請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96397完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊超強 | zh_TW |
| dc.contributor.advisor | Chaw-Keong Yong | en |
| dc.contributor.author | 蘇家賢 | zh_TW |
| dc.contributor.author | Jia-Sian Su | en |
| dc.date.accessioned | 2025-02-13T16:17:17Z | - |
| dc.date.available | 2025-02-14 | - |
| dc.date.copyright | 2025-02-13 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-02-07 | - |
| dc.identifier.citation | [1] Z. Lian et al., “Valley-polarized excitonic Mott insulator in WS2/WSe2 moiré superlattice,” Nat. Phys., vol. 20, no. 1, pp. 34–39, Jan. 2024, doi: 10.1038/s41567-023-02266-2.
[2] R. Xiong et al., “Tunable exciton valley-pseudospin orders in moiré superlattices,” Nat Commun, vol. 15, no. 1, p. 4254, May 2024, doi: 10.1038/s41467-024-48725-z. [3] H. Park et al., “Dipole ladders with large Hubbard interaction in a moiré exciton lattice,” Nat. Phys., vol. 19, no. 9, pp. 1286–1292, Sep. 2023, doi: 10.1038/s41567-023-02077-5. [4] C. Jin et al., “Observation of moiré excitons in WSe2/WS2 heterostructure superlattices,” Nature, vol. 567, no. 7746, pp. 76–80, Mar. 2019, doi: 10.1038/s41586-019-0976-y. [5] C. Jin et al., “Identification of spin, valley and moiré quasi-angular momentum of interlayer excitons,” Nat. Phys., vol. 15, no. 11, pp. 1140–1144, Nov. 2019, doi: 10.1038/s41567-019-0631-4. [6] F. Wu, T. Lovorn, and A. H. MacDonald, “Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers,” Phys. Rev. B, vol. 97, no. 3, p. 035306, Jan. 2018, doi: 10.1103/PhysRevB.97.035306. [7] K. S. Novoselov et al., “Electric field effect in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666–669, Oct. 2004, doi: 10.1126/science.1102896. [8] K. I. Bolotin et al., “Ultrahigh electron mobility in suspended graphene,” Solid State Communications, vol. 146, no. 9, pp. 351–355, Jun. 2008, doi: 10.1016/j.ssc.2008.02.024. [9] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys., vol. 81, no. 1, pp. 109–162, Jan. 2009, doi: 10.1103/RevModPhys.81.109. [10] T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, “Controlling the electronic structure of bilayer graphene,” Science, vol. 313, no. 5789, pp. 951–954, Aug. 2006, doi: 10.1126/science.1130681. [11] K. S. Novoselov et al., “Two-dimensional atomic crystals,” Proceedings of the National Academy of Sciences, vol. 102, no. 30, pp. 10451–10453, Jul. 2005, doi: 10.1073/pnas.0502848102. [12] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS 2 : A New Direct-Gap Semiconductor,” Phys. Rev. Lett., vol. 105, no. 13, p. 136805, Sep. 2010, doi: 10.1103/PhysRevLett.105.136805. [13] T. Cheiwchanchamnangij and W. R. L. Lambrecht, “Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS 2,” Phys. Rev. B, vol. 85, no. 20, p. 205302, May 2012, doi: 10.1103/PhysRevB.85.205302. [14] W. Yao, D. Xiao, and Q. Niu, “Valley-dependent optoelectronics from inversion symmetry breaking,” Phys. Rev. B, vol. 77, no. 23, p. 235406, Jun. 2008, doi: 10.1103/PhysRevB.77.235406. [15] Z. Y. Zhu, Y. C. Cheng, and U. Schwingenschlögl, “Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors,” Phys. Rev. B, vol. 84, no. 15, p. 153402, Oct. 2011, doi: 10.1103/PhysRevB.84.153402. [16] D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides,” Phys. Rev. Lett., vol. 108, no. 19, p. 196802, May 2012, doi: 10.1103/PhysRevLett.108.196802. [17] H. Yu, X. Cui, X. Xu, and W. Yao, “Valley excitons in two-dimensional semiconductors,” National Science Review, vol. 2, no. 1, pp. 57–70, Mar. 2015, doi: 10.1093/nsr/nwu078. [18] K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen, “The valley Hall effect in MoS2 transistors,” Science, vol. 344, no. 6191, pp. 1489–1492, Jun. 2014, doi: 10.1126/science.1250140. [19] E. J. Sie, J. W. McIver, Y.-H. Lee, L. Fu, J. Kong, and N. Gedik, “Valley-selective optical Stark effect in monolayer WS2,” Nature Mater, vol. 14, no. 3, pp. 290–294, Mar. 2015, doi: 10.1038/nmat4156. [20] A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature, vol. 499, no. 7459, pp. 419–425, Jul. 2013, doi: 10.1038/nature12385. [21] G.-H. Lee et al., “Flexible and Transparent MoS2 Field-Effect Transistors on Hexagonal Boron Nitride-Graphene Heterostructures,” ACS Nano, vol. 7, no. 9, pp. 7931–7936, Sep. 2013, doi: 10.1021/nn402954e. [22] Y. Cao et al., “Unconventional superconductivity in magic-angle graphene superlattices,” Nature, vol. 556, no. 7699, pp. 43–50, Apr. 2018, doi: 10.1038/nature26160. [23] P. Rivera et al., “Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures,” Nat Commun, vol. 6, no. 1, p. 6242, Feb. 2015, doi: 10.1038/ncomms7242. [24] P. Rivera et al., “Valley-polarized exciton dynamics in a 2D semiconductor heterostructure,” Science, vol. 351, no. 6274, pp. 688–691, Feb. 2016, doi: 10.1126/science.aac7820. [25] P. Rivera, H. Yu, K. L. Seyler, N. P. Wilson, W. Yao, and X. Xu, “Interlayer valley excitons in heterobilayers of transition metal dichalcogenides,” Nature Nanotech, vol. 13, no. 11, pp. 1004–1015, Nov. 2018, doi: 10.1038/s41565-018-0193-0. [26] K. Tran et al., “Evidence for moiré excitons in van der Waals heterostructures,” Nature, vol. 567, no. 7746, pp. 71–75, Mar. 2019, doi: 10.1038/s41586-019-0975-z. [27] H. Yu, G.-B. Liu, J. Tang, X. Xu, and W. Yao, “Moiré excitons: From programmable quantum emitter arrays to spin-orbit–coupled artificial lattices,” Science Advances, vol. 3, no. 11, p. e1701696, Nov. 2017, doi: 10.1126/sciadv.1701696. [28] C. Jin, E. Y. Ma, O. Karni, E. C. Regan, F. Wang, and T. F. Heinz, “Ultrafast dynamics in van der Waals heterostructures,” Nature Nanotech, vol. 13, no. 11, pp. 994–1003, Nov. 2018, doi: 10.1038/s41565-018-0298-5. [29] E. C. Regan et al., “Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices,” Nature, vol. 579, no. 7799, pp. 359–363, Mar. 2020, doi: 10.1038/s41586-020-2092-4. [30] Z. Lian et al., “Valley-polarized exitonic Mott insulator in WS2/WSe2 moiré superlattice,” Nature Physics, vol. 20, pp. 1–6, Nov. 2023, doi: 10.1038/s41567-023-02266-2. [31] G.-B. Liu, W.-Y. Shan, Y. Yao, W. Yao, and D. Xiao, “Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides,” Phys. Rev. B, vol. 88, no. 8, p. 085433, Aug. 2013, doi: 10.1103/PhysRevB.88.085433. [32] A. Molina-Sánchez, D. Sangalli, K. Hummer, A. Marini, and L. Wirtz, “Effect of spin-orbit interaction on the optical spectra of single-layer, double-layer, and bulk MoS 2,” Phys. Rev. B, vol. 88, no. 4, p. 045412, Jul. 2013, doi: 10.1103/PhysRevB.88.045412. [33] G. Wang et al., “Colloquium : Excitons in atomically thin transition metal dichalcogenides,” Rev. Mod. Phys., vol. 90, no. 2, p. 021001, Apr. 2018, doi: 10.1103/RevModPhys.90.021001. [34] M. Palummo, M. Bernardi, and J. C. Grossman, “Exciton Radiative Lifetimes in Two-Dimensional Transition Metal Dichalcogenides,” Nano Lett., vol. 15, no. 5, pp. 2794–2800, May 2015, doi: 10.1021/nl503799t. [35] C. Robert et al., “Fine structure and lifetime of dark excitons in transition metal dichalcogenide monolayers,” Phys. Rev. B, vol. 96, no. 15, p. 155423, Oct. 2017, doi: 10.1103/PhysRevB.96.155423. [36] G. Wang et al., “In-Plane Propagation of Light in Transition Metal Dichalcogenide Monolayers: Optical Selection Rules,” Phys. Rev. Lett., vol. 119, no. 4, p. 047401, Jul. 2017, doi: 10.1103/PhysRevLett.119.047401. [37] C. Robert et al., “Exciton radiative lifetime in transition metal dichalcogenide monolayers,” Phys. Rev. B, vol. 93, no. 20, p. 205423, May 2016, doi: 10.1103/PhysRevB.93.205423. [38] H. Wang, C. Zhang, W. Chan, C. Manolatou, S. Tiwari, and F. Rana, “Radiative lifetimes of excitons and trions in monolayers of the metal dichalcogenide MoS 2,” Phys. Rev. B, vol. 93, no. 4, p. 045407, Jan. 2016, doi: 10.1103/PhysRevB.93.045407. [39] T. Cao et al., “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat Commun, vol. 3, no. 1, p. 887, Jun. 2012, doi: 10.1038/ncomms1882. [40] G. Wang et al., “Valley dynamics probed through charged and neutral exciton emission in monolayer WSe 2,” Phys. Rev. B, vol. 90, no. 7, p. 075413, Aug. 2014, doi: 10.1103/PhysRevB.90.075413. [41] T. Yu and M. W. Wu, “Valley depolarization due to intervalley and intravalley electron-hole exchange interactions in monolayer MoS 2,” Phys. Rev. B, vol. 89, no. 20, p. 205303, May 2014, doi: 10.1103/PhysRevB.89.205303. [42] C. R. Zhu et al., “Exciton valley dynamics probed by Kerr rotation in WSe 2 monolayers,” Phys. Rev. B, vol. 90, no. 16, p. 161302, Oct. 2014, doi: 10.1103/PhysRevB.90.161302. [43] C. Mai et al., “Many-Body Effects in Valleytronics: Direct Measurement of Valley Lifetimes in Single-Layer MoS2,” Nano Lett., vol. 14, no. 1, pp. 202–206, Jan. 2014, doi: 10.1021/nl403742j. [44] R. W. Boyd, Nonlinear optics, Fourth edition. London: Elsevier, AP Academic Press, 2020. doi: 10.1016/C2015-0-05510-1. [45] I. Paradisanos et al., “Second harmonic generation control in twisted bilayers of transition metal dichalcogenides,” Phys. Rev. B, vol. 105, no. 11, p. 115420, Mar. 2022, doi: 10.1103/PhysRevB.105.115420. [46] Y. Liu, P. Stradins, and S.-H. Wei, “Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier,” Science Advances, vol. 2, no. 4, p. e1600069, Apr. 2016, doi: 10.1126/sciadv.1600069. [47] X. Hong et al., “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nature Nanotech, vol. 9, no. 9, pp. 682–686, Sep. 2014, doi: 10.1038/nnano.2014.167. [48] H. Yu, G.-B. Liu, and W. Yao, “Brightened spin-triplet interlayer excitons and optical selection rules in van der Waals heterobilayers,” 2D Mater., vol. 5, no. 3, p. 035021, May 2018, doi: 10.1088/2053-1583/aac065. [49] R. Xiong et al., “Correlated insulator of excitons in WSe2/WS2 moiré superlattices,” Science, vol. 380, no. 6647, pp. 860–864, May 2023, doi: 10.1126/science.add5574. [50] X. Wang et al., “Intercell moiré exciton complexes in electron lattices,” Nat. Mater., vol. 22, no. 5, pp. 599–604, May 2023, doi: 10.1038/s41563-023-01496-2. [51] M. C. Troparevsky, A. S. Sabau, A. R. Lupini, and Z. Zhang, “Transfer-matrix formalism for the calculation of optical response in multilayer systems: from coherent to incoherent interference,” Opt. Express, vol. 18, no. 24, p. 24715, Nov. 2010, doi: 10.1364/OE.18.024715. [52] P. Blake et al., “Making graphene visible,” arXiv.org. Accessed: Oct. 06, 2024. [Online]. Available: https://arxiv.org/abs/0705.0259v3 [53] N. Kumar et al., “Second harmonic microscopy of monolayer MoS 2,” Phys. Rev. B, vol. 87, no. 16, p. 161403, Apr. 2013, doi: 10.1103/PhysRevB.87.161403. [54] T. Iwasaki et al., “Bubble-Free Transfer Technique for High-Quality Graphene/Hexagonal Boron Nitride van der Waals Heterostructures,” ACS Appl. Mater. Interfaces, vol. 12, no. 7, pp. 8533–8538, Feb. 2020, doi: 10.1021/acsami.9b19191. [55] I. Cheliotis and I. Zergioti, “A review on transfer methods of two-dimensional materials,” 2D Mater., vol. 11, no. 2, p. 022004, Apr. 2024, doi: 10.1088/2053-1583/ad2f43. [56] O. A. Ajayi et al., “Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers,” 2D Mater., vol. 4, no. 3, p. 031011, Jul. 2017, doi: 10.1088/2053-1583/aa6aa1. [57] S.-J. Chang et al., “Optically Tunable Many-Body Exciton-Phonon Quantum Interference,” Advanced Science, vol. 11, no. 40, p. 2404741, 2024, doi: 10.1002/advs.202404741. [58] C. Manzoni and G. Cerullo, “Design criteria for ultrafast optical parametric amplifiers,” J. Opt., vol. 18, no. 10, p. 103501, Oct. 2016, doi: 10.1088/2040-8978/18/10/103501. [59] G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Review of Scientific Instruments, vol. 74, no. 1, pp. 1–18, Jan. 2003, doi: 10.1063/1.1523642. [60] M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B, vol. 97, no. 3, pp. 561–574, Nov. 2009, doi: 10.1007/s00340-009-3699-1. [61] A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B, JOSAB, vol. 16, no. 4, pp. 637–650, Apr. 1999, doi: 10.1364/JOSAB.16.000637. [62] E. M. Alexeev et al., “Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures,” Nature, vol. 567, no. 7746, pp. 81–86, Mar. 2019, doi: 10.1038/s41586-019-0986-9. [63] L. Yuan et al., “Twist-angle-dependent interlayer exciton diffusion in WS2–WSe2 heterobilayers,” Nat. Mater., vol. 19, no. 6, pp. 617–623, Jun. 2020, doi: 10.1038/s41563-020-0670-3. [64] P. Merkl et al., “Twist-tailoring Coulomb correlations in van der Waals homobilayers,” Nat Commun, vol. 11, no. 1, p. 2167, May 2020, doi: 10.1038/s41467-020-16069-z. [65] H. Li et al., “Imaging moiré flat bands in three-dimensional reconstructed WSe2/WS2 superlattices,” Nat. Mater., vol. 20, no. 7, pp. 945–950, Jul. 2021, doi: 10.1038/s41563-021-00923-6. [66] C. H. Stansbury et al., “Visualizing electron localization of WS2/WSe2 moiré superlattices in momentum space,” Science Advances, vol. 7, no. 37, p. eabf4387, Sep. 2021, doi: 10.1126/sciadv.abf4387. [67] F. Wu, T. Lovorn, and A. H. MacDonald, “Topological Exciton Bands in Moir\\’e Heterojunctions,” Phys. Rev. Lett., vol. 118, no. 14, p. 147401, Apr. 2017, doi: 10.1103/PhysRevLett.118.147401 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96397 | - |
| dc.description.abstract | 過渡金屬二硫屬化物 (TMDs) 因其直接能隙和強烈的激子效應而聞名,當它們組成范德瓦耳斯異質結構時,展現出獨特的光學與電子特性。由於層間的晶格不匹配或扭轉角度,形成的莫爾超晶格會產生周期性位能井,對激子的行為產生顯著影響。此外,在許多實驗中也觀察到層間激子具有相當豐富的量子現象。
在本研究中,我們報導了WS₂/WSe₂ 異質結構中的谷極化動力學。透過反射對比和功率依賴的時間解析光致發光測量,我們觀察到了層間激子的不同能量狀態以及谷極化的壽命。為了進一步探索相關電子態,我們開發了一種時間解析的泵浦-推進光致發光測量方法。我們展示了莫爾位點內和位點間激子的交互作用如何主導整體的自旋-谷弛豫行為。光驅動的不可壓縮激子態(填充因子等於1)被發現能在 15 ns 內放鬆至普通激子態,而莫爾位點內交互作用迅速降低了兩個激子同時佔據一個莫爾位點時的谷極化現象。 根據實驗結果,我們推導出了一組耦合速率方程,用於描述相關系統中激子態隨時間的演化。這使我們能進一步理解填充因子變化如何影響每個躍遷的速率,以及不同躍遷在同一激子態中的相對貢獻。 結果強調了瞬態光致發光測量在理解相關激子動力學中的重要性。本研究不僅拓展了對范德瓦耳斯異質結構中谷極化動力學的基礎認識,還為開發下一代量子與光電子設備奠定了基礎。 | zh_TW |
| dc.description.abstract | Transition metal dichalcogenides (TMDs), known for their direct band gaps and strong excitonic effects, exhibit unique optical and electronic properties when combined into van der Waals heterostructures. The resulting moiré superlattices, formed by lattice mismatches or twist angles between layers, create periodic potentials that significantly influence exciton behaviors. Moreover, even richer phenomena have been observed from the interlayer exciton.[1], [2], [3], [4], [5], [6]
Here, we report the observation of valley polarization dynamics in WS₂/WSe₂ heterostructures. Through reflectance contrast and power-depend time-resolved photoluminescence (TRPL), distinct energy states and valley polarization lifetimes from interlayer excitons were observed. A time-resolved pump-push TRPL measurement was developed to further explore correlated electronic states. We show that the interplay between on-site and inter-site exchange interactions governs the overall spin-valley relaxation. The optically driven incompressible exciton states (filling factor=1) were found to relax to normal exciton states within 15ns, and the on-site exchange interactions arising from incompressible exciton states rapidly reduced the valley polarization of doublons. Based on the experimental results, we derived a coupled rate equation to describe the temporal evolution of exciton states within the correlated system. This allowed us to further understand how changes in the filling factor affect each transition and the relative contributions of different transitions within the same exciton state. The results highlight the importance of transient PL measurements in understanding correlated excitonic dynamics. This work not only advances fundamental knowledge of the valley polarized dynamics in the van der Waals heterostructure but also provides a foundation for developing next-generation quantum and optoelectronic devices. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-13T16:17:17Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-13T16:17:17Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES vii LIST OF TABLES xiv Chapter 1 Introduction 1 Chapter 2 Basics of TMD van der Waals heterostructure 4 2.1 Property of monolayer TMD 4 2.1.1 TMD molecular and electronic bandstructure 4 2.1.2 Excitons in monolayer TMD 5 2.1.3 Valley polarization dynamics in monolayer TMD 8 2.1.4 Second-harmonic generation in monolayer TMD 10 2.2 Property of WS2-WSe2 heterostructure 17 2.2.1 Band alignment in van der Waals heterostructure 17 2.2.2 Moiré exciton in WS2-WSe2 heterostructure 19 2.2.3 Correlate electronic state in moiré superlattice 23 Chapter 3 Device fabrication and experimental technique 26 3.1 Device fabrication 26 3.1.1 Preparation of Monolayer materials 26 3.1.2 Second-harmonic generation measurement 29 3.1.3 Dry transfer technique 33 3.2 Experimental techniques 41 3.2.1 Ultrafast Optical parametric amplifiers 41 3.2.2 Intensified charge-coupled device 54 3.2.3 Experimental optical setup 55 3.2.4 Optical measurement techniques 57 Chapter 4 Experimental result and discussion 59 4.1 Reflectance contrast measurement 60 4.2 Interlayer exciton PL measurement 61 4.3 Power-dependent time-resolved PL measurement 61 4.4 Time-resolved pump-push-PL spectroscopy 67 4.5 Helicity-dependent time-resolved PL spectroscopy 70 Chapter 5 Conclusion 75 REFERENCE 77 | - |
| dc.language.iso | en | - |
| dc.subject | 谷偏振動力學 | zh_TW |
| dc.subject | 關聯激子動力學 | zh_TW |
| dc.subject | 層間激子 | zh_TW |
| dc.subject | 范德瓦耳斯異質結構 | zh_TW |
| dc.subject | 過渡金屬二硫屬化物 | zh_TW |
| dc.subject | correlated excitonic dynamics | en |
| dc.subject | Transition metal dichalcogenides | en |
| dc.subject | van der Waals heterostructures | en |
| dc.subject | interlayer excitons | en |
| dc.subject | valley polarization dynamics | en |
| dc.title | 二硫化鎢/二硒化鎢雙層異質結構中層間激子之谷偏振動力學 | zh_TW |
| dc.title | Valley polarization dynamics of interlayer excitons in WS2/WSe2 heterostructure | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張之威;江正天 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Wei Chang;Cheng-Tien Chiang | en |
| dc.subject.keyword | 過渡金屬二硫屬化物,范德瓦耳斯異質結構,層間激子,谷偏振動力學,關聯激子動力學, | zh_TW |
| dc.subject.keyword | Transition metal dichalcogenides,van der Waals heterostructures,interlayer excitons,valley polarization dynamics,correlated excitonic dynamics, | en |
| dc.relation.page | 81 | - |
| dc.identifier.doi | 10.6342/NTU202500493 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-02-07 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 應用物理研究所 | - |
| dc.date.embargo-lift | 2030-02-07 | - |
| 顯示於系所單位: | 應用物理研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 4.25 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
