請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96401
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳琪芳 | zh_TW |
dc.contributor.advisor | Chi-Fang Chen | en |
dc.contributor.author | 菲塔雅 | zh_TW |
dc.contributor.author | Tatiana Filonets | en |
dc.date.accessioned | 2025-02-13T16:18:22Z | - |
dc.date.available | 2025-02-14 | - |
dc.date.copyright | 2025-02-13 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-02-07 | - |
dc.identifier.citation | [1] J. A. Gallego-Juarez, “Basic principles of ultrasound,” in Ultrasound in Food Processing: Recent Advances, M. Villamiel, J. V. Garcia-Perez, A. Montilla, J. A. Carcel, and J. Benedito, Eds. John Wiley & Sons Ltd., 2017, pp. 1–26. DOI: 10.1002/9781118964156.ch1.
[2] W. D. O’Brien, “Ultrasound–biophysics mechanisms,” Progress in Biophysics and Molecular Biology, vol. 93, no. 1, pp. 212–255, 2007. DOI: 10.1016/j.pbiomolbio.2006.07.010. [3] J. D. Pye and W. R. Langbauer, “Ultrasound and infrasound,” in Animal Acoustic Communication, S. L. Hopp, M. J. Owren, and C. S. Evans, Eds. Springer Berlin, Heidelberg, 1998, pp. 221–250. DOI: 10.1007/978-3-642-76220-8_7. [4] V. S. Bachu, J. Kedda, I. Suk, J. J. Green, and B. Tyler, “High-intensity focused ultrasound: A review of mechanisms and clinical applications,” Annals of Biomedical Engineering, vol. 49, no. 9, pp. 1975–1991, 2021. DOI: 10.1007/s10439-021-02833-9. [5] F. Duck, “‘The Electrical Expansion of Quartz’ by Jacques and Pierre Curie,” Ultrasound, vol. 17, no. 4, pp. 197–203, 2009. [6] March 1880: The Curie Brothers Discover Piezoelectricity, https://www.aps.org/archives/publications/apsnews/201403/physicshistory.cfm, accessed Dec. 10, 2024. [7] A. D’Amico and R. Pittenger, “A brief history of active sonar,” Aquatic Mammals, vol. 35, no. 4, pp. 426–434, 2009. DOI: 10.1578/AM.35.4.2009.426. [8] F. Duck, “Paul Langevin, U-boats, and ultrasonics,” Physics Today, vol. 75, no. 11, pp. 42–48, 2022. DOI: 10.1063/PT.3.5122. [9] F. A. Duck and A. M. K. Thomas, “Paul Langevin (1872-1946): The father of ultrasonics,” Medical Physics International, vol. 10, no. 1, pp. 84–91, 2022. [10] P. G. Newman and G. S. Rozycki, “The history of ultrasound,” The Surgical clinics of North America, vol. 78, no. 2, pp. 179–195, 1998. DOI: 10.1016/s0039- 6109(05)70308-x. [11] J. Lewiner, “Paul Langevin and the birth of ultrasonics,” Japanese Journal of Applied Physics, vol. 30, no. S1, p. 5, 1991. DOI: 10.7567/JJAPS.30S1.5. [12] P. Langevin, French Patent No. 505,703, filed September 17, 1917; issued August 5, 1920. [13] W. D. O’Brien, “Thermal and other non-cavitational mechanisms,” in Therapeutic Ultrasound: Mechanisms to Applications, V. Frenkel, Ed. Nova Science Publishers, Inc., 2011, pp. 7–38. [14] R. W. Wood and A. L. Loomis, “XXXVIII. The physical and biological effects of high-frequency sound-waves of great intensity,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 4, no. 22, pp. 417– 436, 1927. DOI: 10.1080/14786440908564348. [15] E. N. Harvey, “Biological aspects of ultrasonic waves, a general survey,” Biological Bulletin, vol. 59, no. 3, pp. 306–325, 1930. DOI: 10.2307/1536819. [16] H. Freundlich, K. So¨llner, and F. Rogowski, “Einige biologische wirkungen von ultraschallwellen,” Klin Wochenschr, vol. 11, pp. 1512–1513, 1932, in German. DOI: 10.1007/BF01766074. [17] D. N. White, “The conception, birth and childhood of wfumb and its specialist and continental federations: The first quarter century,” Ultrasound in Medicine & Biology, vol. 16, no. 4, pp. 333–348, 1990. DOI: 10.1016/0301-5629(90)90063-I. [18] W. J. Fry and V. J. Wulff, “Ultrasonic irradiation of nerve tissue,” The Journal of the Acoustical Society of America, vol. 22, p. 682, 1950. DOI: 10.1121/1.1917224. [19] R. Pohlman, R. Richter, and E. Parow, “U¨ ber die ausbreitung und absorption des ultraschalls im menschlichen gewebe und seine therapeutische wirkung an is- chias und plexusneuralgie,” Deutsche Medizinische Wochenschrift, vol. 65, no. 7, pp. 251–254, 1939, in German. DOI: 10.1055/s-0028-1120360. [20] T. J. Mason, “Therapeutic ultrasound an overview,” Ultrasonics Sonochemistry, vol. 18, no. 4, pp. 847–852, 2011. DOI: 10.1016/j.ultsonch.2011.01.004. [21] R. Beisteiner, “Human ultrasound neuromodulation: State of the art,” Brain Sciences, vol. 12, no. 2, p. 208, 2022. DOI: 10.3390/brainsci12020208. [22] J. Gruetzmacher, “Piezoelektrischer kristall mit ultraschallkonvergenz,” Zeitschrift fu¨r Physik, vol. 96, pp. 342–349, 1935, in German. DOI: 10.1007/BF01343865. [23] M. Harary, D. J. Segar, K. T. Huang, I. J. Tafel, P. A. Valdes, and G. R. Cos- grove, “Focused ultrasound in neurosurgery: A historical perspective,” Neurosurgical Focus, vol. 44, no. 2, E2, 2018. DOI: 10.3171/2017.11.FOCUS17586. [24] J. G. Lynn, R. L. Zwemer, A. J. Chick, and A. E. Miller, “A new method for the generation and use of focused ultrasound in experimental biology,” The Journal of General Physiology, vol. 26, no. 2, pp. 179–193, 1942. DOI: 10.1085/jgp.26.2.179. [25] G. ter Haar and C. Coussios, “High intensity focused ultrasound: Physical principles and devices,” International Journal of Hyperthermia, vol. 23, no. 2, pp. 89–104, 2007. DOI: 10.1080/02656730601186138. [26] R. Meyers, W. J. Fry, F. J. Fry, L. L. Dreyer, D. F. Schultz, and R. F. Noyes, “Early experiences with ultrasonic irradiation of the pallidofugal and nigral complexes in hyperkinetic and hypertonic disorders,” Journal of Neurosurgery, vol. 16, no. 1, pp. 32–54, 1959. DOI: 10.3171/jns.1959.16.1.0032. [27] W. J. Fry and F. J. Fry, “Fundamental neurological research and human neurosurgery using intense ultrasound,” IRE Transactions on Medical Electronics, vol. ME-7, no. 3, pp. 166–181, 1960. DOI: 10.1109/iret-me.1960.5008041. [28] N. M. Duc and B. Keserci, “Emerging clinical applications of high-intensity focused ultrasound,” Diagnostic and Interventional Radiology, vol. 25, no. 3, pp. 398–409, 2019. DOI: 10.5152/dir.2019.18556. [29] W. D. O’Brien and F. Dunn, “An early history of high-intensity focused ultrasound,” Physics Today, vol. 68, no. 10, pp. 40–45, 2015. DOI: 10.1063/PT.3.2947. [30] V. Rieke and K. B. Pauly, “MR thermometry,” Journal of Magnetic Resonance Imaging, vol. 27, no. 2, pp. 376–390, 2008. DOI: 10.1002/jmri.21265. [31] F. A. Jolesz, “MRI-guided focused ultrasound surgery,” Annual Review of Medicine, vol. 60, no. 2, pp. 417–430, 2009. DOI: 10.1146/annurev.med.60.041707.170303. [32] I. S. Elhelf, H. Albahar, U. Shah, A. Oto, E. Cressman, and M. Almekkawy, “High intensity focused ultrasound: The fundamentals, clinical applications and research trends,” Diagnostic and Interventional Imaging, vol. 99, no. 6, pp. 349–359, 2018, ISSN: 2211-5684. DOI: 10.1016/j.diii.2018.03.001. [33] Z. Izadifar, Z. Izadifar, D. Chapman, and P. Babyn, “An introduction to high intensity focused ultrasound: Systematic review on principles, devices, and clinical applications,” Journal of Clinical Medicine, vol. 9, no. 2, 2020. DOI: 10.3390/jcm9020460. [34] H. Ashar and A. Ranjan, “Immunomodulation and targeted drug delivery with high intensity focused ultrasound (HIFU): Principles and mechanisms,” Pharmacology & Therapeutics, vol. 244, p. 108393, 2023. DOI: 10.1016/j.pharmthera.2023.108393. [35] Y.-s. Kim, H. Rhim, M. J. Choi, H. K. Lim, and D. Choi, “High-intensity focused ultrasound therapy: An overview for radiologists,” Korean Journal of Radiology, vol. 9, no. 4, pp. 291–302, 2008. DOI: 10.3348/kjr.2008.9.4.291. [36] J. P. McWilliams, E. W. Lee, S. Yamamoto, C. T. Loh1, and S. T. Kee, “Image-guided tumor ablation: Emerging technologies and future directions,” Seminars in Interventional Radiology, vol. 27, no. 3, pp. 302–313, 2010. DOI: 10.1055/s-0030-1261789. [37] E. Zilonova, “Cavitation study in high-intensity focused ultrasound thermal therapy,” PhD thesis, National Taiwan University, Jul. 2019. DOI: 10.6342/NTU201902181. [38] S. A. Sapareto and W. C. Dewey, “Thermal dose determination in cancer therapy,” Int J Radiat Oncol Biol Phys., vol. 10, no. 6, pp. 787–800, 1984. DOI: 10.1016/ 0360-3016(84)90379-1. [39] M. W. Dewhirst, B. L. Viglianti, M. Lora-Michiels, M. Hanson, and P. J. Hoopes, “Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia,” Int J Hyperther., vol. 19, no. 3, pp. 267–294, 2003. DOI: 10.1080/0265673031000119006. [40] K. Qian, C. Li, Z. Ni, J. Tu, X. Guo, and D. Zhang, “Uniform tissue lesion formation induced by high-intensity focused ultrasound along a spiral pathway,” Ultrasonics, vol. 77, pp. 38–46, 2017. DOI: 10.1016/j.ultras.2017.01.018. [41] Y. Zhou, S. G. Kargl, and J. H. Hwang, “The effect of the scanning pathway in high-intensity focused ultrasound therapy on lesion production,” Ultrasound in Medicine & Biology, vol. 37, no. 9, pp. 1457–1468, 2011. DOI: 10.1016/j.ultrasmedbio.2011.05.848. [42] T. Fan, Z. Liu, D. Zhang, and M. Tang, “Comparative study of lesions created by high-intensity focused ultrasound using sequential discrete and continuous scanning strategies,” IEEE Transactions on Biomedical Engineering, vol. 60, no. 3, pp. 763–769, 2013. DOI: 10.1109/TBME.2011.2167719. [43] A. Antoniou, A. Georgiou, N. Evripidou, and C. Damianou, “Full coverage path planning algorithm for MRgFUS therapy,” The International Journal of Medical Robotics and Computer Assisted Surgery, vol. 18, no. 3, e2389, 2022. DOI: 10. 1002/rcs.2389. [44] Y. Zhou, “Generation of uniform lesions in high intensity focused ultrasound ablation,” Ultrasonics, vol. 53, no. 2, pp. 495–505, 2013. DOI: 10.1016/j.ultras.2012.09.001. [45] P. Gupta and A. Srivastava, “Numerical study on the possible scanning pathways to optimize thermal impacts during multiple sonication of HIFU,” IEEE Transactions on Biomedical Engineering, vol. 68, no. 7, pp. 2117–2128, 2021. DOI: 10.1109/TBME.2020.3026420. [46] H. Dong, G. Liu, Z. Ma, G. Peng, and P. Pan, “Simulation study on the effect of high-intensity focused ultrasound on thermal lesion of biological tissue under different treatment modes,” Iranian Journal of Medical Physics, vol. 19, no. 4, pp. 199–206, 2022. DOI: 10.22038/ijmp.2022.59497.1999. [47] A. Filippou, T. Drakos, M. Giannakou, N. Evripidou, and C. Damianou, “Experimental evaluation of the near-field and far-field heating of focused ultrasound using the thermal dose concept,” Ultrasonics, vol. 116, p. 106513, 2021. DOI: 10.1016/j.ultras.2021.106513. [48] D. Li, G. Shen, H. Luo, J. Bai, and Y. Chen, “A study of heating duration and scanning path in focused ultrasound surgery,” Journal of Medical Systems, vol. 35, no. 5, pp. 779–786, 2011. DOI: 10.1007/s10916-010-9463-6. [49] F. R. Young, “Introduction,” in Cavitation. McGraw-Hill, 1989, pp. 1–7. [50] S. Xu, Y. Qiao, X. Liu, C. Church, and M. Wan, “Fundamentals of cavitation,” in Cavitation in Biomedicine: Principles and Techniques, M. Wan, Y. Feng, and G. Haar, Eds. Springer Dordrecht, 2015, pp. 1–46. DOI: 10.1007/978-94-017- 7255-6_1. [51] C. Brennen, “Phase change, nucleation, and cavitation,” in Cavitation and Bubble Dynamics. Cambridge University Press, 2013, pp. 1–29. DOI: 10.1017/CBO9781107338760.002. [52] I. Newton, “Book Two of the Opticks,” in Opticks. Dover Publications, Inc., 1952, p. 207. [53] O. Reynolds, “The causes of the racing of the engines of screw steamers investigated theoretically and by experiment,” Transactions of the Royal Institution of Naval Architects, vol. 14, pp. 56–67, 1873. [54] J. D. Jackson, “Osborne Reynolds: Scientist, engineer and pioneer,” Proceedings: Mathematical and Physical Sciences, vol. 451, no. 1941, pp. 49–86, 1995. DOI: 10.1098/rspa.1995.0117. [55] L. Euler, “The´orie plus complette des machines qui sont mises en mouvement par la re´action de l’eau,” Me´moires de l’acade´mie des sciences de Berlin, vol. 10, pp. 227–295, 1756, in French. [56] S. R. Bistafa, “Euler’s pioneering general theory of rotating hydraulic machines,” Physics of Fluids, vol. 33, no. 10, p. 101801, 2021. DOI: 10.1063/5.0069951. [57] A. Alhelfi and B. Sunden, “The cavitation phenomenon: A literature survey,” WIT Transactions on Engineering Sciences, vol. 83, pp. 351–362, 2014. DOI: 10.2495/HT140311. [58] S. Li, C. E. Brennen, and Y. Matsumoto, “Introduction for amazing (cavitation) bubbles,” Interface Focus, vol. 5, no. 5, p. 20 150059, 2015. DOI: 10.1098/rsfs.2015.0059. [59] J. I. Thornycroft and S. W. Barnaby, “Torpedo-boat destroyers,” Minutes of the Proceedings of the Institution of Civil Engineers, vol. 122, pp. 51–69, 1895. DOI: 10.1680/imotp.1895.19693. [60] W. Lauterborn, “Cavitation and coherent optics,” in Cavitation and Inhomogeneities in Underwater Acoustics, W. Lauterborn, Ed. Springer Berlin, Heidelberg, 1980, pp. 3–12. DOI: 10.1007/978-3-642-51070-0_1. [61] S. S. Arya, P. R. More, M. R. Ladole, and K. Pegu, “Non-thermal, energy efficient hydrodynamic cavitation for food processing, process intensification and extraction of natural bioactives: A review,” Ultrasonics Sonochemistry, vol. 98, p. 106504, 2023. DOI: 10.1016/j.ultsonch.2023.106504. [62] Y. T. Shah, A. B. Pandit, and V. S. Moholkar, “Sources and types of cavitation,” in Cavitation Reaction Engineering. Springer, Boston, 1999, pp. 1–14. DOI: 10.1007/978-1-4615-4787-7_1. [63] M. P. Felix and A. T. Ellis, “Laser-induced liquid breakdown-a step-by-step account,” Applied Physics Letters, vol. 19, no. 11, pp. 484–486, 1971. DOI: 10.1063/1.1653783. [64] W. Lauterborn and H. Bolle, “Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary,” Journal of Fluid Mechanics, vol. 72, no. 2, pp. 391–399, 1975. DOI: 10.1017/S0022112075003448. [65] D. Krefting, R. Mettin, and W. Lauterborn, “High-speed observation of acoustic cavitation erosion in multibubble systems,” Ultrasonics Sonochemistry, vol. 11, no. 3-4, pp. 119–123, 2004. DOI: 10.1016/j.ultsonch.2004.01.006. [66] X. Zhu, R. S. Das, M. L. Bhavya, M. Garcia-Vaquero, and B. K. Tiwari, “Acoustic cavitation for agri-food applications: Mechanism of action, design of new systems, challenges and strategies for scale-up,” Ultrasonics Sonochemistry, vol. 105, p. 106 850, 2024. DOI: 10.1016/j.ultsonch.2024.106850. [67] M. Zare et al., “A fundamental study on the degradation of paracetamol under single- and dual-frequency ultrasound,” Ultrasonics Sonochemistry, vol. 94, p. 106320, 2023. DOI: 10.1016/j.ultsonch.2023.106320. [68] K. Song, Y. Liu, A. Umar, H. Ma, and H. Wang, “Ultrasonic cavitation: Tackling organic pollutants in wastewater,” Chemosphere, vol. 350, p. 141024, 2024. DOI: 10.1016/j.chemosphere.2023.141024. [69] N. S. M. Yusof, B. Babgi, Y. Alghamdi, M. Aksu, J. Madhavan, and M. Ashokku- mar, “Physical and chemical effects of acoustic cavitation in selected ultrasonic cleaning applications,” Ultrasonics Sonochemistry, vol. 29, pp. 568–576, 2016. DOI: 10.1016/j.ultsonch.2015.06.013. [70] R. Holt and R. A. Roy, “Measurements of bubble-enhanced heating from focused, MHz-frequency ultrasound in a tissue-mimicking material,” Ultrasound in Medicine and Biology, vol. 27, no. 10, pp. 1399–1412, 2001. DOI: 10.1016/ S0301-5629(01)00438-0. [71] A. Shanei and A. Sazgarnia, “An overview of therapeutic applications of ultrasound based on synergetic effects with gold nanoparticles and laser excitation,” Iranian Journal of Basic Medical Sciences, vol. 22, no. 8, pp. 848–855, 2019. DOI: 10.22038/ijbms.2019.29584.7142. [72] Y. Yin et al., “Continuous inertial cavitation evokes massive ROS for reinforc- ing sonodynamic therapy and immunogenic cell death against breast carcinoma,” Nano Today, vol. 36, p. 101009, 2021. DOI: 10.1016/j.nantod.2020.101009. [73] M. He et al., “Reactive oxygen species-powered cancer immunotherapy: Current status and challenges,” Journal of Controlled Release, vol. 356, pp. 623–648, 2023. DOI: 10.1016/j.jconrel.2023.02.040. [74] D. L. Miller, “Overview of experimental studies of biological effects of medical ultrasound caused by gas body activation and inertial cavitation,” Progress in Biophysics and Molecular Biology, vol. 93, no. 1, pp. 314–330, 2007. DOI: 10.1016/j.pbiomolbio.2006.07.027. [75] B. Gilles, J. C. Bera, J. L. Mestas, and D. Cathignol, “Reduction of ultrasound inertial cavitation threshold using bifrequency excitation,” Applied Physics Letters, vol. 89, no. 9, p. 094106, 2006. DOI: 10.1063/1.2345230. [76] I. Saletes, B. Gilles, V. Auboiroux, N. Bendridi, R. Salomir, and J.-C. Be´ra, “In vitro demonstration of focused ultrasound thrombolysis using bifrequency excitation,” BioMed Research International, vol. 2014, p. 518787, 2014. DOI: 10.1155/2014/518787. [77] D. Suo, S. Guo, W. Lin, X. Jiang, and Y. Jing, “Thrombolysis using multi-frequency high intensity focused ultrasound at MHz range: Anin vitrostudy,” Physics in Medicine and Biology, vol. 60, no. 18, pp. 7403–7418, 2015. DOI: 10.1088/0031-9155/60/18/7403. [78] D. Suo, Z. Jin, X. Jiang, P. A. Dayton, and Y. Jing, “Microbubble mediated dual-frequency high intensity focused ultrasound thrombolysis: An in vitro study,” Applied Physics Letters, vol. 110, no. 2, p. 023703, 2017. DOI: 10.1063/1.4973857. [79] T. D. Khokhlova, M. S. Canney, V. A. Khokhlova, O. A. Sapozhnikov, L. A. Crum, and M. R. Bailey, “Controlled tissue emulsification produced by high intensity focused ultrasound shock waves and millisecond boiling,” The Journal of the Acoustical Society of America, vol. 130, no. 5, pp. 3498–3510, 2011. DOI: 10.1121/1.3626152. [80] B. Petit et al., “Sonothrombolysis: The contribution of stable and inertial cavitation to clot lysis,” Ultrasound in Medicine and Biology, vol. 41, no. 5, pp. 1402– 1410, 2015. DOI: 10.1016/j.ultrasmedbio.2014.12.007. [81] S. Li, Y. Wei, B. Zhang, and X. Li, “Research progress and clinical evaluation of histotripsy: A narrative review,” Annals of Translational Medicine, vol. 11, no. 6, p. 263, 2023. DOI: 10.21037/atm-22-2578. [82] A. Ignee, N. S. S. Atkinson, G. Schuessler, and C. F. Dietrich, “Ultrasound contrast agents,” Endoscopic Ultrasound, vol. 5, no. 6, pp. 355–362, 2016. DOI: 10. 4103/2303-9027.193594. [83] V. Frenkel, “Ultrasound mediated delivery of drugs and genes to solid tumors,” Advanced Drug Delivery Reviews, vol. 60, no. 10, pp. 1193–1208, 2008, Ultrasound in Drug and Gene Delivery, ISSN: 0169-409X. DOI: 10.1016/j.addr.2008.03.007. [84] A. Gasselhuber et al., “Targeted drug delivery by high intensity focused ultrasound mediated hyperthermia combined with temperature-sensitive liposomes: Computational modelling and preliminary in vivovalidation,” International Journal of Hyperthermia, vol. 28, no. 4, pp. 337–348, 2012. DOI: 10.3109/02656736.2012.677930. [85] S. Li, Y. Wei, B. Zhang, and X. Li, “Ultrasound-guided drug delivery in cancer,” Ultrasonography, vol. 36, no. 3, pp. 171–184, 2017. DOI: 10.14366/usg.17021. [86] C. E. Brennen, “Cavitation in medicine,” Interface Focus, vol. 5, no. 5, p. 20 150 022, 2015. DOI: 10.1098/rsfs.2015.0022. [87] F. R. Young, “Bubble dynamics,” in Cavitation. McGraw-Hill, 1989, pp. 8–37. [88] V. K. Shen and P. G. Debenedetti, “A kinetic theory of homogeneous bubble nucleation,” The Journal of Chemical Physics, vol. 118, no. 2, pp. 768–783, 2003. DOI: 10.1063/1.1526836. [88] V. K. Shen and P. G. Debenedetti, "A kinetic theory of homogeneous bubble nucleation," The Journal of Chemical Physics, vol. 118, no. 2, pp. 768-783, 2003. DOI: 10.1063/1.1526836 [89] C. C. Church, “Spontaneous homogeneous nucleation, inertial cavitation and the safety of diagnostic ultrasound,” Ultrasound in Medicine & Biology, vol. 28, no. 10, pp. 1349–1364, 2002. DOI: 10.1016/S0301-5629(02)00579-3. [90] R. E. Apfel, “The role of impurities in cavitation-threshold determination,” The Journal of the Acoustical Society of America, vol. 48, no. 5B, pp. 1179–1186, 1970. DOI: 10.1121/1.1912258. [91] R. E. Apfel, “Acoustic cavitation inception,” Ultrasonics, vol. 22, no. 4, pp. 167– 173, 1984. DOI: 10.1016/0041-624X(84)90032-5. [92] F. S. Rawnaque and J. C. Simon, “The effects of elastic modulus and impurities on bubble nuclei available for acoustic cavitation in polyacrylamide hydrogels,” The Journal of the Acoustical Society of America, vol. 152, no. 6, pp. 3502–3509, 2022. DOI: 10.1121/10.0016445. [93] A. A. Atchley and A. Prosperetti, “The crevice model of bubble nucleation,” The Journal of the Acoustical Society of America, vol. 86, no. 3, pp. 1065–1084, 1989. DOI: 10.1121/1.398098. [94] T. Leighton, “Cavitation inception and fluid dynamics,” in The Acoustic Bubble. Academic Press, 1994, pp. 67–128. DOI: 10.1016/B978-0-12-441920-9.50007-9. [95] L. A. Zenewicz, “Oxygen levels and immunological studies,” Frontiers in Immunology, vol. 8, p. 324, 2017. DOI: 10.3389/fimmu.2017.00324. [96] E. Stride and C. Coussios, “Nucleation, mapping and control of cavitation for drug delivery,” Nature Reviews Physics, vol. 1, pp. 495–509, 2019. DOI: 10.1038/s42254-019-0074-y. [97] B. Lyons et al., “Sonosensitive cavitation nuclei – A customisable platform technology for enhanced therapeutic delivery,” Molecules, vol. 28, no. 23, p. 7733, 2023. DOI: 10.3390/molecules28237733. [98] K. Radhakrishnan, K. J. Haworth, T. Peng, D. D. McPherson, and C. K. Holland, “Loss of echogenicity and onset of cavitation from echogenic liposomes: Pulse repetition frequency independence,” Ultrasound in Medicine & Biology, vol. 41, no. 1, pp. 208–221, 2015. DOI: 10.1016/j.ultrasmedbio.2014.08.021. [99] T. Xu et al., “Cavitation characteristics of flowing low and high boiling-point perfluorocarbon phase-shift nanodroplets during focused ultrasound exposures,” Ultrasonics Sonochemistry, vol. 65, p. 105 060, 2020. DOI: 10.1016/j.ultsonch.2020.105060. [100] W. Zhang et al., “Characterising the chemical and physical properties of phase-change nanodroplets,” Ultrasonics Sonochemistry, vol. 97, p. 106445, 2023. DOI: 10.1016/j.ultsonch.2023.106445. [101] R. Wang et al., “Targeted microRNA delivery by lipid nanoparticles and gas vesicle-assisted ultrasound cavitation to treat heart transplant rejection,” Biomaterials Science, vol. 11, pp. 6492–6503, 2023. DOI: 10.1039/d2bm02103j. [102] R. Feng, J. Lan, M. C. Goh, M. Du, and Z. Chen, “Advances in the application of gas vesicles in medical imaging and disease treatment,” Journal of Biological Engineering, vol. 18, no. 1, p. 41, 2024. DOI: 10.1186/s13036-024-00426-3. [103] R. E. Apfel, “Acoustic cavitation,” in Ultrasonics, ser. Methods in Experimental Physics, P. D. Edmonds, Ed., vol. 19, Academic Press, 1981, pp. 355–411. DOI: 10.1016/S0076-695X(08)60338-5. [104] E. Neppiras, “Acoustic cavitation,” Physics Reports, vol. 61, pp. 159–251, 1980. DOI: 10.1016/0370-1573(80)90115-5. [105] J. Liu, T. Lewis, and M. Prausnitz, “Non-invasive assessment and control of ultrasound-mediated membrane permeabilization,” Pharmaceutical Research, vol. 15, no. 6, pp. 918–924, 1998. DOI: 10.1023/A:1011984817567. [106] J.-L. Mestas, P. Lenz, and D. Cathignol, “Long-lasting stable cavitation,” The Journal of the Acoustical Society of America, vol. 113, no. 3, pp. 1426–1430, 2003. DOI: 10.1121/1.1538198. [107] P. Tho, R. Manasseh, and A. Ooi, “Cavitation microstreaming patterns in single and multiple bubble systems,” Journal of Fluid Mechanics, vol. 576, pp. 191–233, 2007. DOI: 10.1017/S0022112006004393. [108] C. C. Coussios and R. A. Roy, “Applications of acoustics and cavitation to noninvasive therapy and drug delivery,” Annual Review of Fluid Mechanics, vol. 40, no. 1, pp. 395–420, 2008. DOI: 10.1146/annurev.fluid.40.111406.102116. [109] R. Manasseh, “Acoustic bubbles, acoustic streaming, and cavitation microstreaming,” in Handbook of Ultrasonics and Sonochemistry, M. Ashokkumar, Ed. Springer Singapore, 2016, pp. 33–68. DOI: 10.1007/978-981-287-278-4_5. [110] J. Jalal and T. S. H. Leong, “Microstreaming and its role in applications: A mini-review,” Fluids, vol. 3, no. 4, p. 93, 2018. DOI: 10.3390/fluids3040093. [111] K. S. Suslick, N. C. Eddingsaas, D. J. Flannigan, S. D. Hopkins, and H. Xu, “The chemical history of a bubble,” Accounts of Chemical Research, vol. 51, no. 9, pp. 2169–2178, 2018. DOI: 10.1021/acs.accounts.8b00088. [112] J. Mondal, R. Lakkaraju, P. Ghosh, and M. Ashokkumar, “Acoustic cavitation-induced shear: A mini-review,” Biophysical Reviews, vol. 13, pp. 1229–1243, 2021. DOI: 10.1007/s12551-021-00896-5. [113] J. Tang, C. Guha, and W. A. Tome´, “Biological effects induced by non-thermal ultrasound and implications for cancer therapy: A review of the current literature,” Technology in cancer research & treatment, vol. 14, no. 2, pp. 221–235, 2015. DOI: 10.7785/tcrt.2012.500407. [114] R. J. Wood, J. Lee, and M. J. Bussemaker, “A parametric review of sonochemistry: Control and augmentation of sonochemical activity in aqueous solutions,” Ultrasonics Sonochemistry, vol. 38, pp. 351–370, 2017. DOI: 10.1016/j.ultsonch.2017.03.030. [115] P.-K. Choi, “Sonoluminescence and acoustic cavitation,” Japanese Journal of Applied Physics, vol. 56, no. 7S1, 07JA01, 2017. DOI: 10.7567/jjap.56.07ja01. [116] C. d. Arvanitis, N. Vykhodtseva, F. Jolesz, M. Livingstone, and N. McDannold, “Cavitation-enhanced nonthermal ablation in deep brain targets: Feasibility in a large animal model,” Journal of Neurosurgery, vol. 124, no. 5, pp. 1450–1459, 2016. DOI: 10.3171/2015.4.JNS142862. [117] D. Suo, B. Govind, S. Zhang, and Y. Jing, “Numerical investigation of the inertial cavitation threshold under multi-frequency ultrasound,” Ultrasonics Sonochemistry, vol. 41, pp. 419–426, 2018, ISSN: 1350-4177. DOI: 10.1016/j.ultsonch.2017.10.004. [118] M. Wang and Y. Zhou, “Numerical investigation of the inertial cavitation threshold by dual-frequency excitation in the fluid and tissue,” Ultrasonics Sonochemistry, vol. 42, pp. 327–338, 2018, ISSN: 1350-4177. DOI: 10.1016/j.ultsonch.2017.11.045. [119] H. Dong, X. Zou, and S. Qian, “Simulation study on the influence of multifrequency ultrasound on transient cavitation threshold in different media,” Applied Sciences, vol. 10, no. 14, 2020. DOI: 10.3390/app10144778. [120] F. Hegedu˝s, K. Klapcsik, W. Lauterborn, U. Parlitz, and R. Mettin, “GPU accelerated study of a dual-frequency driven single bubble in a 6-dimensional parameter space: The active cavitation threshold,” Ultrasonics Sonochemistry, vol. 67, p. 105067, 2020, ISSN: 1350-4177. DOI: 10.1016/j.ultsonch.2020.105067. [121] T. Filonets and M. Solovchuk, “GPU-accelerated study of the inertial cavitation threshold in viscoelastic soft tissue using a dual-frequency driving signal,” Ultrasonics Sonochemistry, vol. 88, p. 106056, 2022. DOI: 10.1016/j.ultsonch.2022.106056. [122] K. Yasuda et al., “Enhancement of sonochemical reaction of terephthalate ion by superposition of ultrasonic fields of various frequencies,” Ultrasonics Sonochemistry, vol. 14, no. 6, pp. 699–704, 2007. DOI: 10.1016/j.ultsonch.2006.12.013. [123] H.-L. Liu and C.-M. Hsieh, “Single-transducer dual-frequency ultrasound generation to enhance acoustic cavitation,” Ultrasonics Sonochemistry, vol. 16, no. 3, pp. 431–438, 2009. DOI: 10.1063/1.4902118. [124] S. Guo, Y. Jing, and X. Jiang, “Temperature rise in tissue ablation using multi-frequency ultrasound,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 60, no. 8, pp. 1699–1707, 2013. DOI: 10.1109/TUFFC.2013.2751. [125] R. Feng, Y. Zhao, C. Zhu, and T. Mason, “Enhancement of ultrasonic cavitation yield by multi-frequency sonication,” Ultrasonics Sonochemistry, vol. 9, no. 5, pp. 231–236, 2002. DOI: 10.1016/S1350-4177(02)00083-4. [126] H.-L. Liu, W.-S. Chen, J.-S. Chen, T.-C. Shih, Y.-Y. Chen, and W.-L. Lin, “Cavitation-enhanced ultrasound thermal therapy by combined low- and high-frequency ultrasound exposure,” Ultrasound in Medicine and Biology, vol. 32, no. 5, pp. 759– 767, 2006. DOI: 10.1016/j.ultrasmedbio.2006.01.010. [127] C. H. Farny, R. Glynn Holt, and R. A. Roy, “The correlation between bubble-enhanced HIFU heating and cavitation power,” IEEE Transactions on Biomedical Engineering, vol. 57, no. 1, pp. 175–184, 2010. DOI: 10.1109/TBME.2009.2028133. [128] S. Hilgenfeldt, D. Lohse, and M. Zomack, “Sound scattering and localized heat deposition of pulse-driven microbubbles,” The Journal of the Acoustical Society of America, vol. 107, no. 6, pp. 3530–3539, 2000. DOI: 10.1121/1.429438. [129] S. Hilgenfeldt and D. Lohse, “The acoustics of diagnostic microbubbles: Dissipative effects and heat deposition,” Ultrasonics, vol. 38, no. 1-8, pp. 99–104, 2000. DOI: 10.1016/s0041-624x(99)00090-6. [130] R. G. Holt and R. A. Roy, “Bubble dynamics in therapeutic ultrasound,” in Bubble and Particle Dynamics in Acoustic Fields: Modern Trends and Applications, A. Doinikov, Ed. Research Signpost, 2005, pp. 108–229. [131] L. Mancia, E. Vlaisavljevich, Z. Xu, and E. Johnsen, “Predicting tissue susceptibility to mechanical cavitation damage in therapeutic ultrasound,” Ultrasound in Medicine & Biology, vol. 43, no. 7, pp. 1421–1440, 2017. DOI: 10.1016/j.ultrasmedbio.2017.02.020. [132] L. Mancia et al., “Modeling tissue-selective cavitation damage,” Physics in Medicine & Biology, vol. 64, no. 22, p. 225001, 2019. DOI: 10.1088/1361-6560/ab5010. [133] E. Vlaisavljevich, A. Maxwell, L. Mancia, E. Johnsen, C. Cain, and Z. Xu, “Visualizing the histotripsy process: Bubble cloud–cancer cell interactions in a tissue-mimicking environment,” Ultrasound in Medicine & Biology, vol. 42, no. 10, pp. 2466–2477, 2016. DOI: 10.1016/j.ultrasmedbio.2016.05.018. [134] Z. Li, Q. Zou, and D. Qin, “Enhancing cavitation dynamics and its mechanical effects with dual-frequency ultrasound,” Physics in Medicine & Biology, vol. 67, no. 8, p. 085017, 2022. DOI: 10.1088/1361-6560/ac6288. [135] L. Landau and E. M. Lifshitz, “Ideal fluids,” in Fluid Mechanics, Second Edition 1987, pp. 1–43. DOI: 10.1016/B978-0-08-033933-7.50009-X. [136] P. J. McGrath, “Another proof of Clairaut’s theorem,” The American Mathematical Monthly, vol. 121, no. 2, pp. 165–166, 2014. DOI: 10.4169/amer.math.monthly.121.02.165. [137] J. Anderson, “Governing Equations of Fluid Dynamics,” in Computational Fluid Dynamics, J. F. Wendt, Ed., 2009, pp. 15–51. DOI: 10.1007/978-3-540-85056-4_2. [138] P. R. Childs, “Rotating flow,” in 2011, ch. 2, pp. 17–52. DOI: 10.1016/B978-0-12-382098-3.00002-0. [139] G. Buresti, “A note on Stokes’ hypothesis,” Acta Mechanica, vol. 226, pp. 3555–3559, 2015. DOI: 10.1007/s00707-015-1380-9. [140] B. Sharma and R. Kumar, “A brief introduction to bulk viscosity of fluids,” 2023. DOI: 10.48550/arXiv.2303.08400. [Online]. Available: https://arxiv.org/abs/2303.08400v1. [141] G. G. Stokes, “On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids,” Transactions of the Cambridge Philosophical Society, vol. 8, pp. 287–305, 1845. [142] B. Dollet, P. Marmottant, and V. Garbin, “Bubble dynamics in soft and biological matter,” Annual Review of Fluid Mechanics, vol. 51, pp. 331–355, 2019. DOI: 10.1146/annurev-fluid-010518-040352. [143] M. A. Diaz, M. A. Solovchuk, and T. W. Sheu, “A conservative numerical scheme for modeling nonlinear acoustic propagation in thermoviscous homogeneous media,” Journal of Computational Physics, vol. 363, pp. 200–230, 2018. DOI: 10. 1016/j.jcp.2018.02.005. [144] M. A. Solovchuk, S. C. Hwang, H. Chang, M. Thiriet, and T. W. H. Sheu, “Temperature elevation by HIFU in ex vivo porcine muscle: MRI measurement and simulation study,” Medical Physics, vol. 41, p. 052 903, 2014. DOI: 10.1118/1.4870965. [145] M. Hamilton, Y. Ilinskii, and E. Zabolotskaya, “Dispersion,” in Nonlinear acoustics, M. F. Hamilton and D. T. Blackstock, Eds. Springer Cham, 2024, pp. 149– 173. DOI: 10.1007/978-3-031-58963-8_5. [146] J. R. McLaughlan, “An investigation into the use of cavitation for the optimisation of high intensity focused ultrasound (HIFU) treatments,” PhD thesis, University of London, Sep. 2008. DOI: 10.5281/zenodo.1311683. [147] E. Zilonova, M. Solovchuk, and T. Sheu, “Bubble dynamics in viscoelastic soft tissue in high-intensity focal ultrasound thermal therapy,” Ultrasonics Sonochemistry, vol. 40, pp. 900–911, 2018, ISSN: 1350-4177. DOI: 10.1016/j.ultsonch.2017.08.017. [148] E. Zilonova, M. Solovchuk, and T. Sheu, “Simulation of cavitation enhanced temperature elevation in a soft tissue during high-intensity focused ultrasound thermal therapy,” Ultrasonics Sonochemistry, vol. 53, pp. 11–24, 2019. DOI: 10.1016/j. ultsonch.2018.12.006. [149] X. Yang and C. C. Church, “A model for the dynamics of gas bubbles in soft tissue,” The Journal of the Acoustical Society of America, vol. 118, no. 6, pp. 3595– 3606, 2005. DOI: 10.1121/1.2118307. [150] C. Brennen, “Spherical bubble dynamics,” in Cavitation and Bubble Dynamics. Cambridge University Press, 2013, pp. 30–58. DOI: 10.1017/CBO9781107338760. 003. [151] P. Roura, “Thermodynamic derivations of the mechanical equilibrium conditions for fluid surfaces: Young’s and Laplace’s equations,” American Journal of Physics, vol. 73, no. 12, pp. 1139–1147, 2005. DOI: 10.1119/1.2117127. [152] F. Behroozi, “A fresh look at the Young-Laplace equation and its many applications in hydrostatics,” The Physics Teacher, vol. 60, no. 5, pp. 358–361, 2022. DOI: 10.1119/5.0045605. [153] B. Helfield, “A review of phospholipid encapsulated ultrasound contrast agent microbubble physics,” Ultrasound in Medicine & Biology, vol. 45, no. 2, pp. 282– 300, 2019. DOI: 10.1016/j.ultrasmedbio.2018.09.020. [154] C. F. Delale and S. Pasinlioglu, “On the gas pressure inside cavitation bubbles,” Physics of Fluids, vol. 35, no. 2, p. 023330, 2023. DOI: 10.1063/5.0131921. [155] L. Rayleigh, “VIII. On the pressure developed in a liquid during the collapse of a spherical cavity,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 34, no. 200, pp. 94–98, 1917. DOI: 10.1080/ 14786440808635681. [156] N. A. Kudryashov and D. I. Sinelshchikov, “Analytical solutions of the Rayleigh equation for empty and gas-filled bubble,” Journal of Physics A: Mathematical and Theoretical, vol. 47, no. 40, p. 405 202, 2014. DOI: 10.1088/1751-8113/47/40/405202. [157] M. S. Plesset, “The dynamics of cavitation bubbles,” J. Appl. Mech., vol. 16, no. 3, pp. 277–282, 1949. DOI: 10.1115/1.4009975. [158] B. E. Noltingk and E. A. Neppiras, “Cavitation produced by ultrasonics,” Proceedings of the Physical Society. Section B, vol. 63, no. 9, p. 674, 1950. DOI: 10.1088/0370-1301/63/9/305. [159] H. Poritsky, “The collapse or growth of a spherical bubble or cavity in a viscous fluid,” in Proceedings of the 1st National Congress on Applied Mechanics. The American Society of Mechanical Engineers, 1952, pp. 813–821. [160] T. Leighton, “The forced bubble,” in The Acoustic Bubble. Academic Press, 1994, pp. 287–438. DOI: 10.1016/B978-0-12-441920-9.50009-2. [161] B. L. Helfield, “The response of individual microbubbles to high frequency ultrasound,” PhD thesis, University of Toronto, Nov. 2014. [Online]. Available: http://hdl.handle.net/1807/73772. [162] A. Prosperetti, “A generalization of the Rayleigh–Plesset equation of bubble dynamics,” Physics of Fluids, vol. 25, no. 3, pp. 409–410, 1982. DOI: 10.1063/1.863775. [163] S. K. Nemirovskii, “Cavity evolution and the Rayleigh-Plesset equation in superfluid helium,” Physical Review B, vol. 102, no. 6, p. 064511, 2020. DOI: 10.1103/PhysRevB.102.064511. [164] J. B. Keller and M. Miksis, “Bubble oscillations of large amplitude,” The Journal of the Acoustical Society of America, vol. 68, no. 2, pp. 628–633, 1980. DOI: 10.1121/1.384720. [165] L. Hoff, “Nonlinear bubble theory,” in Acoustic Characterization of Contrast Agents for Medical Ultrasound Imaging. Springer Dordrecht, 2001, pp. 43–87. DOI: 10.1007/978-94-017-0613-1_3. [166] J. B. Estrada, C. Barajas, D. L. Henann, E. Johnsen, and C. Franck, “High strain-rate soft material characterization via inertial cavitation,” Journal of the Mechanics and Physics of Solids, vol. 112, pp. 291–317, 2018. DOI: 10.1016/j.jmps. 2017.12.006. [167] T. Fourest, E. Deletombe, V. Faucher, M. Arrigoni, J. Dupas, and J.-M. Laurens, “Comparison of Keller-Miksis model and finite element bubble dynamics simulations in a confined medium. Application to the hydrodynamic ram,” European Journal of Mechanics – B/Fluids, vol. 68, pp. 66–75, 2018. DOI: 10.1016/j.euromechflu.2017.11.004. [168] L. Trilling, “The collapse and rebound of a gas bubble,” Journal of Applied Physics, vol. 23, pp. 14–17, 1952. DOI: 10.1063/1.1701962. [169] J. G. Kirkwood and H. A. Bethe, “The pressure wave produced by an underwater explosion I,” Office of Scientific Research and Development, USA, Technical Report 588, 1942. [170] F. R. Gilmore, “The growth or collapse of a spherical bubble in a viscous compressible liquid,” Technical Report No. 26–4, California Institute of Technology, 1952. [Online]. Available: https://resolver.caltech.edu/CaltechAUTHORS:Gilmore_fr_26-4. [171] F. Denner, “The Kirkwood–Bethe hypothesis for bubble dynamics, cavitation, and underwater explosions,” Physics of Fluids, vol. 36, no. 5, p. 051302, 2024. DOI: 10.1063/5.0209167. [172] A. T. J. Hayward, “Compressibility equations for liquids: A comparative study,” British Journal of Applied Physics, vol. 18, no. 7, p. 965, 1967. DOI: 10.1088/ 0508-3443/18/7/312. [173] J. H. Dymond and R. Malhotra, “The Tait equation: 100 years on,” International Journal of Thermophysics, vol. 9, no. 6, pp. 941–951, 1988. DOI: 10.1007/BF01133262. [174] C. C. Church, “A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter,” The Journal of the Acoustical Society of America, vol. 86, no. 1, pp. 215–227, 1989. DOI: 10.1121/1.398328. [175] X.-X. Liang, N. Linz, S. Freidank, G. Paltauf, and A. Vogel, “Comprehensive analysis of spherical bubble oscillations and shock wave emission in laser-induced cavitation,” Journal of Fluid Mechanics, vol. 940, A5, 2022. DOI: 10.1017/jfm. 2022.202. [176] K. Pasandideh and S. S. M. Fard, “The cavitation dynamics of a strongly driven single spherical gas bubble in high viscosity liquids,” Physics Letters A, vol. 501, p. 129 409, 2024. DOI: 10.1016/j.physleta.2024.129409. [177] C. Hua and E. Johnsen, “Nonlinear oscillations following the Rayleigh collapse of a gas bubble in a linear viscoelastic (tissue-like) medium,” Physics of Fluids, vol. 25, no. 8, p. 083 101, 2013. DOI: 10.1063/1.4817673. [178] Y. Fung, “The meaning of the constitutive equation,” in Biomechanics. Springer New York, 1993, pp. 23–65. DOI: 10.1007/978-1-4757-2257-4_2. [179] M. T. Warnez and E. Johnsen, “Numerical modeling of bubble dynamics in viscoelastic media with relaxation,” Physics of Fluids, vol. 27, p. 063103, 2015. DOI: 10.1063/1.4922598. [180] G. Papanicolaou and S. Zaoutsos, “Viscoelastic constitutive modeling of creep and stress relaxation in polymers and polymer matrix composites,” in Creep and Fatigue in Polymer Matrix Composites, R. M. Guedes, Ed., Second Edition. Woodhead Publishing, 2019, pp. 3–59. DOI: 10.1016/B978-0-08-102601-4.00001- 1. [181] D. Qin, Q. Zou, S. Lei, W. Wang, and Z. Li, “Nonlinear dynamics and acoustic emissions of interacting cavitation bubbles in viscoelastic tissues,” Ultrasonics Sonochemistry, vol. 78, p. 105712, 2021. DOI: 10.1016/j.ultsonch.2021.105712. [182] H. G. Flynn, “Cavitation dynamics. I. A mathematical formulation,” The Journal of the Acoustical Society of America, vol. 57, no. 6, pp. 1379–1396, 1975. DOI: 10.1121/1.380624. [183] H. G. Flynn, “Cavitation dynamics. II. Free pulsations and models for cavitation bubbles,” The Journal of the Acoustical Society of America, vol. 58, no. 6, pp. 1160–1170, 1975. DOI: 10.1121/1.380799. [184] I. R. Webb, S. J. Payne, and C.-C. Coussios, “The effect of temperature and viscoelasticity on cavitation dynamics during ultrasonic ablation,” The Journal of the Acoustical Society of America, vol. 130, no. 5, pp. 3458–3466, 2011. DOI: 10.1121/1.3626136. [185] C. C. Church, “Frequency, pulse length, and the mechanical index,” Acoustics Research Letters Online, vol. 6, no. 3, pp. 162–168, 2005. DOI: 10.1121/1.1901757. [186] C. C. Church, C. Labuda, and K. Nightingale, “A theoretical study of inertial cavitation from acoustic radiation force impulse imaging and implications for the mechanical index,” Ultrasound in Medicine and Biology, vol. 41, no. 2, pp. 472– 485, 2015, ISSN: 0301-5629. DOI: 10.1016/j.ultrasmedbio.2014.09.012. [187] M. Lafond, A. Watanabe, S. Yoshizawa, S.-i. Umemura, and K. Tachibana, “Cavitation- threshold determination and rheological-parameters estimation of albumin-stabilized nanobubbles,” Scientific Reports, vol. 8, p. 7472, 2018. DOI: 10.1038/s41598-018-25913-8. [188] J. Sponer, “Dependence of the cavitation threshold on the ultrasonic frequency,” Czechoslovak Journal of Physics, vol. 40, pp. 1123–1132, 1990. DOI: 10.1007/ BF01597973. [189] J. Sponer, “Theoretical estimation of the cavitation threshold for very short pulses of ultrasound,” Ultrasonics, vol. 29, no. 5, pp. 376–380, 1991. DOI: 10.1016/0041-624X(91)90089-Q. [190] R. E. Apfel and C. K. Holland, “Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound,” Ultrasound in Medicine & Biology, vol. 17, no. 2, pp. 179–185, 1991, ISSN: 0301-5629. DOI: 10.1016/0301-5629(91)90125-G. [191] F. A. Duck, Physical Properties of Tissue: A Comprehensive Reference Book. Academic Press, 1990. DOI: 10.1016/C2009-0-02755-X. [192] J. Dormand and P. Prince, “A family of embedded Runge-Kutta formulae,” Journal of Computational and Applied Mathematics, vol. 6, no. 1, pp. 19–26, 1980, ISSN: 0377-0427. DOI: 10.1016/0771-050X(80)90013-3. [193] E. Hairer, G. Wanner, and S. P. Nørsett, “Solving ordinary differential equations I: Nonstiff problems,” in (Springer Series in Computational Mathematics), R. Bank, R. Graham, J. Stoer, R. Varga, and H. Yserentant, Eds., Springer Series in Computational Mathematics. Springer Berlin Heidelberg, 1993, ch. Runge-Kutta and Extrapolation Methods, pp. 129–353. DOI: 10.1007/978-3-540-78862-1_2. [194] I. Fekete, S. Conde, and J. N. Shadid, “Embedded pairs for optimal explicit strong stability preserving Runge–Kutta methods,” Journal of Computational and Applied Mathematics, vol. 412, p. 114325, 2022. DOI: 10.1016/j.cam.2022.114325. [195] M. Saleh, E. Kovacs, and N. Kallur, “Adaptive step size controllers based on Runge-Kutta and linear-neighbor methods for solving the non-stationary heat conduction equation,” Networks and Heterogeneous Media, vol. 18, pp. 1059–1082, 2023. DOI: 10.3934/nhm.2023046. [196] S. Behnia, A. J. Sojahrood, W. Soltanpoor, and O. Jahanbakhsh, “Suppressing chaotic oscillations of a spherical cavitation bubble through applying a periodic perturbation,” Ultrasonics Sonochemistry, vol. 16, no. 4, pp. 502–511, 2009. DOI: 10.1016/j.ultsonch.2008.12.016. [197] J. S. Allen and R. A. Roy, “Dynamics of gas bubbles in viscoelastic fluids. I. Linear viscoelasticity,” The Journal of the Acoustical Society of America, vol. 107, pp. 3167–3178, 2000. DOI: 10.1121/1.429344. [198] F. Chavrier, J. Y. Chapelon, A. Gelet, and D. Cathignol, “A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter,” The Journal of the Acoustical Society of America, vol. 108, pp. 432–440, 2000. DOI: 10.1121/ 1.429476. [199] R. Gaudron, M. T. Warnez, and E. Johnsen, “Bubble dynamics in a viscoelastic medium with nonlinear elasticity,” Journal of Fluid Mechanics, vol. 766, pp. 54– 75, 2015. DOI: 10.1017/jfm.2015.7. [200] L. Xiao H. snd Chen, “Hencky’s elasticity model and linear stress-strain relations in isotropic finite hyperelasticity,” Acta Mechanica, vol. 157, pp. 51–60, 2002. DOI: 10.1007/BF01182154. [201] K. Khanafer, M. Schlicht, and R. Berguer, “How should we measure and report elasticity in aortic tissue?” European Journal of Vascular and Endovascular Surgery, vol. 45, no. 4, pp. 332–339, 2013. DOI: 10.1016/j.ejvs.2012.12.015. [202] S. Hilgenfeldt, D. Lohse, and M. Zomack, “Response of bubbles to diagnostic ultrasound: A unifying theoretical approach,” The European Physical Journal B, vol. 4, pp. 247–255, 1998. DOI: 10.1007/s100510050375. [203] M. Solovchuk, T. W. H. Sheu, and M. Thiriet, “Simulation of nonlinear Westervelt equation for the investigation of acoustic streaming and nonlinear propagation effects,” The Journal of the Acoustical Society of America, vol. 134, no. 5, pp. 3931–3942, 2013. DOI: 10.1121/1.4821201. [204] M. Solovchuk, T. W.-H. Sheu, and M. Thiriet, “Multiphysics modeling of liver tumor ablation by high intensity focused ultrasound,” Communications in Computational Physics, vol. 18, no. 4, pp. 1050–1071, 2015. DOI: 10.4208/cicp.171214.200715s. [205] J. Huang, R. Glynn Holt, R. Cleveland, and R. A. Roy, “Experimental validation of a tractable numerical model for focused ultrasound heating in flow-through tissue phantoms,” The Journal of the Acoustical Society of America, vol. 116, no. 4, pp. 2451–2458, 2004. DOI: 10.1121/1.1787124. [206] E. Brujan, “The equation of bubble dynamics in a compressible linear viscoelastic liquids,” Fluid Dynamics Research, vol. 29, pp. 287–294, 2001. DOI: 10.1016/ S0169-5983(01)00030-2. [207] M. Nakahara, K. Nagayama, and Y. Mori, “Shockwave dynamics of high pressure pulse in water and other biological materials based on hugoniot data,” Japanese Journal of Applied Physics, vol. 47, p. 3510, 2008. DOI: 10.1143/JJAP.47.3510. [208] D. Miller, “Ultrasonic detection of resonant cavitation bubbles in a flow tube by their second-harmonic emissions,” Ultrasonics, vol. 19, pp. 217–224, 1981. DOI: 10.1016/0041-624X(81)90006-8. [209] K. Morgan, J. Allen, P. Dayton, J. Chomas, A. Klibaov, and K. Ferrara, “Experimental and theoretical evaluation of microbubble behavior: Effect of transmitted phase and bubble size,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 47, pp. 1494–1509, 2000. DOI: 10.1109/58.883539. [210] C. A. MacDonald, V. Sboros, J. Gomatam, S. D. Pye, C. M. Moran, and W. N. McDicken, “A numerical investigation of the resonance of gas-filled microbub- bles: Resonance dependence on acoustic pressure amplitude,” Ultrasonics, vol. 43, pp. 113–122, 2004. DOI: 10.1016/j.ultras.2004.04.001. [211] S. Rajasekar and M. A. F. Sanjuan, “Harmonic and nonlinear resonances,” in Nonlinear Resonances. Springer International Publishing, 2016, pp. 1–38. DOI: 10.1007/978-3-319-24886-8_1. [212] D. Halliday, R. Resnick, and J. Walker, “Oscillations,” in Fundamentals of Physics Extended, 10th Edition. John Wiley & Sons, Inc., 2014, pp. 413–443. [213] K. Omoteso, T. Roy-Layinde, J. Laoye, U. Vincent, and P. McClintock, “Acoustic vibrational resonance in a Rayleigh-Plesset bubble oscillator,” Ultrasonics Sonochemistry, vol. 70, p. 105346, 2021. DOI: 10.1016/j.ultsonch.2020.105346. [214] D. Qin, S. Lei, X. Wang, X. Zhong, X. Ji, and Z. Li, “Resonance behaviors of encapsulated microbubbles oscillating nonlinearly with ultrasonic excitation,” Ultrasonics Sonochemistry, vol. 94, p. 106334, 2023. DOI: 10.1016/j.ultsonch.2023.106334. [215] K. Klapcsik, “GPU accelerated numerical investigation of the spherical stability of an acoustic cavitation bubble excited by dual-frequency,” Ultrasonics Sonochemistry, vol. 77, p. 105684, 2021. DOI: 10.1016/j.ultsonch.2021.105684. [216] J. N. Tjøtta, S. Tjøtta, and E. H. Vefring, “Effects of focusing on the nonlinear interaction between two collinear finite amplitude sound beams,” The Journal of the Acoustical Society of America, vol. 89, no. 3, pp. 1017–1027, 1991. DOI: 10.1121/1.400523. [217] J. E. Soneson, “A parametric study of error in the parabolic approximation of focused axisymmetric ultrasound beams,” The Journal of the Acoustical Society of America, vol. 131, no. 6, EL481–EL486, 2012. DOI: 10.1121/1.4722170. [218] M. S. Canney, M. R. Bailey, L. A. Crum, V. A. Khokhlova, and O. A. Sapozhnikov, “Acoustic characterization of high intensity focused ultrasound fields: A combined measurement and modeling approach,” The Journal of the Acoustical Society of America, vol. 124, pp. 2406–2420, 2008. DOI: 10.1121/1.2967836. [219] J. Tavakkoli, D. Cathignol, R. Souchon, and O. A. Sapozhnikov, “Modeling of pulsed finite-amplitude focused sound beams in time domain,” The Journal of the Acoustical Society of America, vol. 104, no. 4, pp. 2061–2072, 1998. DOI: 10.1121/1.423720. [220] P. V. Yuldashev and V. A. Khokhlova, “Simulation of three-dimensional nonlinear fields of ultrasound therapeutic arrays,” Acoustical Physics, vol. 57, no. 3, pp. 334–343, 2011. DOI: 10.1134/S1063771011030213. [221] M. F. Hamilton and C. L. Morfey, “Model equations,” in Nonlinear Acoustics, M. F. Hamilton and D. T. Blackstock, Eds. Springer Cham, 2024, pp. 39–61. DOI: 10.1007/978-3-031-58963-8_3. [222] P. Gupta and A. Srivastava, “Numerical analysis of thermal response of tissues subjected to high intensity focused ultrasound,” International Journal of Hyperthermia, vol. 35, no. 1, pp. 419–434, 2018. DOI: 10.1080/02656736.2018.1506166. [223] S. L. Garrett, “Attenuation of sound,” in Understanding Acoustics. Springer Cham, 2020, pp. 673–698. DOI: 10.1007/978-3-030-44787-8_14. [224] M. A. Solovchuk, M. Thiriet, and T. W. Sheu, “Computational study of acoustic streaming and heating during acoustic hemostasis,” Applied Thermal Engineering, vol. 124, pp. 1112–1122, 2017, ISSN: 1359-4311. DOI: 10.1016/j.applthermaleng.2017.06.040. [225] P. Gupta and A. Srivastava, “Non-Fourier transient thermal analysis of biological tissue phantoms subjected to high intensity focused ultrasound,” International Journal of Heat and Mass Transfer, vol. 136, pp. 1052–1063, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.03.014. [226] C. Li et al., “Fourier and non-Fourier bio-heat transfer models to predict ex vivo temperature response to focused ultrasound heating,” Journal of Applied Physics, vol. 123, p. 174906, 2018. DOI: 10.1063/1.5022622. [227] J. K. Engelbrecht and R. C. Chivers, “Evolution equations and ultrasonic wave propagation in biological tissues,” Physics in Medicine & Biology, vol. 34, pp. 1571–1592, 1989. DOI: 10.1088/00319155/34/11/006. [228] M. E. Lyons and K. J. Parker, “Absorption and attenuation in soft tissues. II. Experimental results,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 35, pp. 511–521, 1988. DOI: 10.1109/58.4189. [229] S. A. Goss, L. A. Frizzell, and F. Dunn, “Ultrasonic absorption and attenuation in mammalian tissues,” Ultrasound in Medicine & Biology, vol. 5, pp. 181–186, 1979. DOI: 10.1016/0301-5629(79)90086-3. [230] S. Lakshmanan et al., “Prediction of the intramuscular fat content in loin muscle of pig carcasses by quantitative time-resolved ultrasound,” Meat Science, vol. 90, pp. 216–225, 2012. DOI: 10.1016/j.meatsci.2011.07.004. [231] T. Koch, S. Lakshmanan, S. Brand, M. Wicke, and K. R. N. D. Mo¨rlein, “Ultrasound velocity and attenuation of porcine soft tissues with respect to structure and composition: I. Muscle,” Meat Science, vol. 88, pp. 51–58, 2011. DOI: 10.1016/j.meatsci.2010.12.002. [232] H. H. Pennes, “Analysis of tissue and arterial blood temperatures in the resting human forearm,” Journal of Applied Physiology, vol. 1, pp. 93–122, 1948. DOI: 10.1152/jappl.1948.1.2.93. [233] G. C. van Rhoon, “Is CEM43 still a relevant thermal dose parameter for hyperthermia treatment monitoring?” International Journal of Hyperthermia, vol. 32, pp. 50–62, 2016. DOI: 10.3109/02656736.2015.1114153. [234] N. R. Datta et al., “Quantification of thermal dose in moderate clinical hyperthermia with radiotherapy: A relook using temperature–time area under the curve (AUC),” International Journal of Hyperthermia, vol. 38, pp. 296–307, 2021. DOI: 10.1080/02656736.2021.1875060. [235] C. Damianou and K. Hynynen, “The effect of various physical parameters on the size and shape of necrosed tissue volume during ultrasound surgery,” The Journal of the Acoustical Society of America, vol. 95, pp. 1641–1649, 1994. DOI: 10.1121/1.408550. [236] A. A. Doinikov, A. Novell, P. Calmon, and A. Bouakaz, “Simulations and measurements of 3-D ultrasonic fields radiated by phased-array transducers using the Westervelt equation,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 61, pp. 1470–1477, 2014. DOI: 10.1109/TUFFC.2014.3061. [237] I. M. Hallaj and R. O. Cleveland, “FDTD simulation of finite-amplitude pressure and temperature fields for biomedical ultrasound,” The Journal of the Acoustical Society of America, vol. 105, p. L7, 1999. DOI: 10.1121/1.426776. [238] M. F. Hamilton, “Comparison of three transient solutions for the axial pressure in a focused sound beam,” The Journal of the Acoustical Society of America, vol. 92, pp. 527–532, 1992. DOI: 10.1121/1.404262. [239] G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations,” IEEE Transactions on Electromagnetic Compatibility, vol. EMC-23, pp. 377–382, 1981. DOI: 10.1109/TEMC.1981.303970. [240] B. Engquist and A. Majda, “Absorbing boundary conditions for the numerical simulation of waves,” Mathematics of Computation, vol. 31, pp. 629–651, 1977. DOI: 10.2307/2005997. [241] Y. Gao, H. Song, J. Zhang, and Z. Yao, “Comparison of artificial absorbing boundaries for acoustic wave equation modelling,” Exploration Geophysics, vol. 48, pp. 76–93, 2017. DOI: 10.1071/EG15068. [242] L. Halpern, “Absorbing boundary conditions for the discretization schemes of the one-dimensional wave equation,” Mathematics of Computation, vol. 38, pp. 415– 429, 1982. DOI: 10.2307/2007278. [243] J. Zhao, F. Zhao, Y. Shi, Y. Deng, X. Hu, and H. Shen, “The efficacy of a new high intensity focused ultrasound therapy for locally advanced pancreatic cancer,” Journal of Cancer Research and Clinical Oncology, vol. 143, pp. 2105–2111, 2017. DOI: 10.1007/s00432-017-2459-6. [244] P. Zhao, Y. Wang, S. Tong, J. Tao, and Y. Sheng, “The effects of energy on the relationship between the acoustic focal region and biological focal region during low-power cumulative HIFU ablation,” Applied Sciences, vol. 13, p. 4492, 2023. DOI: 10.3390/app13074492. [245] L. Guan and G. Xu, “Destructive effect of HIFU on rabbit embedded endometrial carcinoma tissues and their vascularities,” Oncotarget, vol. 8, pp. 19 577–19 591, 2017. DOI: 10.18632/oncotarget.14751. [246] N. Watkin, G. ter Haar, and I. Rivens, “The intensity dependence of the site of maximal energy deposition in focused ultrasound surgery,” Ultrasound in Medicine & Biology, vol. 22, pp. 483–491, 1996. DOI: 10.1016/0301-5629(95)02062-4. [247] V. A. Khokhlova, M. R. Bailey, J. A. Reed, B. W. Cunitz, P. J. Kaczkowski, and L. A. Crum, “Effects of nonlinear propagation, cavitation, and boiling in lesion formation by high intensity focused ultrasound in a gel phantom,” The Journal of the Acoustical Society of America, vol. 119, pp. 1834–1848, 2006. DOI: /10. 1121/1.2161440. [248] C.-C. Coussios, J. R. T. Collin, and A. P. Muckle, “Non-invasive monitoring and control of inertial cavitation dynamics during hifu exposure in vitro,” AIP Conference Proceedings, vol. 911, pp. 164–170, 2007. DOI: 10.1063/1.2744268. [249] C. C. Coussios, C. H. Farny, G. T. Haar, and R. A. Roy, “Role of acoustic cavitation in the delivery and monitoring of cancer treatment by high-intensity focused ultrasound (HIFU),” International Journal of Hyperthermia, vol. 23, pp. 105–120, 2007. DOI: 10.1080/02656730701194131. [250] Y. Zhang and S. Li, “A general approach for rectified mass diffusion of gas bubbles in liquids under acoustic excitation,” Journal of Heat Transfer, vol. 136, no. 4, p. 042 001, 2014. DOI: 10.1115/1.4026089. [251] T. Leong, M. Ashokkumar, and S. Kentish, “The growth of bubbles in an acoustic field by rectified diffusion,” in Handbook of Ultrasonics and Sonochemistry, M. Ashokkumar, Ed. Springer Singapore, 2016, pp. 69–98. DOI: 10.1007/978-981-287-278-474. [252] M. A. Diaz, M. A. Solovchuk, and T. W. Sheu, “High-performance multi-gpu solver for describing nonlinear acoustic waves in homogeneous thermoviscous media,” Computers & Fluids, vol. 173, pp. 195–205, 2018. DOI: 10.1016/j.compfluid.2018.03.008. [253] E. Zilonova, M. Solovchuk, and T. W. H. Sheu, “Dynamics of bubble-bubble interactions experiencing viscoelastic drag,” Physical Review E, vol. 99, p. 023109, 2 2019. DOI: 10.1103/PhysRevE.99.023109. [254] H. Luo, G. Shen, and Y. Chen, “Treatment planning of scanning time and path for phased high-intensity focused ultrasound surgery,” in 2nd International Conference on Biomedical Engineering and Informatics, 2009, pp. 1–4. DOI: 10.1109/ BMEI.2009.5305012. [255] A. Copelan, J. Hartman, M. Chehab, and A. M. Venkatesan, “High-intensity focused ultrasound: Current status for image-guided therapy,” Seminars in Interventional Radiology, vol. 32, pp. 398–415, 2015. DOI: 10.1055/s-0035-1564793. [256] T. D. Khokhlova et al., “Magnetic resonance imaging of boiling induced by high intensity focused ultrasound,” The Journal of the Acoustical Society of America, vol. 125, pp. 2420–2431, 2009. DOI: 10.1121/1.3081393. [257] Y.-F. Zhou, “High intensity focused ultrasound in clinical tumor ablation,” World Journal of Clinical Oncology, vol. 2, pp. 8–27, 2011. DOI: 10.5306/wjco.v2. i1.8. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96401 | - |
dc.description.abstract | 聚焦超音波 (FUS) 和聲空化在生物醫學領域中具有重要的應用,已是最強大的非侵入性技術。高強度聚焦超音波 (HIFU) 能夠精確瞄準身體深處的組織,實現腫瘤消融和藥物傳輸等介入性治療。聲空化,即是在聲壓下,氣泡的形成和破裂。在醫療中,聲空化的超音波增強效果(包括組織破壞和標靶治療) 扮演著至關重要的作用。
在本論文中,對多頻 (雙頻和三頻) 超音波訊號作用下的黏彈性介質中的慣性空化 (氣泡破裂) 現象進行了數值研究。與傳統的單頻訊號相比,利用多頻訊號可以降低慣性空化閾值。降低慣性空化閾值對於提高基於 FUS 的治療之有效性和安全性至關重要。降低閾值可以改善組織破壞,增強目標性治療傳遞,並大幅度地降低對周圍健康組織造成損害的風險。慣性空化閾值透過不同的標準來估計:一個基於氣泡半徑擴展,另一個基於氣泡破裂速度。計算了不同初始氣泡半徑、聲音訊號模式 (單頻、雙頻或三頻)、頻率、介質參數及其各自組合的閾值壓力。結果表明,與標準單頻訊號相比,雙頻訊號採用特殊頻率組合可顯著降低慣性空化閾值。此外,三頻訊號 (也具有特定頻率) 的閾值比雙頻訊號甚至更低。大多數使慣性空化閾值最小化的頻率組合至少包含一個低頻組成 (約 0.02 MHz)。因此,為了更好地降低慣性空化閾值,最好利用多頻訊號中的低頻組成。慣性空化標準並不精確,因此每個標準提供的閾值壓力都不同。氣泡破裂速度標準給出的閾值比氣泡半徑標準給出的閾值更高。熱和機械空化效應的結果表明,與半徑標準相比,氣泡破裂速度標準顯著增加了功率沉積和應變相關的損傷面積。目前的數值研究可能對未來各種生物醫學超音波應用的發展是有用的。 此外,本論文透過數值模擬和離體實驗研究了HIFU沿著方形螺旋路徑引起的熱消融。 HIFU 已被廣泛用於透過熱消融過程對癌症腫瘤進行非侵入性治療。然而,HIFU 治療的療效仍受到治療時間過長和消融不完全的限制。本研究透過在連續掃描模式下,沿著方形螺旋路徑移動 HIFU 傳感器來研究一種更有效的消融方法。最初,透過理論模擬估計了幾個參數集,包括運動速度和螺旋線之間的間距。隨後,在豬肌肉的離體實驗中進行了驗證。結果表明,沿著方形螺旋路徑 (尺寸約為 2×2 cm^2 或 3×3 cm^2) 可以產生均勻的橫斷面損傷,但必須仔細選擇速度和間距以防止損傷稀疏。此外,研究結果顯示,沿著聚焦軸的損傷深度可達約 1.5-2 公分。根據目前的理論和實驗結果,均勻消融區域均位於聚焦前區域,聚焦和聚焦後區域的損傷並不具有那麼好的均勻性。所獲得的結果可能是有益的,也可以幫助進一步理解、研究和最佳化 HIFU 熱消融期間的掃描路徑。 | zh_TW |
dc.description.abstract | Focused ultrasound (FUS) and acoustic cavitation have emerged as powerful non-invasive techniques with significant applications in biomedicine. High-intensity focused ultrasound (HIFU) is able to precisely target tissues deep within the body, enabling therapeutic interventions such as tumor ablation and drug delivery. Acoustic cavitation, the formation and collapse of gas bubbles under acoustic pressure, plays a crucial role in enhancing the effects of ultrasound in medical treatments, including tissue disruption and targeted therapy. In the present thesis, the phenomenon of inertial cavitation (bubble collapse) in viscoelastic media subjected to multi-frequency (dual- and triple-frequency) ultrasound signals was numerically investigated. Utilizing a multi-frequency signal allows for a reduction in the inertial cavitation threshold compared to traditional single-frequency signals. Reducing the inertial cavitation threshold may be crucial for enhancing the efficacy and safety of FUS-based therapies. Lowering the threshold can improve tissue disruption, enhance targeted treatment delivery, and minimize the risk of damage to surrounding healthy tissues.
The inertial cavitation threshold was estimated by using distinct criteria: one based on the bubble radius expansion and the other based on the bubble collapse speed. The threshold pressure was calculated for different initial bubble radii, acoustic signal modes (single-, dual-, or triple-frequency), frequencies, medium parameters, and their respective combinations. The obtained results demonstrate that using special frequency combinations for the dual-frequency signal significantly decreases the inertial cavitation threshold in comparison to the standard single-frequency signal. Moreover, a triple-frequency signal (also with specific frequencies) results in an even lower threshold than a dual-frequency signal. Most of the frequency combinations that minimize the inertial cavitation threshold include at least one low-frequency component (about 0.02 MHz). Therefore, for better reducing the inertial cavitation threshold, it is better to use low-frequency component in a multi-frequency signal. The inertial cavitation criteria are not precise, therefore, each criterion provides different threshold pressures. The bubble collapse speed criterion gives higher threshold values than the bubble radius criterion. Results of thermal and mechanical cavitation effects demonstrate that the bubble collapse speed criterion significantly increases power deposition and strain-related damaged area compared to the radius criterion. The current numerical study may be useful for the future development of various biomedical ultrasound applications. Furthermore, in the present thesis, the thermal ablation induced by HIFU along square spiral pathways was studied through both numerical simulations and ex vivo experiments. HIFU has been widely used as a non-invasive treatment for cancer tumors through the thermal ablation process. However, the efficacy of HIFU therapy remains limited by prolonged treatment times and incomplete ablation. This work investigates a more efficient ablation method by moving the HIFU transducer along square spiral pathways in continuous scanning mode. Several parameter sets, including movement speed and the spacing between spiral lines, were initially estimated through theoretical simulations and subsequently validated in ex vivo experiments on porcine muscle. The results indicate that uniform cross-sectional lesions can be generated along the square spiral pathway (with size about 2×2 cm^2 or 3×3 cm^2), although the speed and spacing must be carefully chosen to prevent sparse lesions. Additionally, the findings show that lesion depth along the focal axis can reach approximately 1.5–2 cm. According to the current theoretical and experimental results, all uniform ablated regions are located in the pre-focal area, and lesions in the focal and post-focal areas do not have such good uniformity. The obtained results may be beneficial and can help further understanding, investigation, and optimization of the scanning pathways during the HIFU thermal ablation. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-13T16:18:22Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-13T16:18:22Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . iii
摘要和關鍵字 . . . . . . . . . . . . . . . . . . . . . . . . . iv Abstract and keywords . . . . . . . . . . . . . . . . . . . . . . . . . vi Contents . . . . . . . . . . . . . . . . . . . . . . . . . ix List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . xiii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . xxi 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Focused ultrasound therapy . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Acoustic cavitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Scope and objectives of the thesis . . . . . . . . . . . . . . . . . . . . . 16 2 Single-bubble dynamics model . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1 Fundamental fluid dynamics equations . . . . . . . . . . . . . . . . . . . 19 2.1.1 Potential flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2 Continuity equation . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.1.3 Conservation of momentum . . . . . . . . . . . . . . . . . . . . 22 2.2 Assumption and simplifications . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.1 Spherical symmetry . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.2 Acoustic signal . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.3 Pressure at the bubble surface . . . . . . . . . . . . . . . . . . . 31 2.2.4 Pressure inside the bubble . . . . . . . . . . . . . . . . . . . . . 32 2.3 Rayleigh-Plesset model . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.4 Keller-Miksis model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.5 Gilmore model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.6 Viscoelastic constitutive models . . . . . . . . . . . . . . . . . . . . . . 44 3 Inertial cavitation threshold . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.1 Inertial cavitation threshold criteria . . . . . . . . . . . . . . . . . . . . . 50 3.2 Optimal threshold and frequencies . . . . . . . . . . . . . . . . . . . . . 51 3.3 Inertial cavitation thresholds for dual-frequency signal . . . . . . . . . . 53 3.3.1 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . 54 3.3.2 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . 57 3.3.3 Inertial cavitation thresholds for the dual-frequency signal when one frequency is fixed . . .59 3.3.3.1 Inertial cavitation threshold for liver tissue . . . . . . . 59 3.3.3.2 Inertial cavitation threshold for different viscoelastic media . . . . . . . . . . .61 3.3.4 Inertial cavitation thresholds for the dual-frequency signal when both frequencies are varied..64 3.3.5 Comparison of the optimal and minimum thresholds . . . . . . . 68 3.3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.4 Inertial cavitation thresholds for triple-frequency signal . . . . . . . . . . 71 3.4.1 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . 72 3.4.2 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . 76 3.4.3 Inertial cavitation thresholds for a multi-frequency driving signal with one frequency fixed...79 3.4.3.1 Water (f1 = 1 MHz) . . . . . . . . . . . . . . . . . . . 79 3.4.3.2 Liver (f1 = 1 MHz) . . . . . . . . . . . . . . . . . . . 81 3.4.3.3 Optimal thresholds (f1 = 1 MHz) . . . . . . . . . . . . 82 3.4.4 Inertial cavitation thresholds for a multi-frequency driving signal when all frequencies are varied . . . . . . . . . . . . . . . . . . . 83 3.4.5 Thermal and mechanical cavitation effects in liver . . . . . . . . 86 3.4.5.1 Thermal effects . . . . . . . . . . . . . . . . . . . . . 86 3.4.5.2 Mechanical effects . . . . . . . . . . . . . . . . . . . . 90 3.4.6 Thermal and mechanical cavitation effects in different viscoelastic media . . .. . . . . 93 3.4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4 HIFU ablation along square spiral pathways . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.1 Experimental methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.1.1 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.1.2 Scanning pathways . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.1.3 Ex vivo studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.2 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.2.1 Acoustic model . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.2.2 Temperature model . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.2.3 Numerical method . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.3.1 Fixed Point Target . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.3.2 Line pathway movement . . . . . . . . . . . . . . . . . . . . . . 111 4.3.3 Square Spiral pathway movement . . . . . . . . . . . . . . . . . 113 4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . 122 5.1 Inertial cavitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 5.1.1 Summary of the results . . . . . . . . . . . . . . . . . . . . . . . 122 5.1.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 5.2 HIFU ablation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 5.2.1 Summary of the results . . . . . . . . . . . . . . . . . . . . . . . 126 5.2.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 References . . . . . . . . . . . . . . . . . . . . . . . . . 129 Appendix A Spherical Coordinate System . . . . . . . . . . . . . . . . . . . . . . 160 A.1 Coordinates and unit vectors conversions . . . . . . . . . . . . . . . . . . 160 A.2 Gradient in spherical coordinates . . . . . . . . . . . . . . . . . . . . . . 163 A.3 Vector divergence in spherical coordinates . . . . . . . . . . . . . . . . . 164 A.4 Tensor divergence in spherical coordinates . . . . . . . . . . . . . . . . . 165 | - |
dc.language.iso | en | - |
dc.title | 慣性空化現象與高強度聚焦超音波熱消融之研究 | zh_TW |
dc.title | Investigation of inertial cavitation and high-intensity focused ultrasound thermal ablation | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 博士 | - |
dc.contributor.coadvisor | 馬克沁 | zh_TW |
dc.contributor.coadvisor | Maxim Solovchuk | en |
dc.contributor.oralexamcommittee | 黃維信;林峯輝;楊馥菱;Dong-Guk Paeng | zh_TW |
dc.contributor.oralexamcommittee | Wei-Shien Hwang;Feng-Huei Lin;Fu-Ling Yang;Dong-Guk Paeng | en |
dc.subject.keyword | 聲空化,慣性空化閾值,多頻訊號,高強度聚焦超音波消融,組織損傷, | zh_TW |
dc.subject.keyword | acoustic cavitation,inertial cavitation threshold,multi-frequency signal,high-intensity focused ultrasound ablation,tissue lesion, | en |
dc.relation.page | 167 | - |
dc.identifier.doi | 10.6342/NTU202500341 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2025-02-08 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
dc.date.embargo-lift | 2030-02-07 | - |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 此日期後於網路公開 2030-02-07 | 13.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。