Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96406
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鍾嘉綾zh_TW
dc.contributor.advisorChia-Lin Chungen
dc.contributor.author許任鈞zh_TW
dc.contributor.authorJen-Chun Hsuen
dc.date.accessioned2025-02-13T16:19:42Z-
dc.date.available2025-02-14-
dc.date.copyright2025-02-13-
dc.date.issued2025-
dc.date.submitted2025-02-08-
dc.identifier.citationAnn, P. J., Chang, T. T., and Ko, W. H. 2002. Phellinus noxius brown root rot of fruit and ornamental trees in Taiwan. Plant Dis. 86:820-826.
Aguileta, G., Refrégier, G., Yockteng, R., Fournier, E., and Giraud, T. 2009. Rapidly evolving genes in pathogens: Methods for detecting positive selection and examples among fungi, bacteria, viruses and protists. Infect. Genet. Evol. 9:656-670.
Akiba, M., Ota, Y., Tsai, I. J., Hattori, T., Sahashi, N., and Kikuchi, T. 2015. Genetic differentiation and spatial structure of Phellinus noxius, the causal agent of brown root rot of woody plants in Japan. PLoS One 10:e0141792.
Baccelli, I., Luti, S., Bernardi, R., Scala, A., and Pazzagli, L. 2014. Cerato-platanin shows expansin-like activity on cellulosic materials. Appl. Microbiol. Biotechnol. 98:175-184.
Barsottini, M. R. d. O., de Oliveira, J. F., Adamoski, D., Teixeira, P. J. P. L., do Prado, P. F. V., Tiezzi, H. O., Sforça, M. L., Cassago, A., Portugal, R. V., de Oliveira, P. S. L., de M. Zeri, A. C., Dias, S. M. G., Pereira, G. A. G., and Ambrosio, A. L. B. 2013. Functional diversification of cerato-platanins in Moniliophthora perniciosa as seen by differential expression and protein function specialization. Mol. Plant-Microbe Interact. 26:1281-1293.
Boddi, S., Comparini, C., Calamassi, R., Pazzagli, L., Cappugi, G., and Scala, A. 2004. Cerato-platanin protein is located in the cell walls of ascospores, conidia and hyphae of Ceratocystis fimbriata f. sp. platani. FEMS Microbiol. Lett. 233:341-346.
Bolton, M. D., Van Esse, H. P., Vossen, J. H., De Jonge, R., Stergiopoulos, I., Stulemeijer, I. J. E., Van Den Berg, G. C. M., Borrás-Hidalgo, O., Dekker, H. L., De Koster, C. G., De Wit, P. J. G. M., Joosten, M. H. A. J., and Thomma, B. P. H. J. 2008. The novel Cladosporium fulvum lysin motif effector Ecp6 is a virulence factor with orthologues in other fungal species. Mol. Microbiol. 69:119-136.
Chen, C. Y., Wu, Z. C., Liu, T. Y., Yu, S. S., Tsai, J. N., Tsai, Y. C., Tsai, I. J., and Chung, C. L. 2023. Investigation of asymptomatic infection of Phellinus noxius in herbaceous plants. Phytopathology 113:460-469.
Chen, H., Kovalchuk, A., Keriö, S., and Asiegbu, F. O. 2013. Distribution and bioinformatic analysis of the cerato-platanin protein family in Dikarya. Mycologia 105:1479-1488.
Chen, H., Quintana, J., Kovalchuk, A., Ubhayasekera, W., and Asiegbu, F. O. 2015. A cerato-platanin-like protein HaCPL2 from Heterobasidion annosum sensu stricto induces cell death in Nicotiana tabacum and Pinus sylvestris. Fungal Genet. Biol. 84:41-51.
Chen, X. L., Shi, T., Yang, J., Shi, W., Gao, X., Chen, D., Xu, X., Xu, J. R., Talbot, N. J., and Peng, Y. L. 2014. N-glycosylation of effector proteins by an α-1,3-mannosyltransferase is required for the rice blast fungus to evade host innate immunity. Plant Cell 26:1360-1376.
Choquer, M., Fournier, E., Kunz, C., Levis, C., Pradier, J. M., Simon, A., and Viaud, M. 2007. Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiol. Lett. 277:1-10.
Chung, C. L., Huang, S. Y., Huang, Y. C., Tzean, S. S., Ann, P. J., Tsai, J. N., Yang, C. C., Lee, H. H., Huang, T. W., and Huang, H. Y. 2015. The genetic structure of Phellinus noxius and dissemination pattern of brown root rot disease in Taiwan. PLoS One 10:e0139445.
Chung, C. L., Lee, T. J., Akiba, M., Lee, H. H., Kuo, T. H., Liu, D., Ke, H. M., Yokoi, T., Roa, M. B., Lu, M. Y. J., Chang, Y. Y., Ann, P. J., Tsai, J. N., Chen, C. Y., Tzean, S. S., Ota, Y., Hattori, T., Sahashi, N., Liou, R.-F., Kikuchi, T., and Tsai, I. J. 2017. Comparative and population genomic landscape of Phellinus noxius: A hypervariable fungus causing root rot in trees. Mol. Ecol. 26:6301-6316.
Crutcher, F. K., and Kenerley, C. M. 2019. Analysis of a putative glycosylation site in the Trichoderma virens elicitor SM1 reveals no role in protein dimerization. Biochem. Biophys. Res. Commun. 509:817-821.
Cuesta-Arenas, Y., Kalkman, E. R. I. C., Schouten, A., Dieho, M., Vredenbregt, P., Uwumukiza, B., Osés Ruiz, M., and van Kan, J. A. L. 2010. Functional analysis and mode of action of phytotoxic Nep1-like proteins of Botrytis cinerea. Physiol. and Mol. Plant Pathol. 74:376-386.
Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T., McVean, G., Durbin, R., and Group, G. P. A. 2011. The variant call format and VCFtools. Bioinformatics 27:2156-2158.
Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A., Keane, T., McCarthy, S. A., Davies, R. M., and Li, H. 2021. Twelve years of SAMtools and BCFtools. Gigascience 10:giab008.
Denton‐Giles, M., McCarthy, H., Sehrish, T., Dijkwel, Y., Mesarich, C. H., Bradshaw, R. E., Cox, M. P., and Dijkwel, P. P. 2020. Conservation and expansion of a necrosis‐inducing small secreted protein family from host‐variable phytopathogens of the Sclerotiniaceae. Mol. Plant Pathol. 21:512-526.
Divon, H. H., and Fluhr, R. 2007. Nutrition acquisition strategies during fungal infection of plants. FEMS Microbiol. Lett. 266:65-74.
Dölfors, F., Holmquist, L., Dixelius, C., and Tzelepis, G. 2019. A LysM effector protein from the basidiomycete Rhizoctonia solani contributes to virulence through suppression of chitin-triggered immunity. Mol. Genet. Genom. 294:1211-1218.
Eckshtain-Levi, N., Weisberg, A. J., and Vinatzer, B. A. 2018. The population genetic test Tajima's D identifies genes encoding pathogen-associated molecular patterns and other virulence-related genes in Ralstonia solanacearum. Mol. Plant Pathol. 19:2187-2192.
Eberhardt, J., Santos-Martins, D., Tillack, A. F., and Forli, S. 2021. AutoDock Vina 1.2.0: new docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 61:3891-3898.
Faris, J. D., Zhang, Z., Lu, H., Lu, S., Reddy, L., Cloutier, S., Fellers, J. P., Meinhardt, S. W., Rasmussen, J. B., and Xu, S. S. 2010. A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proc. Natl. Acad. Sci. 107:13544-13549.
Frías, M., González, C., and Brito, N. 2011. BcSpl1, a cerato-platanin family protein, contributes to Botrytis cinerea virulence and elicits the hypersensitive response in the host. New Phytol. 192:483-495.
Frías, M., Brito, N., and González, C. 2013. The otrytis cinerea cerato-platanin BcSpl1 is a potent inducer of systemic acquired resistance (SAR) in tobacco and generates a wave of salicylic acid expanding from the site of application. Mol. Plant Pathol. 14:191-196.
Frías, M., Brito, N., González, M., and González, C. 2014. The phytotoxic activity of the cerato-platanin BcSpl1 resides in a two-peptide motif on the protein surface. Mol. Plant Pathol. 15:342-351.
Gao, R., Ding, M., Jiang, S., Zhao, Z., Chenthamara, K., Shen, Q., Cai, F., and Druzhinina, I. S. 2020. The evolutionary and functional paradox of cerato-platanins in fungi. Appl. Environ. Microbiol. 86:e00696-00620.
Govrin, E. M., and Levine, A. 2000. The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr. Biol. 10:751-757.
Gupta, R., and Brunak, S. 2002. Prediction of glycosylation across the human proteome and the correlation to protein function. Pac. Symp. Biocomput. 7:310-322.
Hao, G., Tiley, H., and McCormick, S. 2022. Chitin triggers tissue-specific immunity in wheat associated with fusarium head blight. Front. Plant Sci. 13:832502.
Haueisen, J., and Stukenbrock, E. H. 2016. Life cycle specialization of filamentous pathogens - colonization and reproduction in plant tissues. Curr. Opin. Microbiol. 32:31-37.
Holm, L. 2022. Dali server: structural unification of protein families. Nucleic Acids Res. 50:W210-W215.
Hong, Y., Yang, Y., Zhang, H., Huang, L., Li, D., and Song, F. 2017. Overexpression of MoSM1, encoding for an immunity-inducing protein from Magnaporthe oryzae, in rice confers broad-spectrum resistance against fungal and bacterial diseases. Sci. Rep. 7:41037.
Huang, T. W. 2013. Cloning and characterization of Phellinus noxius manganese peroxidase (PnMnP) gene and its relatedness with virulence. Master's thesis, Department of Plant Pathology and Microbiology, National Taiwan University.
Hunziker, L., Tarallo, M., Gough, K., Guo, M., Hargreaves, C., Loo, T. S., McDougal, R. L., Mesarich, C. H., and Bradshaw, R. E. 2021. Apoplastic effector candidates of a foliar forest pathogen trigger cell death in host and non-host plants. Sci. Rep. 11:1-12.
Irieda, H., Inoue, Y., Mori, M., Yamada, K., Oshikawa, Y., Saitoh, H., Uemura, A., Terauchi, R., Kitakura, S., Kosaka, A., Singkaravanit-Ogawa, S., and Takano, Y. 2019. Conserved fungal effector suppresses PAMP-triggered immunity by targeting plant immune kinases. Proc. Natl. Acad. Sci. 116:496-505.
Jeong, J. S., Mitchell, T. K., and Dean, R. A. 2007. The Magnaporthe grisea snodprot1 homolog, MSP1, is required for virulence. FEMS Microbiol. Lett. 273:157-165.
Jiang, N., Fan, X. L., and Tian, C. M. 2019. Identification and pathogenicity of Cryphonectriaceae species associated with chestnut canker in China. Plant Pathol. 68:1132-1145.
Jin, J. H., Zhou, X., Liu, W., Zhang, Z. H., Huang, S. X., Zhao, W. J., and Chen, X. R. 2023. Influence of affinity tags and tobacco PR1a signal peptide on detection, purification and bioactivity analyses of the small oomycete apoplastic effectors. Biotechnol. Lett. 45:115-124.
Jones, J. D. G., and Dangl, J. L. 2006. The plant immune system. Nature 444:323-329.
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli, P., and Hassabis, D. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596:583-589.
Kang, H., Chen, X., Kemppainen, M., Pardo, A. G., Veneault-Fourrey, C., Kohler, A., and Martin, F. M. 2020. The small secreted effector protein MiSSP7.6 of Laccaria bicolor is required for the establishment of ectomycorrhizal symbiosis. Environ. Microbiol. 22:1435-1446.
Kirk, T. K., Schultz, E., Connors, W. J., Lorenz, L. F., and Zeikus, J. G. 1978. Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Arch. Microbiol. 117:277-285.
Kloppholz, S., Kuhn, H., and Requena, N. 2011. A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr. Biol. 21:1204-1209.
Ko, Y. C. 2023. Investigate the infection process of Phellinus noxius in woody plants by paraffin sectioning and scanning electron microscopy. Master's thesis, Department of Plant Pathology and Microbiology, National Taiwan University.
Kolde, R. 2018. pheatmap: Pretty Heatmaps. R package version 1.0.12.
Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E. L. L. 2001. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J. Mol. Biol. 305:567-580.
Lee, H. H. 2017. Genome and transcriptome analysis of wood decay fungus Phellinus noxius. Master's thesis, Department of Plant Pathology and Microbiology, National Taiwan University.
Lewis, D. H. 1973. Concepts in fungal nutrition and the origin of biotrophy. Biol. Rev. 48:261-277.
Li, Z., Yin, Z., Fan, Y., Xu, M., Kang, Z., and Huang, L. 2015. Candidate effector proteins of the necrotrophic apple canker pathogen Valsa mali can suppress BAX-induced PCD. Front. Plant Sci. 6:1-9.
Liu, S., Zhang, S., He, S., Qiao, X., and Runa, A. 2023. Tea plant (Camellia sinensis) lipid metabolism pathway modulated by tea field microbe (Colletotrichum camelliae) to promote disease. Hortic. Res. 10:uhad028.
Liu, S., Wu, B., Yang, J., Bi, F., Dong, T., Yang, Q., Hu, C., Xiang, D., Chen, H., Huang, H., Shao, C., Chen, Y., Yi, G., Li, C., and Guo, X. 2019. A cerato-platanin family protein FocCP1 is essential for the penetration and virulence of Fusarium oxysporum f. sp. cubense tropical race 4. Int. J. Mol. Sci. 20: 3785.
Liu, Z., Bos, J. I. B., Armstrong, M., Whisson, S. C., da Cunha, L., Torto-Alalibo, T., Win, J., Avrova, A. O., Wright, F., Birch, P. R. J., and Kamoun, S. 2004. Patterns of diversifying selection in the phytotoxin-like scr74 gene family of Phytophthora infestans. Mol. Biol. Evol. 22:659-672.
Longsaward, R., Viboonjun, U., Wen, Z., and Asiegbu, F. O. 2024. In silico analysis of secreted effectorome of the rubber tree pathogen Rigidoporus microporus highlights its potential virulence proteins. Front. Microbiol. 15:1439454.
Luti, S., Sella, L., Quarantin, A., Pazzagli, L., and Baccelli, I. 2020. Twenty years of research on cerato-platanin family proteins: clues, conclusions, and unsolved issues. Fungal Biol. Rev. 34:13-24.
Maiden, N. A., Atan, S., Syd Ali, N., Ahmad, K., and Wong, M.-Y. 2024. The cerato-platanin gene, RmCP, from Rigidoporus microporus was stably expressed during infection of Hevea brasiliensis. J. Rubber Res. 27:373-382.
Marcel, S., Sawers, R., Oakeley, E., Angliker, H., and Paszkowski, U. 2010. Tissue-adapted invasion strategies of the rice blast fungus Magnaporthe oryzae. Plant Cell 22:3177-3187.
Mathioni, S. M., Beló, A., Rizzo, C. J., Dean, R. A., and Donofrio, N. M. 2011. Transcriptome profiling of the rice blast fungus during invasive plant infection and in vitro stresses. BMC Genomics 12:49.
Mentlak, T. A., Kombrink, A., Shinya, T., Ryder, L. S., Otomo, I., Saitoh, H., Terauchi, R., Nishizawa, Y., Shibuya, N., Thomma, B. P. H. J., and Talbot, N. J. 2012. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. Plant Cell 24:322-335.
Miklas, P. N., Grafton, K. F., and Nelson, B. D. 1992. Screening for partial physiological resistance to white mold in dry bean using excised stems. J. Am. Soc. Hortic. Sci. 117:321-327.
Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., and Steinegger, M. 2022. ColabFold: making protein folding accessible to all. Nat. Methods 19:679-682.
Mitra, N., Sinha, S., Ramya, T. N. C., and Surolia, A. 2006. N-linked oligosaccharides as outfitters for glycoprotein folding, form and function. Trends Biochem. Sci. 31:156-163.
Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., and Olson, A. J. 2009. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30:2785-2791.
Ngou, B. P. M., Ding, P., and Jones, J. D. G. 2022. Thirty years of resistance: zig-zag through the plant immune system. Plant Cell 34:1447-1478.
Ökmen, B., Mathow, D., Hof, A., Lahrmann, U., Aßmann, D., and Doehlemann, G. 2018. Mining the effector repertoire of the biotrophic fungal pathogen Ustilago hordei during host and non-host infection. Mol. Plant Pathol. 19:2603-2622.
de Oliveira, A. L., Gallo, M., Pazzagli, L., Benedetti, C. E., Cappugi, G., Scala, A., Pantera, B., Spisni, A., Pertinhez, T. A., and Cicero, D. O. 2011. The structure of the elicitor cerato-platanin (CP), the first member of the CP fungal protein family, reveals a double ψβ-barrel fold and carbohydrate binding. J. Biol. Chem. 286:17560-17568.
Oome, S., and Van den Ackerveken, G. 2014. Comparative and functional analysis of the widely occurring family of Nep1-like proteins. Mol. Plant-Microbe Interact. 27:1081-1094.
Pazzagli, L., Seidl-Seiboth, V., Barsottini, M., Vargas, W. A., Scala, A., and Mukherjee, P. K. 2014. Cerato-platanins: elicitors and effectors. Plant Sci. 228:79-87.
Pasion, J., and Hind, S. R. 2021. Utilizing Tajima's D to identify potential microbe-associated molecular patterns in Xanthomonas euvesicatoria and X. perforans. Physiol. Mol. Plant Pathol. 116:101744.
R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Raffaello, T., and Asiegbu, F. O. 2017. Small secreted proteins from the necrotrophic conifer pathogen Heterobasidion annosum s.l. (HaSSPs) induce cell death in Nicotiana benthamiana. Sci. Rep. 7:8000.
Richards, J. K., Stukenbrock, E. H., Carpenter, J., Liu, Z., Cowger, C., Faris, J. D., and Friesen, T. L. 2019. Local adaptation drives the diversification of effectors in the fungal wheat pathogen Parastagonospora nodorum in the United States. PLoS Genet. 15:e1008223.
Robin, C., Morel, O., Vettraino, A.-M., Perlerou, C., Diamandis, S., and Vannini, A. 2006. Genetic variation in susceptibility to phytophthora cambivora in european chestnut (Castanea sativa). For. Ecol. Manag. 226:199-207.
Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., and Sánchez-Gracia, A. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34:3299-3302.
Sahu, N., Indic, B., Wong-Bajracharya, J., Merényi, Z., Ke, H. M., Ahrendt, S., Monk, T. L., Kocsubé, S., Drula, E., Lipzen, A., Bálint, B., Henrissat, B., Andreopoulos, B., Martin, F. M., Bugge Harder, C., Rigling, D., Ford, K. L., Foster, G. D., Pangilinan, J., Papanicolaou, A., Barry, K., LaButti, K., Virágh, M., Koriabine, M., Yan, M., Riley, R., Champramary, S., Plett, K. L., Grigoriev, I. V., Tsai, I. J., Slot, J., Sipos, G., Plett, J., and Nagy, L. G. 2023. Vertical and horizontal gene transfer shaped plant colonization and biomass degradation in the fungal genus Armillaria. Nat. Microbiol. 8:1668-1681.
Schilling, L., Matei, A., Redkar, A., Walbot, V., and Doehlemann, G. 2014. Virulence of the maize smut Ustilago maydis is shaped by organ-specific effectors. Mol. Plant Pathol. 15:780-789.
Seifbarghi, S., Borhan, M. H., Wei, Y., Ma, L., Coutu, C., Bekkaoui, D., and Hegedus, D. D. 2020. Receptor-like kinases BAK1 and SOBIR1 are required for necrotizing activity of a novel group of Sclerotinia sclerotiorum necrosis-inducing effectors. Front. Plant Sci. 11:1021.
Shao, D., Smith, D. L., Kabbage, M., and Roth, M. G. 2021. Effectors of plant necrotrophic fungi. Front. Plant Sci. 12:995.
Sonah, H., Deshmukh, R. K., and Bélanger, R. R. 2016. Computational prediction of effector proteins in fungi: opportunities and challenges. Front. Plant Sci. 7:126.
Sperschneider, J., and Dodds, P. N. 2022. EffectorP 3.0: prediction of apoplastic and cytoplasmic effectors in fungi and oomycetes. Mol. Plant-Microbe Interact. 35:146-156.
Stukenbrock, E. H., and McDonald, B. A. 2007. Geographical variation and positive diversifying selection in the host-specific toxin SnToxA. Mol. Plant Pathol. 8:321-332.
Tajima, F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585-595.
Tang, L., Yang, G., Ma, M., Liu, X., Li, B., Xie, J., Fu, Y., Chen, T., Yu, Y., Chen, W., Jiang, D., and Cheng, J. 2020. An effector of a necrotrophic fungal pathogen targets the calcium-sensing receptor in chloroplasts to inhibit host resistance. Mol. Plant Pathol. 21:686-701.
Teufel, F., Almagro Armenteros, J. J., Johansen, A. R., Gíslason, M. H., Pihl, S. I., Tsirigos, K. D., Winther, O., Brunak, S., von Heijne, G., and Nielsen, H. 2022. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat. Biotechnol. 40:1023-1025.
Trifinopoulos, J., Nguyen, L. T., von Haeseler, A., and Minh, B. Q. 2016. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44:W232-W235.
Trott, O., and Olson, A. J. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31:455-461.
Vargas, W. A., Djonović, S., Sukno, S. A., and Kenerley, C. M. 2008. Dimerization controls the activity of fungal elicitors that trigger systemic resistance in plants. J. Biol. Chem. 283:19804-19815.
Wang, X., Li, Q., Niu, X., Chen, H., Xu, L., and Qi, C. 2009. Characterization of a canola C2 domain gene that interacts with PG, an effector of the necrotrophic fungus Sclerotinia sclerotiorum. J. Exp. Bot. 60:2613-2620.
Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M., and Barton, G. J. 2009. Jalview Version 2 - a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189-1191.
Wei, T., Simko, V., Levy, M., Xie, Y., Jin, Y., and Zemla, J. 2024. corrplot: Visualization of a correlation matrix. R package version 0.95.
Weigel, D., and Glazebrook, J. 2006. Transformation of Agrobacterium using the freeze-thaw method. Cold Spring Harb. Protoc. 2006:pdb.prot4666.
Weiland, P., Dempwolff, F., Steinchen, W., Freibert, S.-A., Tian, H., Glatter, T., Martin, R., Thomma, B. P. H. J., Bange, G., and Altegoer, F. 2023. Structural and functional analysis of the cerato-platanin-like protein Cpl1 suggests diverging functions in smut fungi. Mol. Plant Pathol. 24:768-787.
Wickham, H. 2016. ggplot2: Elegant graphics for data analysis. Springer-Verlag New York.
Wu, Y., Xie, L., Jiang, Y., and Li, T. 2022. Prediction of effector proteins and their implications in pathogenicity of phytopathogenic filamentous fungi: A review. Int. J. Biol. Macromol. 206:188-202.
Yang, G., Tang, L., Gong, Y., Xie, J., Fu, Y., Jiang, D., Li, G., Collinge, D. B., Chen, W., and Cheng, J. 2018. A cerato‐platanin protein SsCP1 targets plant PR1 and contributes to virulence of Sclerotinia sclerotiorum. New Phytol. 217:739-755.
Yu, H., and Li, L. 2014. Phylogeny and molecular dating of the cerato-platanin-encoding genes. Genet. Mol. Biol. 37:423-427.
Su, L., Zhang, T., Yang, B., Bai, Y., Fang, W., Xiong, J., and Cheng, Z. M. 2024. The Botrytis cinerea effector BcXYG1 suppresses immunity in Fragaria vesca by targeting FvBPL4 and FvACD11. Hortic. Res. 11:uhad251.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96406-
dc.description.abstract褐根病菌 (Phellinus noxius) 是危害樹木根莖部的重要壞死性病原菌,其引起的樹木褐根病 (brown root rot disease) 近年來嚴重危害果樹、觀賞樹木、森林及都市林木,造成經濟損失並影響公共安全,而P. noxius的致病機制仍有諸多未知。本研究以基因組預測並比對轉錄組數據,篩選出 79 個候選效應蛋白 (effectors),其中包含 26 個 hypothetical proteins、29 個碳水化合物活性酶 (carbohydrate-active enzymes, CAZymes)、4 個 cerato-platanins (CPs) 及 3 個疏水蛋白 (hydrophobins)。進一步針對 P. noxius 基因體中 5 個 cerato-platanins (PnCPs) 的核苷酸多樣性、親緣關係及蛋白質預測結構進行分析,發現其可能受純化選擇作用,具有 CPs 特徵序列與保守結構,並具有幾丁質四聚體結合潛力。檢測不同環境條件下 PnCPs 之基因表現,發現 PnCP1 及 PnCP4 在馬鈴薯葡萄醣瓊脂培養基 (potato dextrose agar, PDA) 上菌絲生長旺盛時表現量較高,但液態完全培養基 (liquid complete medium, LCM) 下僅 PnCP4 有較高表現量。感染毛果楊 (Populus trichocarpa) 離體莖段時,PnCP1於 1 dpi (day post-infection) 之後表現量即顯著降低直至 4 dpi,可能與避免誘導植物啟動免疫反應有關;而 PnCP4 與 PnCP5 在 2 dpi 表現量顯著上調,其中 PnCP4 上調 14 倍以上,顯示兩者可能與 P. noxius 毒力有相關性。利用農桿菌浸潤法初步檢測5個 PnCPs 及其他 10 個候選效應蛋白基因之功能,在圓葉菸草 (Nicotiana benthamiana) 葉片短暫表達後皆未能誘導細胞死亡,推測這些候選效應蛋白可能有寄主或組織特異性,或具有誘導細胞死亡之外的生物活性。本研究為 P. noxius 效應蛋白的功能性研究建立重要的基礎資料,可作為未來功能性驗證與致病機制研究之參考。zh_TW
dc.description.abstractPhellinus noxius, the causal of brown root rot disease, is a significant necrotrophic pathogen that damages the roots and stems of trees. In recent years, brown root rot disease has severely affected fruit, ornamental, forest, and urban trees, causing economic losses and posing risks to public safety. However, the pathogenic mechanisms of P. noxius remain largely unknown. This study utilized genome predictions and transcriptomic data to identify 79 candidate effectors, including 26 hypothetical proteins, 29 carbohydrate-active enzymes (CAZymes), four cerato-platanins (CPs), and three hydrophobins. Further analysis of five P. noxius cerato-platanins (PnCPs) focused on the nucleotide diversity, phylogenetic relationships, and predicted protein structures. PnCPs are likely under purifying selection. PnCPs possess CPs signature sequences and conserved structures, and have potential chitin tetramer-binding ability. Gene expression analysis under different conditions showed that PnCP1 and PnCP4 had higher expression levels during vigorous mycelial growth on potato dextrose agar (PDA), while only PnCP4 exhibited high expression in liquid complete medium (LCM). When infecting the detached stem segment of Populus trichocarpa, PnCP1 expression was significantly down-regulated after 1 dpi (day post-infection) and remained low until 4 dpi, potentially associated with avoiding the triggering of plant immune response. In contrast, PnCP4 and PnCP5 expression were significantly up-regulated at 2 dpi, with PnCP4 increasing by over 14-fold, suggesting their potential role in virulence. Preliminary functional tests using agroinfiltration-based transient expression in Nicotiana benthamiana leaves showed that five PnCPs and another 10 candidate effector genes did not induce cell death. These candidate effectors may be host- or tissue-specific, or have biological activities other than inducing cell death. This study provides crucial foundational data for functional studies of P. noxius effectors and offers valuable references for future research on their pathogenic mechanisms.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-13T16:19:41Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-13T16:19:42Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
目次 v
表次 viii
圖次 ix
第一章 前言 1
1.1 褐根病菌 1
1.2 壞死性病原菌效應蛋白 2
1.2.1 誘導植物細胞死亡的效應蛋白 2
1.2.2 抑制植物免疫的效應蛋白 3
1.2.3 Cerato-platanin family proteins (CPs, or cerato-platanins) 4
1.3 預測與鑑定效應蛋白 5
1.3.1 根據胺基酸序列預測 5
1.3.2 農桿菌浸潤法應用於篩選效應蛋白 6
1.4 研究動機與目的 6
第二章 材料與方法 7
2.1 真菌與植物材料 7
2.1.1 P. noxius 培養條件 7
2.1.2 毛果楊培養條件 7
2.1.3 圓葉菸草培養條件 7
2.2 候選效應蛋白篩選 8
2.3 P. noxius 接種毛果楊莖段 8
2.4 P. noxius 逆境處理 9
2.5 萃取RNA與製備cDNA 10
2.5.1 萃取RNA 10
2.5.2 製備cDNA 10
2.6 基因表現量分析 11
2.6.1 qRT-PCR 11
2.6.2 基因表現量相關性分析 11
2.7 候選效應蛋白基因定序 12
2.8 PnCPs序列分析 13
2.8.1 PnCPs 核苷酸多樣性分析 13
2.8.2 PnCPs胺基酸序列比對與親緣分析 13
2.8.3 PnCPs立體結構預測與幾丁質聚合物對接模擬 14
2.9 農桿菌浸潤法 14
2.9.1 表達載體構築 14
2.9.2 ParA1 elicitin signal peptide (ParA1SP) 融合表達載體構築 15
2.9.3 圓葉菸草葉片之農桿菌浸潤處理 16
第三章 結果 17
3.1 候選效應蛋白分析 17
3.2 P. noxius 基因組中 cerato-platanins (PnCPs) 17
3.3 PnCPs 核苷酸多樣性分析 17
3.4 PnCPs 序列結構及親緣分析 18
3.5 PnCPs幾丁質結合功能預測 19
3.6 不同環境條件下PnCPs的基因表現分析 19
3.7 PnCPs 誘導細胞死亡之活性檢測 20
3.8 其他候選效應蛋白誘導細胞死亡之活性檢測 21
第四章 討論 22
4.1 P. noxius效應蛋白預測 22
4.2 PnCPs 基因表現特性 24
4.3 效應蛋白誘導細胞死亡之活性檢測 27
參考文獻 30
表 43
圖 51
附錄 69
-
dc.language.isozh_TW-
dc.title褐根病菌 Phellinus noxius 候選效應蛋白 cerato-platanins 之探討zh_TW
dc.titleInvestigation of the candidate effector protein cerato-platanins in Phellinus noxius, the cause of brown root rot diseaseen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee劉瑞芬;蔡怡陞;張皓巽zh_TW
dc.contributor.oralexamcommitteeRuey-Fen Liou;Isheng Jason Tsai;Hao-Xun Changen
dc.subject.keyword褐根病菌,效應蛋白,cerato-platanins,親緣分析,蛋白結構預測,農桿菌浸潤法,zh_TW
dc.subject.keywordPhellinus noxius,effectors,cerato-platanins,phylogenetic analysis,protein structure prediction,agroinfiltration,en
dc.relation.page77-
dc.identifier.doi10.6342/NTU202500541-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-02-10-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept植物病理與微生物學系-
dc.date.embargo-lift2030-02-08-
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  此日期後於網路公開 2030-02-08
5.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved