predictive accuracy. Moreover, the study introduces SHAP-based feature selection not only as a novel method for identifying key contributors to model performance but also as a practical approach to simplifying models. These findings provide valuable insights into optimizing data and model management in smart wastewater treatment systems, aiming to achieve efficient and energy-saving operations.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-13T16:19:58Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-13T16:19:58Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
中文摘要 ii
ABSTRACT iii
目次 v
圖次 viii
表次 x
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 污水處理廠 3
2.2 連續監測 4
2.3 機器學習 5
2.4 SHAP分析 7
第三章 研究方法與過程 8
3.1 研究流程 8
3.2 機器學習在環境研究中的原則與應用 11
3.2.1 EMBRACE檢查表核心原則 11
3.2.2 本研究對應EMBRACE原則之表現 12
3.3 數據來源 14
3.4 統計分析 18
3.5 模型訓練流程 20
3.6 相關性分析 22
3.7 模型介紹 24
3.7.1 回歸模型(Regression Models) 24
3.7.2 集成學習模型(Ensemble Learning Models) 26
3.8 模型評估指標 32
3.9 進流特徵時間滯後 34
3.10 基於網路搜索的超參數調整 35
3.10.1 超參數設置 35
3.10.2 K-Fold 交叉驗證 36
3.10.3 網格搜索(Grid Search) 37
3.11 SHAP(SHapley Additive exPlanations) 39
第四章 結果與討論 42
4.1 統計分析結果 42
4.2 相關性分析結果 47
4.3 進流特徵時間滯後結果 53
4.3.1 30日組 53
4.3.2 10日組 56
4.3.3 數據品質對模型性能的影響比較 59
4.3.4 最佳滯後時間與模型選擇探討 60
4.4 基於網格搜索的超參數調整結果 62
4.5 SHAP分析結果 68
4.5.1 總結圖(Summary Plot) 68
4.5.2 依賴圖(Dependence Plot) 70
4.5.3 基於SHAP分析進行特徵篩選 74
第五章 結論與建議 76
5.1 結論 76
5.2 建議 77
參考文獻 78
附錄 81
-
dc.language.isozh_TW-
dc.subject機器學習zh_TW
dc.subjectSHAP分析zh_TW
dc.subject溶氧預測zh_TW
dc.subject時間滯後效應zh_TW
dc.subject數據品質zh_TW
dc.subject污水處理廠zh_TW
dc.subjectData qualityen
dc.subjectMachine learningen
dc.subjectWastewater treatment planten
dc.subjectSHAP analysisen
dc.subjectDissolved oxygen predictionen
dc.subjectTime-lag effecten
dc.title應用機器學習預測污水處理廠活性污泥槽溶氧濃度及關鍵因子探討zh_TW
dc.titleApplication of Machine Learning to Predict Dissolved Oxygen Concentration in the Activated Sludge Tank of a Wastewater Treatment Plant and Exploration of Key Factorsen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee周瑞生;林逸彬zh_TW
dc.contributor.oralexamcommitteeJui-Sheng Chou;Yi-Pin Linen
dc.subject.keyword污水處理廠,機器學習,數據品質,時間滯後效應,溶氧預測,SHAP分析,zh_TW
dc.subject.keywordWastewater treatment plant,Machine learning,Data quality,Time-lag effect,Dissolved oxygen prediction,SHAP analysis,en
dc.relation.page90-
dc.identifier.doi10.6342/NTU202500271-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-01-23-
dc.contributor.author-college工學院-
dc.contributor.author-dept環境工程學研究所-
dc.date.embargo-lift2025-02-14-
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved