Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 重點科技研究學院
  3. 元件材料與異質整合學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96392
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顏鴻威zh_TW
dc.contributor.advisorHung-Wei Yenen
dc.contributor.author陳宣彤zh_TW
dc.contributor.authorXuan-Tong Chenen
dc.date.accessioned2025-02-13T16:15:58Z-
dc.date.available2025-02-14-
dc.date.copyright2025-02-13-
dc.date.issued2025-
dc.date.submitted2025-02-07-
dc.identifier.citation[1] T. J. Mesquita, E. Chauveau, M. Mantel, N. Bouvier, and D. Koschel, "Corrosion and metallurgical investigation of two supermartensitic stainless steels for oil and gas environments," Corrosion Science, vol. 81, pp. 152-161, 2014.
[2] X. Ma, L. Wang, S. V. Subramanian, and C. Liu, "Studies on Nb microalloying of 13Cr super martensitic stainless steel," Metallurgical and Materials Transactions A, vol. 43, pp. 4475-4486, 2012.
[3] Y. Lian, J. Huang, J. Zhang, C. Zhang, W. Gao, and C. Zhao, "Effect of 0.2 and 0.5% Ti on the microstructure and mechanical properties of 13Cr supermartensitic stainless steel," Journal of Materials Engineering and Performance, vol. 24, pp. 4253-4259, 2015.
[4] X. Ma, L. Wang, B. Qin, C. Liu, and S. Subramanian, "Effect of N on microstructure and mechanical properties of 16Cr5Ni1Mo martensitic stainless steel," Materials & Design, vol. 34, pp. 74-81, 2012.
[5] D. Ye, J. Li, W. Jiang, J. Su, and K. Zhao, "Effect of Cu addition on microstructure and mechanical properties of 15% Cr super martensitic stainless steel," Materials & Design, vol. 41, pp. 16-22, 2012.
[6] C. Rodrigues, R. Bandeira, B. Duarte, G. Tremiliosi-Filho, and A. M. Jorge Jr, "Effect of phosphorus content on the mechanical, microstructure and corrosion properties of supermartensitic stainless steel," Materials Science and Engineering: A, vol. 650, pp. 75-83, 2016.
[7] "Statistical Review of World Energy." https://www.energyinst.org/statistical-review (accessed.
[8] "Oil Country Tubular Goods OCTG Market Size, Share, Trends, Growth Outlook." https://www.usdanalytics.com/industry-reports/oil-country-tubular-goods-octg-market (accessed.
[9] T. Omura, M. Numata, and M. Ueda, "Super-high strength low-alloy steel OCTG with improved sour resistance," Ferrum Bulletin of the Iron and Steel Institute of Japan, vol. 9, pp. 575-579, 2009.
[10] B. A. Tabatabae, F. Ashrafizadeh, and A. M. Hassanli, "Influence of retained austenite on the mechanical properties of low carbon martensitic stainless steel castings," ISIJ international, vol. 51, no. 3, pp. 471-475, 2011.
[11] A. Bojack, L. Zhao, P. Morris, and J. Sietsma, "Austenite formation from martensite in a 13Cr6Ni2Mo supermartensitic stainless steel," Metallurgical and Materials Transactions A, vol. 47, pp. 1996-2009, 2016.
[12] H. M. Cobb, The history of stainless steel. ASM International, 2010.
[13] J. Mola and B. C. De Cooman, "Quenching and partitioning (Q&P) processing of martensitic stainless steels," Metallurgical and Materials Transactions A, vol. 44, pp. 946-967, 2013.
[14] S. Malik et al., "Focused review on factors affecting martensitic stainless steels and super martensitic stainless steel passive film in the oil and gas field," Journal of Solid State Electrochemistry, vol. 28, no. 10, pp. 3533-3557, 2024.
[15] S. Tavares, M. Silva, J. Pardal, M. Silva, and M. de Macedo, "Influence of heat treatments on the sensitization of a supermartensitic stainless steel," Ciência & Tecnologia dos Materiais, vol. 29, no. 1, pp. e1-e8, 2017.
[16] M. Ueda, H. Amaya, K. Kondo, K. Ogawa, and T. Mori, "Corrosion resistance of weldable super 13Cr stainless steel in H {sub 2} S containing CO {sub 2} environments," NACE International, Houston, TX (United States), 1996.
[17] G. Krauss and A. Marder, "The morphology of martensite in iron alloys," Metallurgical Transactions, vol. 2, pp. 2343-2357, 1971.
[18] T. Maki, "Morphology and substructure of martensite in steels," Phase transformations in steels, pp. 34-58, 2012.
[19] L. D. Barlow and M. Du Toit, "Effect of austenitizing heat treatment on the microstructure and hardness of martensitic stainless steel AISI 420," Journal of materials engineering and performance, vol. 21, pp. 1327-1336, 2012.
[20] F. B. Pickering, "The metallurgical evolution of stainless steels: a discriminative selection of outstanding articles and papers from the scientific literature," (No Title), 1979.
[21] K. Balan, A. V. Reddy, and D. Sarma, "Austenite precipitation during tempering in 16Cr-2Ni martensitic stainless steels," Scripta Materialia, vol. 39, no. 7, pp. 901-905, 1998.
[22] D.-S. Leem, Y.-D. Lee, J.-H. Jun, and C.-S. Choi, "Amount of retained austenite at room temperature after reverse transformation of martensite to austenite in an Fe–13% Cr–7% Ni–3% Si martensitic stainless steel," Scripta materialia, vol. 45, no. 7, pp. 767-772, 2001.
[23] F. Niessen, "Austenite reversion in low-carbon martensitic stainless steels–a CALPHAD-assisted review," Materials Science and Technology, vol. 34, no. 12, pp. 1401-1414, 2018.
[24] Y. Song, X. Li, L. Rong, Y. Li, and T. Nagai, "Reversed austenite in 0Cr13Ni4Mo martensitic stainless steels," Materials Chemistry and Physics, vol. 143, no. 2, pp. 728-734, 2014.
[25] F. Niessen, F. B. Grumsen, J. Hald, and M. A. J. Somers, "Formation and stabilization of reverted austenite in supermartensitic stainless steel," Metallurgical Research & Technology, vol. 115, no. 4, p. 402, 2018.
[26] R. Schnitzer et al., "Reverted austenite in PH 13-8 Mo maraging steels," Materials Chemistry and Physics, vol. 122, no. 1, pp. 138-145, 2010.
[27] Y. Song, X. Li, L. Rong, D. Ping, F. Yin, and Y. Li, "Formation of the reversed austenite during intercritical tempering in a Fe–13% Cr–4% Ni–Mo martensitic stainless steel," Materials Letters, vol. 64, no. 13, pp. 1411-1414, 2010.
[28] N. Nakada, T. Tsuchiyama, S. Takaki, and S. Hashizume, "Variant selection of reversed austenite in lath martensite," ISIJ international, vol. 47, no. 10, pp. 1527-1532, 2007.
[29] F. Niessen, M. Villa, J. Hald, and M. A. Somers, "Kinetics analysis of two-stage austenitization in supermartensitic stainless steel," Materials & Design, vol. 116, pp. 8-15, 2017.
[30] M. De Sanctis et al., "Microstructural features affecting tempering behavior of 16Cr-5Ni supermartensitic steel," Metallurgical and Materials Transactions A, vol. 46, pp. 1878-1887, 2015.
[31] J. Escobar, G. Faria, L. Wu, J. Oliveira, P. Mei, and A. Ramirez, "Austenite reversion kinetics and stability during tempering of a Ti-stabilized supermartensitic stainless steel: Correlative in situ synchrotron x-ray diffraction and dilatometry," Acta materialia, vol. 138, pp. 92-99, 2017.
[32] N. Nakada, T. Tsuchiyama, S. Takaki, and N. Miyano, "Temperature dependence of austenite nucleation behavior from lath martensite," ISIJ international, vol. 51, no. 2, pp. 299-304, 2011.
[33] L. Yuan, D. Ponge, J. Wittig, P. Choi, J. A. Jiménez, and D. Raabe, "Nanoscale austenite reversion through partitioning, segregation and kinetic freezing: Example of a ductile 2 GPa Fe–Cr–C steel," Acta Materialia, vol. 60, no. 6-7, pp. 2790-2804, 2012.
[34] M. J. Sohrabi, M. Naghizadeh, and H. Mirzadeh, "Deformation-induced martensite in austenitic stainless steels: a review," Archives of Civil and Mechanical Engineering, vol. 20, pp. 1-24, 2020.
[35] K. Tomimura, S. Takaki, and Y. Tokunaga, "Reversion mechanism from deformation induced martensite to austenite in metastable austenitic stainless steels," ISIJ international, vol. 31, no. 12, pp. 1431-1437, 1991.
[36] K. Andrews, "Empirical formulae for the calculation of some transformation temperatures," J. Iron Steel Inst., pp. 721-727, 1965.
[37] M. R. K. DP and M. Re, "A general equation prescribing the extent of the austenite-martensite transformation in pure non-carbon alloys and plain carbon steels," Acta Met, vol. 7, pp. 55-69, 1959.
[38] A. Chandan, G. Bansal, J. Kundu, J. Chakraborty, and S. G. Chowdhury, "Effect of prior austenite grain size on the evolution of microstructure and mechanical properties of an intercritically annealed medium manganese steel," Materials Science and Engineering: A, vol. 768, p. 138458, 2019.
[39] E. Jimenez-Melero et al., "Martensitic transformation of individual grains in low-alloyed TRIP steels," Scripta Materialia, vol. 56, no. 5, pp. 421-424, 2007.
[40] S. Takaki, K. Fukunaga, J. Syarif, and T. Tsuchiyama, "Effect of grain refinement on thermal stability of metastable austenitic steel," Materials Transactions, vol. 45, no. 7, pp. 2245-2251, 2004.
[41] X. Xiong, B. Chen, M. Huang, J. Wang, and L. Wang, "The effect of morphology on the stability of retained austenite in a quenched and partitioned steel," Scripta Materialia, vol. 68, no. 5, pp. 321-324, 2013.
[42] P. Jacques, F. Delannay, and J. Ladrière, "On the influence of interactions between phases on the mechanical stability of retained austenite in transformation-induced plasticity multiphase steels," Metallurgical and materials transactions A, vol. 32, pp. 2759-2768, 2001.
[43] B. He, W. Xu, and M. Huang, "Increase of martensite start temperature after small deformation of austenite," Materials Science and Engineering: A, vol. 609, pp. 141-146, 2014.
[44] M. Soleimani, A. Kalhor, and H. Mirzadeh, "Transformation-induced plasticity (TRIP) in advanced steels: a review," Materials Science and Engineering: A, vol. 795, p. 140023, 2020.
[45] R. Schwarzer, "Spatial resolution in ACOM-What will come after EBSD," Microscopy Today, vol. 16, no. 1, pp. 34-37, 2008.
[46] M. Al Dawood, I. El Mahallawi, M. Abd El Azim, and M. El Koussy, "Thermal aging of 16Cr–5Ni–1Mo stainless steel Part 1–Microstructural analysis," Materials science and technology, vol. 20, no. 3, pp. 363-369, 2004.
[47] M. Al Dawood, I. El Mahallawi, M. Abd El Azim, and M. El Koussy, "Thermal aging of 16Cr–5Ni–1Mo stainless steel Part 2–Mechanical property characterisation," Materials Science and Technology, vol. 20, no. 3, pp. 370-374, 2004.
[48] B. Qin, Z. Wang, and Q. Sun, "Effect of tempering temperature on properties of 00Cr16Ni5Mo stainless steel," Materials characterization, vol. 59, no. 8, pp. 1096-1100, 2008.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96392-
dc.description.abstract本研究探討了不同淬火及回火溫度搭配不同回火時間對QT900等級EN1.4418超麻田散鐵不鏽鋼顯微組織演進及機械性能的影響。研究挑戰了標準熱處理溫度,採用降低固溶溫度以達成晶粒細化,或降低回火溫度以減少由差排回復引起的強度損失,目標是在保持良好的延伸率的情況不下犧牲過多強度。研究結果顯示,當固溶熱處理溫度從950°C (Q950)降低至750°C (Q750)時,可有效地將原沃斯田鐵晶粒尺寸從20µm縮小至10µm,晶界密度的增加為後續回火過程中沃斯田鐵逆相變的成核成長提供了更多位點。相同回火參數下,Q750的殘留沃斯田鐵體積分率高於Q950,並且對後續殘留沃斯田鐵的分布及形貌也產生了影響。然而,晶粒細化未能貢獻強化效應,原因是Q750下會析出Cr23C6,導致強度下降;而在Q950條件下,Cr完全固溶,從而提供了碳原子的固溶強化作用。
研究中還發現,未回火樣品的拉伸結果已能符合QT900規範中的16%延伸率,這是由於極低碳含量的軟質麻田散鐵組織具有優異的抵抗孔洞膨脹特性,能夠彌補整體延伸性能的不足。回火後,殘留沃斯田鐵體積分率隨回火溫度從500°C至650°C呈現先升後降的趨勢,這與沃斯田鐵的穩定性有關。沃斯田鐵逆相變的程度對拉伸性質的表現具有顯著影響。殘留沃斯田鐵有助於提高均勻延伸率,延遲頸縮的發生。同時,隨著回火溫度的升高,差排回復與沃斯田鐵逆相變所造成的強度損失也隨之增大。在500°C低溫回火時,觀察到顯著的二次硬化現象,尤其在晶粒細化的Q750樣品中更為明顯,這使得降伏強度提升300MPa,而Q950則提升了70MPa。這一現象可能與碳化物在不同回火溫度下的變化有關,推論低溫回火可能使M3C溶解,或是析出細小M2X碳化物,從而貢獻固溶強化或析出強化作用。
zh_TW
dc.description.abstractThis study investigates the relationship between the microstructural evolution and mechanical properties of QT900 grade EN1.4418 supermartensitic stainless steel, subjected to various quenching and tempering temperatures combined with different tempering times. The research challenges conventional heat treatment standards by employing lower austenitization temperature to achieve grain refinement and lower tempering temperature to reduce strength loss caused by dislocation recovery. The aim is to maintain a good elongation without sacrificing excessive strength. The experimental results indicate that reducing the solution treatment temperature from 950°C (Q950) to 750°C (Q750) effectively reduces the prior austenite grain size from 20 µm to 10 µm. The increased grain boundary density provides more nucleation sites for austenite reversion during subsequent tempering. When comparing the same tempering parameters, the volume fraction of retained austenite in Q750 is higher than in Q950, which also affects the distribution and morphology of the retained austenite. However, the grain refinement did not contribute to strengthening, as carbide precipitation (Cr23C6) occurs under the Q750 condition, resulting in a reduction in strength. In contrast, the chromium in Q950 remains fully dissolved, providing solid solution strengthening through carbon atoms.
Additionally, tensile tests of the as-quenched samples reveal that the elongation already meets the QT900 specification of 16%, which can be attributed to the excellent resistance to void expansion of the soft martensitic structure, due to its very low carbon content. This allows the post elongation to compensate for the overall elongation performance. After tempering, the volume fraction of retained austenite increases and then decreases as the tempering temperature rises from 500°C to 650°C, which is related to the stability of the austenite phase. The degree of austenite reversion significantly influences the tensile properties. Retained austenite contributes to the better uniform elongation and delays necking. It was observed that as the tempering temperature increases, the dislocation recovery and austenite reversion cause greater strength loss. At a low tempering temperature of 500°C, a secondary hardening phenomenon was observed, particularly in the Q750 sample with refined grain, leading to an increase in yield strength by 300 MPa, while Q950 saw an increase of 70 MPa. This phenomenon may be related to the changes in carbides at different tempering temperatures. It is speculated that low-temperature tempering could lead to the dissolution of M3C or the precipitation of fine M2X carbides, thereby contributing to solid solution strengthening or precipitation strengthening.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-13T16:15:58Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-13T16:15:58Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
中文摘要 iii
Abstract iv
Contents vi
List of Figures ix
List of Tables xvi
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 Oil Country Tubular Goods (OCTG) 3
2.1.1 Advanced high strength steels for OCTG 3
2.1.2 Supermartensitic stainless steel 6
2.1.3 EN1.4418 supermartensitic stainless steel 11
2.1.4 Standard heat treatment and mechanical properties of EN1.4418 12
2.2 Austenite Reversion 16
2.2.1 Review on recent austenite reversion process 16
2.2.2 Austenite reversion mechanism 22
2.2.3 Austenite reversion stability 24
2.3 Effect of retained austenite on tensile properties 32
Chapter 3 Experimental Procedures 33
3.1 Experimental steel 33
3.2 Quenching and Tempering Processes 35
3.3 Microstructure Characterization 37
3.3.1 Electron Backscattered Diffraction (EBSD) 37
3.3.2 Transmission Kikuchi Diffraction (TKD) 37
3.3.3 Transmission Electron Microscopy (TEM) 39
3.3.4 X-ray Diffraction (XRD) 39
3.3.5 Atom Probe Tomography (APT) 40
3.4 Tensile Test 41
Chapter 4 Experimental results and discussion 42
4.1 Microstructural evolution and mechanical properties 42
4.1.1 Effect of austenitization temperatuere on microstructure and mechanical properties in as-quenched process 42
4.1.2 Microstructure evolution in Q-T process 50
4.1.3 Volume fraction and the stability of retained austenite in Q-T process 59
4.2 The relation between microstructure and mechanical properties 69
4.2.1 Tensile properties in Q-T process 69
4.2.2 Precipitation behavior in Q750-T500 and Q750-T600 79
Chapter 5 Conclusion 88
Chapter 6 Future work 91
Reference 92
-
dc.language.isoen-
dc.subject穿透式電子顯微鏡zh_TW
dc.subject原子針尖斷層影像zh_TW
dc.subject殘留沃斯田鐵zh_TW
dc.subject沃斯田鐵逆相變zh_TW
dc.subject超麻田散鐵不鏽鋼zh_TW
dc.subjectatom probe tomographyen
dc.subjectsupermartensitic stainless steelen
dc.subjectaustenite reversionen
dc.subjectretained austeniteen
dc.subjecttransmission electron microscopyen
dc.titleEN1.4418超麻田散鐵不鏽鋼顯微結構與機械性能之研究zh_TW
dc.titleStudy on the microstructure and strength-ductility enhancement of EN1.4418 supermartensitic stainless steelen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃爾文;蔡劭璞;蔡哲瑋zh_TW
dc.contributor.oralexamcommitteeE-Wen Huang;Shao-Pu Tsai;Che-Wei Tsaien
dc.subject.keyword超麻田散鐵不鏽鋼,沃斯田鐵逆相變,殘留沃斯田鐵,穿透式電子顯微鏡,原子針尖斷層影像,zh_TW
dc.subject.keywordsupermartensitic stainless steel,austenite reversion,retained austenite,transmission electron microscopy,atom probe tomography,en
dc.relation.page95-
dc.identifier.doi10.6342/NTU202500445-
dc.rights.note未授權-
dc.date.accepted2025-02-07-
dc.contributor.author-college重點科技研究學院-
dc.contributor.author-dept元件材料與異質整合學位學程-
dc.date.embargo-liftN/A-
顯示於系所單位:元件材料與異質整合學位學程

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
11.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved