請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96389
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 施路易 | zh_TW |
dc.contributor.advisor | Ludvig Löwemark | en |
dc.contributor.author | 辛愛卡 | zh_TW |
dc.contributor.author | Akanksha Singh | en |
dc.date.accessioned | 2025-02-13T16:15:09Z | - |
dc.date.available | 2025-02-14 | - |
dc.date.copyright | 2025-02-13 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-02-05 | - |
dc.identifier.citation | Aagaard, K. and Coachman, L.K., 1968. the East Greenland current north of Denmark strait: Part II. Arctic, pp.267-290.
Aagaard, K. and Carmack, E.C., 1989. The role of sea ice and other fresh water in the Arctic circulation. Journal of Geophysical Research: Oceans, 94(C10), pp.14485-14498. Aagaard, K. and Carmack, E.C., 1994. The Arctic Ocean and climate: A perspective. Geophysical Monograph Series, 85, pp.5-20. Aagaard, K. and Greisman, P., 1975. Toward new mass and heat budgets for the Arctic Ocean. Journal of Geophysical Research, 80(27), pp.3821-3827. Aagaard, K., Swift, J.H. and Carmack, E.C., 1985. Thermohaline circulation in the Arctic Mediterranean seas. Journal of Geophysical Research: Oceans, 90(C3), pp.4833-4846. Abelmann, A., 1992. Diatom assemblages in Arctic sea ice—indicator for ice drift pathways. Deep Sea Research Part A. Oceanographic Research Papers, 39(2), pp.S525-S538. Aldahan, A.A., Ning, S., Possnert, G., Backman, J. and Boström, K., 1997. 10Be records from sediments of the Arctic Ocean covering the past 350 ka. Marine Geology, 144(1-3), pp.147-162. Alexanderson, H., Backman, J., Cronin, T.M., Funder, S., Ingólfsson, Ó., Jakobsson, M., Landvik, J.Y., Löwemark, L., Mangerud, J., März, C. and Möller, P., 2014. An Arctic perspective on dating Mid-Late Pleistocene environmental history. Quaternary Science Reviews, 92, pp.9-31. Alonso‐Sáez, L., Sánchez, O., Gasol, J.M., Balagué, V. and Pedrós‐Alio, C., 2008. Winter‐to‐summer changes in the composition and single‐cell activity of near‐surface Arctic prokaryotes. Environmental Microbiology, 10(9), pp.2444-2454. Amano-Sato, C., Akiyama, S., Uchida, M., Shimada, K. and Utsumi, M., 2013. Archaeal distribution and abundance in water masses of the Arctic Ocean, Pacific sector. Aquatic microbial ecology, 69(2), pp.101-112. Amélineau, F., Grémillet, D., Bonnet, D., Le Bot, T. and Fort, J., 2016. Where to forage in the absence of sea ice? Bathymetry as a key factor for an Arctic seabird. PloS one, 11(7), p.e0157764. Anderson, L.G., Björk, G., Holby, O., Jones, E.P., Kattner, G., Koltermann, K.P., Liljeblad, B., Lindegren, R., Rudels, B. and Swift, J., 1994. Water masses and circulation in the Eurasian Basin: Results from the Oden 91 expedition. Journal of Geophysical Research: Oceans, 99(C2), pp.3273-3283. Armitage, T.W., Bacon, S., Ridout, A.L., Petty, A.A., Wolbach, S. and Tsamados, M., 2017. Arctic Ocean surface geostrophic circulation 2003–2014. The Cryosphere, 11(4), pp.1767-1780. Astakhov, V., Shkatova, V., Zastrozhnov, A. and Chuyko, M., 2016. Glaciomorphological map of the Russian Federation. Quaternary International, 420, pp.4-14. Astakhov, V.I., 2006. Evidence of Late Pleistocene ice‐dammed lakes in West Siberia. Boreas, 35(4), pp.607-621. Axelsson, V., Händel, S. K. and Handel, S. K., 1972. X-Radiography of Unextruded Sediment Cores, Geografiska Annaler. Series A, Physical Geography, 54(1). Backman, J., Jakobsson, M., Løvlie, R., Polyak, L. and Febo, L.A., 2004. Is the central Arctic Ocean a sediment starved basin?. Quaternary Science Reviews, 23(11-13), pp.1435-1454. Baker, B., 2010. Law, Science, and the Continental Shelf: The Russian Federation and the Promise of Arctic Cooperation, American University International Law Review, 25(2). Bauch, H.A., Erlenkeuser, H., Spielhagen, R.F., Struck, U., Matthiessen, J., Thiede, J. and Heinemeier, J., 2001. A multiproxy reconstruction of the evolution of deep and surface waters in the subarctic Nordic seas over the last 30,000 yr. Quaternary Science Reviews, 20(4), pp.659-678. Belicka, L. L. and Harvey, H. R., 2009The sequestration of terrestrial organic carbon in Arctic Ocean sediments: A comparison of methods and implications for regional carbon budgets, Geochimica et Cosmochimica Acta, 73(20). Belt, S.T., Massé, G., Rowland, S.J., Poulin, M., Michel, C. and LeBlanc, B., 2007. A novel chemical fossil of palaeo sea ice: IP25. Organic Geochemistry, 38(1), pp.16-27. Belt, S.T., 2018. Source-specific biomarkers as proxies for Arctic and Antarctic sea ice. Organic geochemistry, 125, pp.277-298. Belt, S.T. and Müller, J., 2013. The Arctic sea ice biomarker IP25: a review of current understanding, recommendations for future research and applications in palaeo sea ice reconstructions. Quaternary Science Reviews, 79, pp.9-25. Berkman, P., 2012. Geopolitics of Arctic sea-ice minima. The Brown Journal of World Affairs, 19(1), pp.145-153. Bischoff, J., Sparkes, R.B., Doğrul Selver, A., Spencer, R.G., Gustafsson, Ö., Semiletov, I.P., Dudarev, O.V., Wagner, D., Rivkina, E., van Dongen, B.E. and Talbot, H.M., 2016. Source, transport and fate of soil organic matter inferred from microbial biomarker lipids on the East Siberian Arctic Shelf. Biogeosciences, 13(17), pp.4899-4914. Björk, G., Anderson, L.G., Jakobsson, M., Antony, D., Eriksson, B., Eriksson, P.B., Hell, B., Hjalmarsson, S., Janzen, T., Jutterström, S. and Linders, J., 2010. Flow of Canadian basin deep water in the Western Eurasian Basin of the Arctic Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 57(4), pp.577-586. Blaga, C.I., Reichart, G.J., Heiri, O. and Sinninghe Damsté, J.S., 2009. Tetraether membrane lipid distributions in water-column particulate matter and sediments: a study of 47 European lakes along a north–south transect. Journal of Paleolimnology, 41, pp.523-540. Blanpied, C. and Bellaiche, G., 1981. Bioturbation on the Pelagian platform: ichnofacies variations as paleoclimatic indicator. Marine Geology, 43(3-4), pp.M49-M57. Blumer, M., Robertson, J.C., Gordon, J.E. and Sass, J., 1969. Phytol-derived C19 di-and triolefinic hydrocarbons in marine zooplankton and fishes. Biochemistry, 8(10), pp.4067-4074. Blunden, J. and Boyer, T., 2021. State of the climate in 2020, Bulletin of the American Meteorological Society, 102(8), pp. 1–481. Boudreau, B. P., 1994. Is burial velocity a master parameter for bioturbation?, Geochimica et Cosmochimica Acta, 58(4). Bouma, A. H., 1964. Notes on X-ray interpretation of marine sediments, Marine Geology, 2(4). Bourke, R.H., Weigel, A.M. and Paquette, R.G., 1988. The westward turning branch of the West Spitsbergen Current. Journal of Geophysical Research: Oceans, 93(C11), pp.14065-14077. Bradley, R.S. and England, J.H., 2008. The Younger Dryas and the sea of ancient ice. Quaternary Research, 70(1), pp.1-10. Bring, A., Shiklomanov, A. and Lammers, R. B., 2017. Pan-Arctic river discharge: Prioritizing monitoring of future climate change hot spots, Earth’s Future, 5(1). Bromley, R.G., 1991. Zoophycos: strip mine, refuse dump, cache or sewage farm?. Lethaia, 24(4), pp.460-462. Bromley, R.G. and Ekdale, A.A., 1984. Chondrites: a trace fossil indicator of anoxia in sediments. Science, 224(4651), pp.872-874. Brown, L. C. and Duguay, C. R., 2022. Arctic Report Card 2022: Lake Ice. Brown, T.A., Belt, S.T., Philippe, B., Mundy, C.J., Massé, G., Poulin, M. and Gosselin, M., 2011. Temporal and vertical variations of lipid biomarkers during a bottom ice diatom bloom in the Canadian Beaufort Sea: further evidence for the use of the IP 25 biomarker as a proxy for spring Arctic sea ice. Polar Biology, 34, pp.1857-1868. Buckles, L.K., Weijers, J.W.H., Tran, X.M., Waldron, S. and Sinninghe Damsté, J.S., 2014. Provenance of tetraether membrane lipids in a large temperate lake (Loch Lomond, UK): implications for glycerol dialkyl glycerol tetraether (GDGT)-based palaeothermometry. Biogeosciences, 11(19), pp.5539-5563. Cai, P., Rutgers Van Der Loeff, M., Stimac, I., Nöthig, E.M., Lepore, K. and Moran, S.B., 2010. Low export flux of particulate organic carbon in the central Arctic Ocean as revealed by 234Th: 238U disequilibrium. Journal of Geophysical Research: Oceans, 115(C10). Campos, C. and Vredenborg, M., 2018. The Physical System of the Arctic Ocean and Subarctic Seas in a Changing Climate, Springer International Publishing, pp. 25–40. Cande, S.C. and Kent, D.V., 1992. A new geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research: Solid Earth, 97(B10), pp.13917-13951. Cande, S.C. and Kent, D.V., 1995. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research: Solid Earth, 100(B4), pp.6093-6095. Cao, Y.F. and Liang, S.L., 2018. Recent advances in driving mechanisms of the Arctic amplification: A review. Chin. Sci. Bull, 63, pp.2757-2771. Carmack, E., Barber, D., Christensen, J., Macdonald, R., Rudels, B. and Sakshaug, E., 2006. Climate variability and physical forcing of the food webs and the carbon budget on panarctic shelves. Progress in Oceanography, 71(2-4), pp.145-181. Carstens, J., Hebbeln, D. and Wefer, G., 1997. Distribution of planktic foraminifera at the ice margin in the Arctic (Fram Strait). Marine Micropaleontology, 29(3-4), pp.257-269. Carstens, J. and Wefer, G., 1992. Recent distribution of planktonic foraminifera in the Nansen Basin, Arctic Ocean. Deep Sea Research Part A. Oceanographic Research Papers, 39(2), pp.S507-S524. Champion, D.E., Lanphere, M.A. and Kuntz, M.A., 1988. Evidence for a new geomagnetic reversal from lava flows in Idaho: Discussion of short polarity reversals in the Brunhes and late Matuyama polarity chrons. Journal of Geophysical Research: Solid Earth, 93(B10), pp.11667-11680. Chauhan, T., Rasmussen, T.L., Noormets, R., Jakobsson, M. and Hogan, K.A., 2014. Glacial history and paleoceanography of the southern Yermak Plateau since 132 ka BP. Quaternary Science Reviews, 92, pp.155-169. Chistyakova, N.O., Ivanova, E.V., Risebrobakken, B., Ovsepyan, E.A. and Ovsepyan, Y.S., 2010. Reconstruction of the postglacial environments in the southwestern Barents Sea based on foraminiferal assemblages. Oceanology, 50, pp.573-581. Chiu, P.Y., Chao, W.S., Gyllencreutz, R., Jakobsson, M., Li, H.C., Löwemark, L. and O'Regan, M., 2017. New constraints on Arctic Ocean Mn stratigraphy from radiocarbon dating on planktonic foraminifera. Quaternary International, 447, pp.13-26. Chupakov, A.V., Pokrovsky, O.S., Moreva, O.Y., Kotova, E.I., Vorobyeva, T.Y. and Shirokova, L.S., 2023. Export of organic carbon, nutrients and metals by the mid-sized Pechora River to the Arctic Ocean. Chemical Geology, 632, p.121524. Chylek, P., Folland, C., Klett, J.D., Wang, M., Hengartner, N., Lesins, G. and Dubey, M.K., 2022. Annual mean Arctic amplification 1970–2020: Observed and simulated by CMIP6 climate models. Geophysical Research Letters, 49(13), p.e2022GL099371. Clark, D.L., 1970. Magnetic reversals and sedimentation rates in the Arctic Ocean. Geological Society of America Bulletin, 81(10), pp.3129-3134. Clark, D.L., Whitman, R.R., Morgan, K.A. and Mackey, S.D., 1980. Stratigraphy and glacial-marine sediments of the Amerasian Basin, central Arctic Ocean. Coachman, L.K., 1969. Physical oceanography in the Arctic Ocean: 1968. Arctic, 22(3), pp.214-224. Cochran, J.R., Kurras, G.J., Edwards, M.H. and Coakley, B.J., 2003. The Gakkel Ridge: Bathymetry, gravity anomalies, and crustal accretion at extremely slow spreading rates. Journal of Geophysical Research: Solid Earth, 108(B2). Cochran, J.R., Edwards, M.H. and Coakley, B.J., 2006. Morphology and structure of the Lomonosov ridge, Arctic Ocean. Geochemistry, Geophysics, Geosystems, 7(5). Colleoni, F., Liakka, J., Krinner, G., Jakobsson, M., Masina, S. and Peyaud, V., 2011. The sensitivity of the Late Saalian (140 ka) and LGM (21 ka) Eurasian ice sheets to sea surface conditions. Climate dynamics, 37, pp.531-553. Comiso, J.C., 2006. Abrupt decline in the Arctic winter sea ice cover. Geophysical Research Letters, 33(18). Comiso, J.C. and Parkinson, C.L., 2004. Satellite-observed changes in the Arctic. Physics Today, 57(8), pp.38-44. Cronin, T.M., Smith, S.A., Eynaud, F., O'Regan, M. and King, J., 2008. Quaternary paleoceanography of the central arctic based on Integrated Ocean Drilling Program Arctic Coring Expedition 302 foraminiferal assemblages. Paleoceanography, 23(1). Cronin, T.M., Gemery, L., Briggs Jr, W.M., Jakobsson, M., Polyak, L. and Brouwers, E.M., 2010. Quaternary Sea-ice history in the Arctic Ocean based on a new Ostracode sea-ice proxy. Quaternary Science Reviews, 29(25-26), pp.3415-3429. Cronin, T.M., DeNinno, L.H., Polyak, L., Caverly, E.K., Poore, R.Z., Brenner, A., Rodriguez-Lazaro, J. and Marzen, R.E., 2014. Quaternary ostracode and foraminiferal biostratigraphy and paleoceanography in the western Arctic Ocean. Marine Micropaleontology, 111, pp.118-133. Dang, X., Xue, J., Yang, H. and Xie, S., 2016. Environmental impacts on the distribution of microbial tetraether lipids in Chinese lakes with contrasting pH: Implications for lacustrine paleoenvironmental reconstructions. Science China Earth Sciences, 59, pp.939-950. Daniels, W.C., Castañeda, I.S., Salacup, J.M., Habicht, M.H., Lindberg, K.R. and Brigham‐Grette, J., 2022. Archaeal lipids reveal climate‐driven changes in microbial ecology at Lake El'gygytgyn (Far East Russia) during the Plio‐Pleistocene. Journal of Quaternary Science, 37(5), pp.900-914. Darby, D.A., Ortiz, J., Polyak, L., Lund, S., Jakobsson, M. and Woodgate, R.A., 2009. The role of currents and sea ice in both slowly deposited central Arctic and rapidly deposited Chukchi–Alaskan margin sediments. Global and Planetary Change, 68(1-2), pp.58-72. Darby, D.A., Bischof, J.F. and Jones, G.A., 1997. Radiocarbon chronology of depositional regimes in the western Arctic Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 44(8), pp.1745-1757. Darby, D.A. and Zimmerman, P., 2008. Ice-rafted detritus events in the Arctic during the last glacial interval, and the timing of the Innuitian and Laurentide ice sheet calving events. Polar Research, 27(2), pp.114-127. De Jonge, C., Hopmans, E.C., Zell, C.I., Kim, J.H., Schouten, S. and Damsté, J.S.S., 2014. Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils: Implications for palaeoclimate reconstruction. Geochimica et Cosmochimica Acta, 141, pp.97-112. De Jonge, C., Stadnitskaia, A., Hopmans, E.C., Cherkashov, G., Fedotov, A., Streletskaya, I.D., Vasiliev, A.A. and Damsté, J.S.S., 2015. Drastic changes in the distribution of branched tetraether lipids in suspended matter and sediments from the Yenisei River and Kara Sea (Siberia): Implications for the use of brGDGT-based proxies in coastal marine sediments. Geochimica et Cosmochimica Acta, 165, pp.200-225. De Jonge, C., Stadnitskaia, A., Cherkashov, G. and Damsté, J.S.S., 2016. Branched glycerol dialkyl glycerol tetraethers and crenarchaeol record post-glacial sea level rise and shift in source of terrigenous brGDGTs in the Kara Sea (Arctic Ocean). Organic geochemistry, 92, pp.42-54. De Schepper, S., Ray, J.L., Skaar, K.S., Sadatzki, H., Ijaz, U.Z., Stein, R. and Larsen, A., 2019. The potential of sedimentary ancient DNA for reconstructing past sea ice evolution. The ISME journal, 13(10), pp.2566-2577. de Vernal, A., Hillaire-Marcel, C., Rochon, A., Fréchette, B., Henry, M., Solignac, S. and Bonnet, S., 2013. Dinocyst-based reconstructions of sea ice cover concentration during the Holocene in the Arctic Ocean, the northern North Atlantic Ocean and its adjacent seas. Quaternary Science Reviews, 79, pp.111-121. de Vernal, A., Gersonde, R., Goosse, H., Seidenkrantz, M.S. and Wolff, E.W., 2013. Sea ice in the paleoclimate system: the challenge of reconstructing sea ice from proxies–an introduction. Quaternary Science Reviews, 79, pp.1-8. de Vernal, A., Hillaire-Marcel, C., Le Duc, C., Roberge, P., Brice, C., Matthiessen, J., Spielhagen, R.F. and Stein, R., 2020. Natural variability of the Arctic Ocean sea ice during the present interglacial. Proceedings of the National Academy of Sciences, 117(42), pp.26069-26075. Ding, S., Xu, Y., Wang, Y., He, Y., Hou, J., Chen, L. and He, J.S., 2015. Distribution of branched glycerol dialkyl glycerol tetraethers in surface soils of the Qinghai–Tibetan Plateau: implications of brGDGTs-based proxies in cold and dry regions. Biogeosciences, 12(11), pp.3141-3151. Ding, W., Yang, H., He, G. and Xie, S., 2013. Effects of oxidative degradation by hydrogen peroxide on tetraethers-based organic proxies. Quaternary Sciences, 33(1), pp.39-47. Dittmers, K., Niessen, F. and Stein, R., 2008. Acoustic facies on the inner Kara Sea Shelf: implications for Late Weichselian to Holocene sediment dynamics. Marine Geology, 254(3-4), pp.197-215. Dong, L., Polyak, L., Xiao, X., Brachfeld, S., Liu, Y., Shi, X., Fang, X., Bai, Y., Zhu, A., Li, C. and Zhao, S., 2022. A Eurasian Basin sedimentary record of glacial impact on the central Arctic Ocean during MIS 1–4. Global and Planetary Change, 219, p.103993. Douka, K., Higham, T.F. and Hedges, R.E., 2010. Radiocarbon dating of shell carbonates: old problems and new solutions. Munibe Suplemento, 31, pp.18-27. Dowdeswell, J.A., Jakobsson, M., Hogan, K.A., O'Regan, M., Backman, J., Evans, J., Hell, B., Löwemark, L., Marcussen, C., Noormets, R. and Cofaigh, C.Ó., 2010. High-resolution geophysical observations of the Yermak Plateau and northern Svalbard margin: implications for ice-sheet grounding and deep-keeled icebergs. Quaternary Science Reviews, 29(25-26), pp.3518-3531. Dyke, A.S., Andrews, J.T., Clark, P.U., England, J.H., Miller, G.H., Shaw, J. and Veillette, J.J., 2002. The Laurentide and Innuitian ice sheets during the last glacial maximum. Quaternary Science Reviews, 21(1-3), pp.9-31. Eglinton, G. and Hamilton, R.J., 1967. Leaf Epicuticular Waxes: The waxy outer surfaces of most plants display a wide diversity of fine structure and chemical constituents. Science, 156(3780), pp.1322-1335. Eglinton, G. and Hamilton, R.J., 1963. The distribution of alkanes. Chemical plant taxonomy, 187(217), pp.50012-9. Eisenhauer, A., Spielhagen, R.F., Frank, M., Hentzschel, G., Mangini, A., Kubik, P.W., Dittrich-Hannen, B. and Billen, T., 1994. 10Be records of sediment cores from high northern latitudes: Implications for environmental and climatic changes. Earth and Planetary Science Letters, 124(1-4), pp.171-184. Eyles, N. and Lazorek, M., 2014. Glacigenic Lithofacies sediments in glaciated landscapes. Fabre, C., Sauvage, S., Tananaev, N., Noël, G.E., Teisserenc, R., Probst, J.L. and Pérez, J.S., 2019. Assessment of sediment and organic carbon exports into the Arctic ocean: The case of the Yenisei River basin. Water research, 158, pp.118-135. Fahl, K. and Stein, R., 2012. Modern seasonal variability and deglacial/Holocene change of central Arctic Ocean sea-ice cover: New insights from biomarker proxy records. Earth and Planetary Science Letters, 351, pp.123-133. Fairbanks, R.G., 1989. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature, 342(6250), pp.637-642. Fernández-Méndez, M., Katlein, C., Rabe, B., Nicolaus, M., Peeken, I., Bakker, K., Flores, H. and Boetius, A., 2015. Photosynthetic production in the central Arctic Ocean during the record sea-ice minimum in 2012. Biogeosciences, 12(11), pp.3525-3549. Fietz, S., Martínez-Garcia, A., Rueda, G., Peck, V.L., Huguet, C., Escala, M. and Rosell-Melé, A., 2011. Crenarchaea and phytoplankton coupling in sedimentary archives: Common trigger or metabolic dependence?. Limnology and Oceanography, 56(5), pp.1907-1916. Fowler, C., Emery, W.J. and Maslanik, J., 2004. Satellite-derived evolution of Arctic sea ice age: October 1978 to March 2003. IEEE Geoscience and Remote Sensing Letters, 1(2), pp.71-74. Fu, S. and Werner, F., 2000. Distribution, ecology and taphonomy of the organism trace, Scolicia, in northeast Atlantic deep-sea sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 156(3-4), pp.289-300. Gard, G., 1993. Late Quaternary coccoliths at the North Pole: Evidence of ice-free conditions and rapid sedimentation in the central Arctic Ocean. Geology, 21(3), pp.227-230. Geibert, W., Matthiessen, J., Stimac, I., Wollenburg, J. and Stein, R., 2021. Glacial episodes of a freshwater Arctic Ocean covered by a thick ice shelf. Nature, 590(7844), pp.97-102. Gillett, N.P., Stone, D.A., Stott, P.A., Nozawa, T., Karpechko, A.Y., Hegerl, G.C., Wehner, M.F. and Jones, P.D., 2008. Attribution of polar warming to human influence. Nature Geoscience, 1(11), pp.750-754. Gosselin, M., Levasseur, M., Wheeler, P.A., Horner, R.A. and Booth, B.C., 1997. New measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 44(8), pp.1623-1644. Grosswald, M.G. and Hughes, T.J., 2008. The case for an ice shelf in the Pleistocene Arctic Ocean. Polar Geography, 31(1-2), pp.69-98. Grzymski, J.J., Riesenfeld, C.S., Williams, T.J., Dussaq, A.M., Ducklow, H., Erickson, M., Cavicchioli, R. and Murray, A.E., 2012. A metagenomic assessment of winter and summer bacterioplankton from Antarctica Peninsula coastal surface waters. The ISME journal, 6(10), pp.1901-1915. Haake, F. W. and Pflaumann, U, 1989. Late Pleistocene foraminiferal stratigraphy on the Vøring Plateau, Norwegian Sea, Boreas, 18(4). Halamka, T.A., McFarlin, J.M., Younkin, A.D., Depoy, J., Dildar, N. and Kopf, S.H., 2021. Oxygen limitation can trigger the production of branched GDGTs in culture. Geochemical Perspectives Letters. Han, J., McCarthy, E.D., Hoeven, W.V., Calvin, M. and Bradley, W.H., 1968. Organic geochemical studies, II. A preliminary report on the distribution of aliphatic hydrocarbons in algae, in bacteria, and in a recent lake sediment. Proceedings of the National Academy of Sciences, 59(1), pp.29-33. Hanslik, D., Jakobsson, M., Backman, J., Björck, S., Sellén, E., O'Regan, M., Fornaciari, E. and Skog, G., 2010. Quaternary Arctic Ocean sea ice variations and deep water isolation times. Quaternary Science Reviews, 29(25-26), pp.3430-3441. Heaton, T.J., Köhler, P., Butzin, M., Bard, E., Reimer, R.W., Austin, W.E., Ramsey, C.B., Grootes, P.M., Hughen, K.A., Kromer, B. and Reimer, P.J., 2020. Marine20—the marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon, 62(4), pp.779-820. Hebbeln, D. and Wefer, G., 1997. Late quaternary paleoceanography in the Fram Strait. Paleoceanography, 12(1), pp.65-78. Ho, S.L., Mollenhauer, G., Fietz, S., Martínez-Garcia, A., Lamy, F., Rueda, G., Schipper, K., Méheust, M., Rosell-Melé, A., Stein, R. and Tiedemann, R., 2014. Appraisal of TEX86 and TEX86L thermometries in subpolar and polar regions. Geochimica et Cosmochimica Acta, 131, pp.213-226. Hoegh-Guldberg, O. and Bruno, J.F., 2010. The impact of climate change on the world’s marine ecosystems. Science, 328(5985), pp.1523-1528. Holland, M.M. and Bitz, C.M., 2003. Polar amplification of climate change in coupled models. Climate dynamics, 21(3), pp.221-232. Honjo, S., Krishfield, R.A., Eglinton, T.I., Manganini, S.J., Kemp, J.N., Doherty, K., Hwang, J., McKee, T.K. and Takizawa, T., 2010. Biological pump processes in the cryopelagic and hemipelagic Arctic Ocean: Canada Basin and Chukchi Rise. Progress in Oceanography, 85(3-4), pp.137-170. Hopkins, D.M., 1959. Cenozoic History of the Bering Land Bridge: The seaway between the Pacific and Arctic basins has often been a land route between Siberia and Alaska. Science, 129(3362), pp.1519-1528. Hopmans, E.C., Schouten, S., Pancost, R.D., van der Meer, M.T. and Sinninghe Damsté, J.S., 2000. Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 14(7), pp.585-589. Hopmans, E.C., Weijers, J.W., Schefuß, E., Herfort, L., Damsté, J.S.S. and Schouten, S., 2004. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth and Planetary Science Letters, 224(1-2), pp.107-116. Hughes, A.L., Gyllencreutz, R., Lohne, Ø.S., Mangerud, J. and Svendsen, J.I., 2016. The last Eurasian ice sheets–a chronological database and time‐slice reconstruction, DATED‐1. Boreas, 45(1), pp.1-45. Hughes, T., Denton, G.H. and Grosswald, M.G., 1977. Was there a late-Würm Arctic ice sheet?. Nature, 266(5603). Huguet, C., Hopmans, E.C., Febo-Ayala, W., Thompson, D.H., Damsté, J.S.S. and Schouten, S., 2006. An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids. Organic Geochemistry, 37(9), pp.1036-1041. Huguet, C., de Lange, G.J., Gustafsson, Ö., Middelburg, J.J., Damsté, J.S.S. and Schouten, S., 2008. Selective preservation of soil organic matter in oxidized marine sediments (Madeira Abyssal Plain). Geochimica et Cosmochimica Acta, 72(24), pp.6061-6068. Huguet, C., Kim, J.H., de Lange, G.J., Damsté, J.S.S. and Schouten, S., 2009. Effects of long term oxic degradation on the U37K′, TEX86 and BIT organic proxies. Organic Geochemistry, 40(12), pp.1188-1194. Ivy-Ochs, S. and Kober, F., 2008. Surface exposure dating with cosmogenic nuclides. E&G Quaternary Science Journal, 57(1/2), pp.179-209. Jakobsson, M., Løvlie, R., Al-Hanbali, H., Arnold, E., Backman, J. and Mörth, M., 2000. Manganese and color cycles in Arctic Ocean sediments constrain Pleistocene chronology. Geology, 28(1), pp.23-26. Jakobsson, M., Grantz, A., Kristoffersen, Y. and Macnab, R., 2003. Physiographic provinces of the Arctic Ocean seafloor. Geological Society of America Bulletin, 115(12), pp.1443-1455. Jakobsson, M., Nilsson, J., O'Regan, M., Backman, J., Lowemark, L., Dowdeswell, J.A., Mayer, L.A., Polyak, L., Colleoni, F., Anderson, L.G. and Bjork, G., 2010. An Arctic ice shelf during MIS 6 constrained by new geophysical and geological data. Jakobsson, M., Andreassen, K., Bjarnadóttir, L.R., Dove, D., Dowdeswell, J.A., England, J.H., Funder, S., Hogan, K., Ingólfsson, Ó., Jennings, A. and Larsen, N.K., 2014. Arctic Ocean glacial history. Quaternary Science Reviews, 92, pp.40-67. Jakobsson, M., Nilsson, J., Anderson, L., Backman, J., Björk, G., Cronin, T.M., Kirchner, N., Koshurnikov, A., Mayer, L., Noormets, R. and O’Regan, M., 2016. Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation. Nature Communications, 7(1), p.10365. Jakobsson, M. and Marcussen, C., 2007. Lomonosov Ridge off Greenland 2007 (LOMROG)-Cruise Report. Johannessen, O.M., Shalina, E.V. and Miles, M.W., 1999. Satellite evidence for an Arctic sea ice cover in transformation. Science, 286(5446), pp.1937-1939. Jones, E.P., 2001. Circulation in the arctic ocean. Polar Research, 20(2), pp.139-146. Kaufman, D.S., 2006. Temperature sensitivity of aspartic and glutamic acid racemization in the foraminifera Pulleniatina. Quaternary Geochronology, 1(3), pp.188-207. Kaufman, D.S., Polyak, L., Adler, R., Channell, J.E. and Xuan, C., 2008. Dating late Quaternary planktonic foraminifer Neogloboquadrina pachyderma from the Arctic Ocean using amino acid racemization. Paleoceanography, 23(3). Kędzierski, M., Rodríguez-Tovar, F.J. and Uchman, A., 2011. Vertical displacement and taphonomic filtering of nannofossils by bioturbation in the Cretaceous–Palaeogene boundary section at Caravaca, SE Spain. Lethaia, 44(3), pp.321-328. Keough, B.P., Schmidt, T.M. and Hicks, R.E., 2003. Archaeal nucleic acids in picoplankton from great lakes on three continents. Microbial Ecology, 46, pp.238-248. Kim, J.H., Schouten, S., Buscail, R., Ludwig, W., Bonnin, J., Sinninghe Damsté, J.S. and Bourrin, F., 2006. Origin and distribution of terrestrial organic matter in the NW Mediterranean (Gulf of Lions): Exploring the newly developed BIT index. Geochemistry, geophysics, geosystems, 7(11). Knies, J., Nowaczyk, N., Müller, C., Vogt, C. and Stein, R., 2000. A multiproxy approach to reconstruct the environmental changes along the Eurasian continental margin over the last 150 000 years. Marine Geology, 163(1-4), pp.317-344. Knies, J., Kleiber, H.P., Matthiessen, J., Müller, C. and Nowaczyk, N., 2001. Marine ice-rafted debris records constrain maximum extent of Saalian and Weichselian ice-sheets along the northern Eurasian margin. Global and Planetary Change, 31(1-4), pp.45-64. Knies, J., Cabedo-Sanz, P., Belt, S.T., Baranwal, S., Fietz, S. and Rosell-Melé, A., 2014. The emergence of modern sea ice cover in the Arctic Ocean. Nature communications, 5(1), p.5608. Knies, J., Köseoğlu, D., Rise, L., Baeten, N., Bellec, V.K., Bøe, R., Klug, M., Panieri, G., Jernas, P.E. and Belt, S.T., 2018. Nordic Seas polynyas and their role in preconditioning marine productivity during the Last Glacial Maximum. Nature Communications, 9(1), p.3959. Knies, J. and Vogt, C., 2003. Freshwater pulses in the eastern Arctic Ocean during Saalian and Early Weichselian ice-sheet collapse. Quaternary Research, 60(3), pp.243-251. Knies, J., Vogt, C. and Stein, R., 1998. Late Quaternary growth and decay of the Svalbard/Barents Sea ice sheet and paleoceanographic evolution in the adjacent Arctic Ocean. Geo-Marine Letters, 18, pp.195-202. Kolling, H.M., Stein, R., Fahl, K., Sadatzki, H., de Vernal, A. and Xiao, X., 2020. Biomarker distributions in (sub)‐Arctic surface sediments and their potential for sea ice reconstructions. Geochemistry, Geophysics, Geosystems, 21(10), p.e2019GC008629. Könneke, M., Bernhard, A.E., de La Torre, J.R., Walker, C.B., Waterbury, J.B. and Stahl, D.A., 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 437(7058), pp.543-546. Könneke, M., Schubert, D.M., Brown, P.C., Hügler, M., Standfest, S., Schwander, T., Schada von Borzyskowski, L., Erb, T.J., Stahl, D.A. and Berg, I.A., 2014. Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation. Proceedings of the National Academy of Sciences, 111(22), pp.8239-8244. Kremer, A., Stein, R., Fahl, K., Ji, Z., Yang, Z., Wiers, S., Matthiessen, J., Forwick, M., Löwemark, L., O'Regan, M. and Chen, J., 2018. Changes in sea ice cover and ice sheet extent at the Yermak Plateau during the last 160 ka–Reconstructions from biomarker records. Quaternary Science Reviews, 182, pp.93-108. Krisch, S., Hopwood, M.J., Roig, S., Gerringa, L.J., Middag, R., Rutgers van der Loeff, M.M., Petrova, M.V., Lodeiro, P., Colombo, M., Cullen, J.T. and Jackson, S.L., 2022. Arctic–Atlantic exchange of the dissolved micronutrients iron, manganese, cobalt, nickel, copper and zinc with a focus on Fram Strait. Global Biogeochemical Cycles, 36(5), p.e2021GB007191. Krumpen, T., Janout, M., Hodges, K.I., Gerdes, R., Girard-Ardhuin, F., Hölemann, J.A. and Willmes, S., 2013. Variability and trends in Laptev Sea ice outflow between 1992–2011. The Cryosphere, 7(1), pp.349-363. Kumar, A., Yadav, J. and Mohan, R., 2021. Spatio-temporal change and variability of Barents-Kara sea ice, in the Arctic: Ocean and atmospheric implications. Science of The Total Environment, 753, p.142046. Kusakabe, M., Ku, T.L., Southon, J.R., Vogel, J.S., Nelson, D.E., Measures, C.I. and Nozaki, Y., 1987. Distribution of10Be and9Be in the Pacific Ocean. Earth and planetary science letters, 82(3-4), pp.231-240. Kusch, S., Winterfeld, M., Mollenhauer, G., Höfle, S.T., Schirrmeister, L., Schwamborn, G. and Rethemeyer, J., 2019. Glycerol dialkyl glycerol tetraethers (GDGTs) in high latitude Siberian permafrost: Diversity, environmental controls, and implications for proxy applications. Organic Geochemistry, 136, p.103888. Kwok, R., 2018. Arctic sea ice thickness, volume, and multiyear ice coverage: losses and coupled variability (1958–2018). Environmental Research Letters, 13(10), p.105005. Landvik, J.Y., Bondevik, S.T.E.I.N., Elverhøi, A.N.D.E.R.S., Fjeldskaar, W.I.L.L.Y., Mangerud, J.A.N., Salvigsen, O.T.T.O., Siegert, M.J., Svendsen, J.I. and Vorren, T.O., 1998. The last glacial maximum of Svalbard and the Barents Sea area: ice sheet extent and configuration. Quaternary Science Reviews, 17(1-3), pp.43-75. Langehaug, H.R. and Falck, E., 2012. Changes in the properties and distribution of the intermediate and deep waters in the Fram Strait. Progress in Oceanography, 96(1), pp.57-76. Lazar, K.B. and Polyak, L., 2016. Pleistocene benthic foraminifers in the Arctic Ocean: Implications for sea-ice and circulation history. Marine Micropaleontology, 126, pp.19-30. Ledu, D., Rochon, A., de Vernal, A. and St-Onge, G., 2010. Holocene paleoceanography of the northwest passage, Canadian Arctic Archipelago. Quaternary Science Reviews, 29(25-26), pp.3468-3488. Lenssen, N.J., Schmidt, G.A., Hansen, J.E., Menne, M.J., Persin, A., Ruedy, R. and Zyss, D., 2019. Improvements in the GISTEMP uncertainty model. Journal of Geophysical Research: Atmospheres, 124(12), pp.6307-6326. Leu, E., Søreide, J.E., Hessen, D.O., Falk-Petersen, S. and Berge, J., 2011. Consequences of changing sea-ice cover for primary and secondary producers in the European Arctic shelf seas: Timing, quantity, and quality. Progress in Oceanography, 90(1-4), pp.18-32. Leuschner, D.C., Sirocko, F., Grootes, P.M. and Erlenkeuser, H., 2002. Possible influence of Zoophycos bioturbation on radiocarbon dating and environmental interpretation. Marine Micropaleontology, 46(1-2), pp.111-126. Lind, S., Ingvaldsen, R.B. and Furevik, T., 2016. Arctic layer salinity controls heat loss from deep Atlantic layer in seasonally ice‐covered areas of the Barents Sea. Geophysical Research Letters, 43(10), pp.5233-5242. Lisiecki, L.E. and Raymo, M.E., 2005. A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20(1). Liu, X.L., Zhu, C., Wakeham, S.G. and Hinrichs, K.U., 2014. In situ production of branched glycerol dialkyl glycerol tetraethers in anoxic marine water columns. Marine Chemistry, 166, pp.1-8. Lloyd, J.M., Kroon, D., Boulton, G.S., Laban, C. and Fallick, A., 1996. Ice rafting history from the Spitsbergen ice cap over the last 200 kyr. Marine Geology, 131(1-2), pp.103-121. Löwemark, L., 2007. Importance and usefulness of trace fossils and bioturbation in paleoceanography. In Trace Fossils (pp. 413-427). Elsevier. Löwemark, L., Jakobsson, M., Mörth, M. and Backman, J., 2008. Arctic Ocean manganese contents and sediment colour cycles. Polar Research, 27(2), pp.105-113. Löwemark, L., O'Regan, M., Hanebuth, T.J. and Jakobsson, M., 2012. Late Quaternary spatial and temporal variability in Arctic deep-sea bioturbation and its relation to Mn cycles. Palaeogeography, Palaeoclimatology, Palaeoecology, 365, pp.192-208. Löwemark, L., März, C., O'Regan, M. and Gyllencreutz, R., 2014. Arctic Ocean Mn-stratigraphy: genesis, synthesis and inter-basin correlation. Quaternary Science Reviews, 92, pp.97-111. Löwemark, L. and Grootes, P.M., 2004. Large age differences between planktic foraminifers caused by abundance variations and Zoophycos bioturbation. Paleoceanography, 19(2). Löwemark, L. and Schäfer, P., 2003. Ethological implications from a detailed X-ray radiograph and 14C study of the modern deep-sea Zoophycos. Palaeogeography, Palaeoclimatology, Palaeoecology, 192(1-4), pp.101-121. Löwemark, L. and Werner, F., 2001. Dating errors in high-resolution stratigraphy: a detailed X-ray radiograph and AMS-14C study of Zoophycos burrows. Marine Geology, 177(3-4), pp.191-198. Lund, S., Stoner, J.S., Channell, J.E. and Acton, G., 2006. A summary of Brunhes paleomagnetic field variability recorded in Ocean Drilling Program cores. Physics of the Earth and Planetary Interiors, 156(3-4), pp.194-204. Macdonald, R.W. and Bewers, J.M., 1996. Contaminants in the arctic marine environment: priorities for protection. ICES Journal of Marine Science, 53(3), pp.537-563. Macdonald, R.W. and Gobeil, C., 2012. Manganese sources and sinks in the Arctic Ocean with reference to periodic enrichments in basin sediments. Aquatic Geochemistry, 18, pp.565-591. Macdonald, R.W., Sakshaug, E. and Stein, R., 2004. The Arctic Ocean: Modern status and recent climate change. In In: Stein, R. and Macdonald, RW (Eds.), The Organic Carbon Cycle in the Arctic Ocean. Springer-Verlag, Berlin (pp. 6-21). Mahlstein, I. and Knutti, R., 2011. Ocean heat transport as a cause for model uncertainty in projected Arctic warming. Journal of Climate, 24(5), pp.1451-1460. Mangerud, J.A.N., Dokken, T., Hebbeln, D., Heggen, B., Ingólfsson, Ó., Landvik, J.Y., Mejdahl, V., Svendsen, J.I. and Vorren, T.O., 1998. Fluctuations of the Svalbard–Barents Sea Ice Sheet during the last 150 000 years. Quaternary Science Reviews, 17(1-3), pp.11-42. Mangerud, J., Jakobsson, M., Alexanderson, H., Astakhov, V., Clarke, G.K., Henriksen, M., Hjort, C., Krinner, G., Lunkka, J.P., Möller, P. and Murray, A., 2004. Ice-dammed lakes and rerouting of the drainage of northern Eurasia during the Last Glaciation. Quaternary Science Reviews, 23(11-13), pp.1313-1332. Mangerud, J., Astakhov, V. and Svendsen, J.I., 2002. The extent of the Barents–Kara ice sheet during the Last Glacial Maximum. Quaternary Science Reviews, 21(1-3), pp.111-119. Manley, T.O., 1995. Branching of Atlantic Water within the Greenland‐Spitsbergen passage: An estimate of recirculation. Journal of Geophysical Research: Oceans, 100(C10), pp.20627-20634. Marcussen, C. (2012) ‘Lomonosov Ridge off Greenland 2012 (LOMROG III) – Cruise Report’, 2012(Lomrog Iii). Available at: http://epic.awi.de/37753/1/cr_lomrog-iii.pdf. Marcussen, C. and the LOMROG II Scientific Party (2011) ‘Lomonosov Ridge off Greenland 2009 ( LOMROG II ) – Cruise Report’, 2009(Lomrog Ii), p. 154. Markussen, B., Zahn, R. and Thiede, J., 1985. Late Quaternary sedimentation in the eastern Arctic Basin: stratigraphy and depositional environment. Palaeogeography, Palaeoclimatology, Palaeoecology, 50(2-3), pp.271-284. März, C., Stratmann, A., Matthießen, J., Meinhardt, A.K., Eckert, S., Schnetger, B., Vogt, C., Stein, R. and Brumsack, H.J., 2011. Manganese-rich brown layers in Arctic Ocean sediments: composition, formation mechanisms, and diagenetic overprint. Geochimica et Cosmochimica Acta, 75(23), pp.7668-7687. Maslanik, J., Stroeve, J., Fowler, C. and Emery, W., 2011. Distribution and trends in Arctic sea ice age through spring 2011. Geophysical Research Letters, 38(13). Maslowski, W., Clement Kinney, J., Higgins, M. and Roberts, A., 2012. The future of Arctic sea ice. Annual Review of Earth and Planetary Sciences, 40(1), pp.625-654. Massana, R., Taylor, L.T., Murray, A.E., Wu, K.Y., Jeffrey, W.H. and DeLong, E.F., 1998. Vertical distribution and temporal variation of marine planktonic archaea in the Gerlache Strait, Antarctica, during early spring. Limnology and Oceanography, 43(4), pp.607-617. Matthiessen, J. and Knies, J., 2001. Dinoflagellate cyst evidence for warm interglacial conditions at the northern Barents Sea margin during marine oxygen isotope stage 5. Journal of Quaternary Science: Published for the Quaternary Research Association, 16(7), pp.727-737. Mayewski, P.A., Rohling, E.E., Stager, J.C., Karlén, W., Maasch, K.A., Meeker, L.D., Meyerson, E.A., Gasse, F., van Kreveld, S., Holmgren, K. and Lee-Thorp, J., 2004. Holocene climate variability. Quaternary research, 62(3), pp.243-255. McClelland, J.W., Holmes, R.M., Dunton, K.H. and Macdonald, R.W., 2012. The Arctic ocean estuary. Estuaries and Coasts, 35, pp.353-368. Meier, W.N., Hovelsrud, G.K., Van Oort, B.E., Key, J.R., Kovacs, K.M., Michel, C., Haas, C., Granskog, M.A., Gerland, S., Perovich, D.K. and Makshtas, A., 2014. Arctic sea ice in transformation: A review of recent observed changes and impacts on biology and human activity. Reviews of Geophysics, 52(3), pp.185-217. Meier, W.N., Stroeve, J. and Fetterer, F., 2007. Whither Arctic sea ice? A clear signal of decline regionally, seasonally and extending beyond the satellite record. Annals of Glaciology, 46, pp.428-434. Ménot, G., Pivot, S., Bouloubassi, I., Davtian, N., Hennekam, R., Bosch, D., Ducassou, E., Bard, E., Migeon, S. and Revel, M., 2020. Timing and stepwise transitions of the African Humid Period from geochemical proxies in the Nile deep-sea fan sediments. Quaternary Science Reviews, 228, p.106071. Middelburg, J.J., Soetaert, K. and Herman, P.M., 1997. Empirical relationships for use in global diagenetic models. Deep Sea Research Part I: Oceanographic Research Papers, 44(2), pp.327-344. Miller, G.H. and Brigham-Grette, J., 1989. Amino acid geochronology: resolution and precision in carbonate fossils. Quaternary International, 1, pp.111-128. Mingareeva, E.V., Aparin, B.F., Sanzharova, N.I. and Ryumin, A.G., 2021, October. Natural radionuclides in soils of the Novaya Zemlya Archipelago (Severny Island). In IOP Conference Series: Earth and Environmental Science (Vol. 862, No. 1, p. 012024). IOP Publishing. Müller, J., Massé, G., Stein, R. and Belt, S.T., 2009. Variability of sea-ice conditions in the Fram Strait over the past 30,000 years. Nature Geoscience, 2(11), pp.772-776. Müller, O., Wilson, B., Paulsen, M.L., Rumińska, A., Armo, H.R., Bratbak, G. and Øvreås, L., 2018. Spatiotemporal dynamics of ammonia-oxidizing thaumarchaeota in distinct arctic water masses. Frontiers in Microbiology, 9, p.24. Murray, A.E., Preston, C.M., Massana, R., Taylor, L.T., Blakis, A., Wu, K. and DeLong, E.F., 1998. Seasonal and spatial variability of bacterial and archaeal assemblages in the coastal waters near Anvers Island, Antarctica. Applied and Environmental Microbiology, 64(7), pp.2585-2595. Mysak, L.A., 2001. Patterns of Arctic circulation. Science, 293(5533), pp.1269-1270. Newton, R., Pfirman, S., Tremblay, B. and DeRepentigny, P., 2017. Increasing transnational sea‐ice exchange in a changing Arctic Ocean. Earth's Future, 5(6), pp.633-647. Nikiforov, S., Ananiev, R., Jakobsson, M., Moroz, E., Sokolov, S., Sorokhtin, N., Dmitrevsky, N., Sukhikh, E., Chickiryov, I., Zarayskaya, Y. and Razumovskiy, A., 2023. The Extent of Glaciation in the Pechora Sea, Eurasian Arctic, Based on Submarine Glacial Landforms. Geosciences, 13(2), p.53. Nikitina, M., Popova, L., Korobitcina, J., Efremova, O., Trofimova, A., Nakvasina, E. and Volkov, A., 2015. Environmental status of the arctic soils. Journal of Elementology, 20(3). Nørgaard‐Pedersen, N., Spielhagen, R.F., Erlenkeuser, H., Grootes, P.M., Heinemeier, J. and Knies, J., 2003. Arctic Ocean during the Last Glacial Maximum: Atlantic and polar domains of surface water mass distribution and ice cover. Paleoceanography, 18(3). Nørgaard‐Pedersen, N., Mikkelsen, N., Lassen, S.J., Kristoffersen, Y. and Sheldon, E., 2007. Reduced sea ice concentrations in the Arctic Ocean during the last interglacial period revealed by sediment cores off northern Greenland. Paleoceanography, 22(1). Nowaczyk, N.R., Frederichs, T.W., Eisenhauer, A. and Gard, G., 1994. Magnetostratigraphic data from late Quaternary sediments from the Yermak Plateau, Arctic Ocean: evidence for four geomagnetic polarity events within the last 170 Ka of the Brunhes Chron. Geophysical Journal International, 117(2), pp.453-471. O'Regan, M., King, J., Backman, J., Jakobsson, M., Pälike, H., Moran, K., Heil, C., Sakamoto, T., Cronin, T.M. and Jordan, R.W., 2008. Constraints on the Pleistocene chronology of sediments from the Lomonosov Ridge. Paleoceanography, 23(1). O'Regan, M., John, K.S., Moran, K., Backman, J., King, J., Haley, B.A., Jakobsson, M., Frank, M. and Röhl, U., 2010. Plio-Pleistocene trends in ice rafted debris on the Lomonosov Ridge. Quaternary International, 219(1-2), pp.168-176. O'Regan, M., Backman, J., Barrientos, N., Cronin, T.M., Gemery, L., Kirchner, N., Mayer, L.A., Nilsson, J., Noormets, R., Pearce, C. and Semiletov, I., 2017. The De Long Trough: a newly discovered glacial trough on the East Siberian continental margin. Climate of the Past, 13(9), pp.1269-1284. O’Regan, M., Backman, J., Fornaciari, E., Jakobsson, M. and West, G., 2020. Calcareous nannofossils anchor chronologies for Arctic Ocean sediments back to 500 ka. Geology, 48(11), pp.1115-1119. O’Regan, M., Jakobsson, M. and Kirchner, N., 2010. Glacial geological implications of over consolidated sediments on the Lomonosov Ridge and Yermak Plateau. Quaternary Science Reviews, 29(25-26), pp.3532-3544. Oswald, W.W., Anderson, P.M., Brown, T.A., Brubaker, L.B., Hu, F.S., Lozhkin, A.V., Tinner, W. and Kaltenrieder, P., 2005. Effects of sample mass and macrofossil type on radiocarbon dating of arctic and boreal lake sediments. The Holocene, 15(5), pp.758-767. Park, E., Hefter, J., Fischer, G., Iversen, M.H., Ramondenc, S., Nöthig, E.M. and Mollenhauer, G., 2019. Seasonality of archaeal lipid flux and GDGT-based thermometry in sinking particles of high-latitude oceans: Fram Strait (79∘ N) and Antarctic Polar Front (50∘ S). Biogeosciences, 16(11), pp.2247-2268. Parkinson, C.L. and Cavalieri, D.J., 2008. Arctic sea ice variability and trends, 1979–2006. Journal of Geophysical Research: Oceans, 113(C7). Parkinson, C.L. and DiGirolamo, N.E., 2021. Sea ice extents continue to set new records: Arctic, Antarctic, and global results. Remote Sensing of Environment, 267, p.112753. Peltier, W.R. and Fairbanks, R.G., 2006. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quaternary Science Reviews, 25(23-24), pp.3322-3337. Peterse, F., Kim, J.H., Schouten, S., Kristensen, D.K., Koç, N. and Damsté, J.S.S., 2009. Constraints on the application of the MBT/CBT palaeothermometer at high latitude environments (Svalbard, Norway). Organic Geochemistry, 40(6), pp.692-699. Peterson, B.J., Holmes, R.M., McClelland, J.W., Vörösmarty, C.J., Lammers, R.B., Shiklomanov, A.I., Shiklomanov, I.A. and Rahmstorf, S., 2002. Increasing river discharge to the Arctic Ocean. science, 298(5601), pp.2171-2173. Petty, A.A., Holland, M.M., Bailey, D.A. and Kurtz, N.T., 2018. Warm Arctic, increased winter sea ice growth?. Geophysical Research Letters, 45(23), pp.12-922. Phillips, R.L. and Grantz, A., 2001. Regional variations in provenance and abundance of ice-rafted clasts in Arctic Ocean sediments: implications for the configuration of late Quaternary oceanic and atmospheric circulation in the Arctic. Marine Geology, 172(1-2), pp.91-115. Ping, C.L., Michaelson, G.J., Guo, L., Jorgenson, M.T., Kanevskiy, M., Shur, Y., Dou, F. and Liang, J., 2011. Soil carbon and material fluxes across the eroding Alaska Beaufort Sea coastline. Journal of Geophysical Research: Biogeosciences, 116(G2). Polyak, L., Gataullin, V., Okuneva, O.G. and Stelle, V., 2000. New constraints on the limits of the Barents-Kara ice sheet during the Last Glacial Maximum based on borehole stratigraphy from the Pechora Sea. Geology, 28(7), pp.611-614. Polyak, L., Edwards, M.H., Coakley, B.J. and Jakobsson, M., 2001. Ice shelves in the Pleistocene Arctic Ocean inferred from glaciogenic deep-sea bedforms. Nature, 410(6827), pp.453-457. Polyak, L., Gataullin, V., Gainanov, V., Gladysh, V. and Goremykin, Y., 2002. Kara Sea expedition yields insight into extent of LGM ice sheet. Eos, Transactions American Geophysical Union, 83(46), pp.525-529. Polyak, L., Curry, W.B., Darby, D.A., Bischof, J. and Cronin, T.M., 2004. Contrasting glacial/interglacial regimes in the western Arctic Ocean as exemplified by a sedimentary record from the Mendeleev Ridge. Palaeogeography, Palaeoclimatology, Palaeoecology, 203(1-2), pp.73-93. Polyak, L., Alley, R.B., Andrews, J.T., Brigham-Grette, J., Cronin, T.M., Darby, D.A., Dyke, A.S., Fitzpatrick, J.J., Funder, S., Holland, M. and Jennings, A.E., 2010. History of sea ice in the Arctic. Quaternary Science Reviews, 29(15-16), pp.1757-1778. Polyak, L., Best, K.M., Crawford, K.A., Council, E.A. and St-Onge, G., 2013. Quaternary history of sea ice in the western Arctic Ocean based on foraminifera. Quaternary Science Reviews, 79, pp.145-156. Polyak, L. and Jakobsson, M., 2011. Quaternary sedimentation in the Arctic Ocean: Recent advances and further challenges. Oceanography, 24(3), pp.52-64. Popova, E.E., Yool, A., Coward, A.C., Dupont, F., Deal, C., Elliott, S., Hunke, E., Jin, M., Steele, M. and Zhang, J., 2012. What controls primary production in the Arctic Ocean? Results from an intercomparison of five general circulation models with biogeochemistry. Journal of Geophysical Research: Oceans, 117(C8). Proshutinsky, A., Krishfield, R., Timmermans, M.L., Toole, J., Carmack, E., McLaughlin, F., Williams, W.J., Zimmermann, S., Itoh, M. and Shimada, K., 2009. Beaufort Gyre freshwater reservoir: State and variability from observations. Journal of Geophysical Research: Oceans, 114(C1). Proshutinsky, A., Dukhovskoy, D., Timmermans, M.L., Krishfield, R. and Bamber, J.L., 2015. Arctic circulation regimes. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2052), p.20140160. Proshutinsky, A.Y. and Johnson, M.A., 1997. Two circulation regimes of the wind‐driven Arctic Ocean. Journal of Geophysical Research: Oceans, 102(C6), pp.12493-12514. Rabe, B., Dodd, P.A., Hansen, E., Falck, E., Schauer, U., Mackensen, A., Beszczynska-Möller, A., Kattner, G., Rohling, E.J. and Cox, K., 2013. Liquid export of Arctic freshwater components through the Fram Strait 1998–2011. Ocean Science, 9(1), pp.91-109. Rahaman, W., Smik, L., Köseoğlu, D., Lathika, N., Tarique, M., Thamban, M., Haywood, A., Belt, S.T. and Knies, J., 2020. Reduced Arctic sea ice extent during the mid-Pliocene Warm Period concurrent with increased Atlantic-climate regime. Earth and Planetary Science Letters, 550, p.116535. Rampen, S.W., Abbas, B.A., Schouten, S. and Sinninghe Damste, J.S., 2010. A comprehensive study of sterols in marine diatoms (Bacillariophyta): Implications for their use as tracers for diatom productivity. Limnology and oceanography, 55(1), pp.91-105. Rantanen, M., Karpechko, A.Y., Lipponen, A., Nordling, K., Hyvärinen, O., Ruosteenoja, K., Vihma, T. and Laaksonen, A., 2022. The Arctic has warmed nearly four times faster than the globe since 1979. Communications earth & environment, 3(1), p.168. Razmjooei, M.J., Henderiks, J., Coxall, H.K., Baumann, K.H., Vermassen, F., Jakobsson, M., Niessen, F. and O'Regan, M., 2023. Revision of the Quaternary calcareous nannofossil biochronology of Arctic Ocean sediments. Quaternary Science Reviews, 321, p.108382. Regenberg, M., Nürnberg, D., Schönfeld, J. and Reichart, G.J., 2007. Early diagenetic overprint in Caribbean sediment cores and its effect on the geochemical composition of planktonic foraminifera. Biogeosciences, 4(6), pp.957-973. Rigor, I.G., Wallace, J.M. and Colony, R.L., 2002. Response of sea ice to the Arctic Oscillation. Journal of Climate, 15(18), pp.2648-2663. Romero-Wetzel, M.B., 1987. Sipunculans as inhabitants of very deep, narrow burrows in deep-sea sediments. Marine Biology, 96, pp.87-91. Rudels, B., 2015. Arctic Ocean circulation, processes and water masses: A description of observations and ideas with focus on the period prior to the International Polar Year 2007–2009. Progress in Oceanography, 132, pp.22-67. Rudels, B., Anderson, L.G. and Jones, E.P., 1996. Formation and evolution of the surface mixed layer and halocline of the Arctic Ocean. Journal of Geophysical Research: Oceans, 101(C4), pp.8807-8821. Saini, J., Stein, R., Fahl, K., Weiser, J., Hebbeln, D. and Madaj, L., 2022. Holocene variability in sea‐ice conditions in the eastern Baffin Bay‐Labrador Sea–A north–south biomarker transect study. Boreas, 51(3), pp.553-572. Sakamoto, T., Ikehara, M., Aoki, K., Iijima, K., Kimura, N., Nakatsuka, T. and Wakatsuchi, M., 2005. Ice-rafted debris (IRD)-based sea-ice expansion events during the past 100 kyrs in the Okhotsk Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 52(16-18), pp.2275-2301. Sakshaug, E., 2004. Primary and secondary production in the Arctic Seas. In The organic carbon cycle in the Arctic Ocean (pp. 57-81). Berlin, Heidelberg: Springer Berlin Heidelberg. Savrda, C.E., 2007. Trace fossils and marine benthic oxygenation. In Trace fossils (pp. 149-158). Elsevier. Schmid, M.K., Piepenburg, D., Golikov, A.A., Von Juterzenka, K., Petryashov, V.V. and Spindler, M., 2006. Trophic pathways and carbon flux patterns in the Laptev Sea. Progress in Oceanography, 71(2-4), pp.314-330. Schouten, S., Hopmans, E.C., Pancost, R.D. and Damsté, J.S.S., 2000. Widespread occurrence of structurally diverse tetraether membrane lipids: evidence for the ubiquitous presence of low-temperature relatives of hyperthermophiles. Proceedings of the National Academy of Sciences, 97(26), pp.14421-14426. Schouten, S., Hopmans, E.C. and Damsté, J.S.S., 2013. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review. Organic geochemistry, 54, pp.19-61. Schubert, C.J. and Stein, R., 1996. Deposition of organic carbon in Arctic Ocean sediments: terrigenous supply vs marine productivity. Organic Geochemistry, 24(4), pp.421-436. Schubert, C.J. and Stein, R., 1997. Lipid distribution in surface sediments from the eastern central Arctic Ocean. Marine geology, 138(1-2), pp.11-25. Schubert, C.J. and Stein, R., 1997. Lipid distribution in surface sediments from the eastern central Arctic Ocean. Marine geology, 138(1-2), pp.11-25. Scott, D.B., Mudie, P.J., Baki, V., MacKinnon, K.D. and Cole, F.E., 1989. Biostratigraphy and late Cenozoic paleoceanography of the Arctic Ocean: foraminiferal, lithostratigraphic, and isotopic evidence. Geological Society of America Bulletin, 101(2), pp.260-277. Screen, J.A. and Simmonds, I., 2010. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464(7293), pp.1334-1337. Seidenkrantz, M.S., 2013. Benthic foraminifera as palaeo sea-ice indicators in the subarctic realm–examples from the Labrador Sea–Baffin Bay region. Quaternary Science Reviews, 79, pp.135-144. Seilacher, A., 1990. Aberrations in bivalve evolution related to photo‐and chemosymbiosis. Historical Biology, 3(4), pp.289-311. Sellén, E., O’Regan, M. and Jakobsson, M., 2010. Spatial and temporal Arctic Ocean depositional regimes: a key to the evolution of ice drift and current patterns. Quaternary Science Reviews, 29(25-26), pp.3644-3664. Semiletov, I., Pipko, I., Gustafsson, Ö., Anderson, L.G., Sergienko, V., Pugach, S., Dudarev, O., Charkin, A., Gukov, A., Bröder, L. and Andersson, A., 2016. Acidification of East Siberian Arctic Shelf waters through addition of freshwater and terrestrial carbon. Nature Geoscience, 9(5), pp.361-365. Serreze, M.C., Barrett, A.P., Slater, A.G., Woodgate, R.A., Aagaard, K., Lammers, R.B., Steele, M., Moritz, R., Meredith, M. and Lee, C.M., 2006. The large‐scale freshwater cycle of the Arctic. Journal of Geophysical Research: Oceans, 111(C11). Serreze, M.C., Barrett, A.P., Stroeve, J.C., Kindig, D.N. and Holland, M.M., 2009. The emergence of surface-based Arctic amplification. The cryosphere, 3(1), pp.11-19. Serreze, M.C. and Francis, J.A., 2006. The Arctic amplification debate. Climatic change, 76(3), pp.241-264. Sharma, P., Mahannah, R., Moore, W.S., Ku, T.L. and Southon, J.R., 1987. Transport of10Be and9Be in the ocean. Earth and Planetary Science Letters, 86(1), pp.69-76. Singh, A., O’Regan, M., Coxall, H.K., Forwick, M. and Löwemark, L., 2023. Exploring late Pleistocene bioturbation on Yermak Plateau to assess sea-ice conditions and primary productivity through the Ethological Ichno Quotient. Scientific Reports, 13(1), p.17416. Sinninghe Damsté, J.S., Hopmans, E.C., Pancost, R.D., Schouten, S. and Geenevasen, J.A., 2000. Newly discovered non-isoprenoid glycerol dialkyl glycerol tetraether lipids in sediments. Chemical Communications, (17), pp.1683-1684. Sinninghe Damsté, J.S., 2016. Spatial heterogeneity of sources of branched tetraethers in shelf systems: The geochemistry of tetraethers in the Berau River delta (Kalimantan, Indonesia). Geochimica et Cosmochimica Acta, 186, pp.13-31. Skinner, L.C. and Bard, E., 2022. Radiocarbon as a dating tool and tracer in paleoceanography. Reviews of Geophysics, 60(1), p.e2020RG000720. Slagstad, D., Ellingsen, I.H. and Wassmann, P., 2011. Evaluating primary and secondary production in an Arctic Ocean void of summer sea ice: an experimental simulation approach. Progress in Oceanography, 90(1-4), pp.117-131. Smith Jr, W.O., 1987. Phytoplankton dynamics in marginal ice zones. Oceanogr. Mar. Biol, 25, pp.11-38. Song, T., Hillaire‐Marcel, C., de Vernal, A. and Liu, Y., 2024. A resilient ice cover over the southernmost Mendeleev Ridge during the late Quaternary. Boreas, 53(1), pp.106-123. Sparkes, R.B., Doğrul Selver, A., Bischoff, J., Talbot, H.M., Gustafsson, Ö., Semiletov, I.P., Dudarev, O.V. and Van Dongen, B.E., 2015. GDGT distributions on the East Siberian Arctic Shelf: implications for organic carbon export, burial and degradation. Biogeosciences, 12(12), pp.3753-3768. Sparkes, R.B., Doğrul Selver, A., Gustafsson, Ö., Semiletov, I.P., Haghipour, N., Wacker, L., Eglinton, T.I., Talbot, H.M. and van Dongen, B.E., 2016. Macromolecular composition of terrestrial and marine organic matter in sediments across the East Siberian Arctic Shelf. The Cryosphere, 10(5), pp.2485-2500. Spielhagen, R.F., Baumann, K.H., Erlenkeuser, H., Nowaczyk, N.R., Nørgaard-Pedersen, N., Vogt, C. and Weiel, D., 2004. Arctic Ocean deep-sea record of northern Eurasian ice sheet history. Quaternary Science Reviews, 23(11-13), pp.1455-1483. Stärz, M., Gong, X., Stein, R., Darby, D.A., Kauker, F. and Lohmann, G., 2012. Glacial shortcut of Arctic sea-ice transport. Earth and Planetary Science Letters, 357, pp.257-267. Steele, M., Ermold, W. and Zhang, J., 2008. Arctic Ocean surface warming trends over the past 100 years. Geophysical Research Letters, 35(2). Stein, R., Stein, R. and MacDonald, R.W., 2004. The organic carbon cycle in the Arctic Ocean. Stein, R., Boucsein, B., Fahl, K., de Oteyza, T.G., Knies, J. and Niessen, F., 2001. Accumulation of particulate organic carbon at the Eurasian continental margin during late Quaternary times: controlling mechanisms and paleoenvironmental significance. Global and Planetary Change, 31(1-4), pp.87-104. Stein, R., 2008. Arctic Ocean sediments: processes, proxies, and paleoenvironment. Elsevier. Stein, R., Matthiessen, J., Niessen, F., Krylov, A., Nam, S.I. and Bazhenova, E., 2010. Towards a better (litho-) stratigraphy and reconstruction of Quaternary paleoenvironment in the Amerasian Basin (Arctic Ocean). Polarforschung, 79(2), pp.97-121. Stein, R., Fahl, K., Gierz, P., Niessen, F. and Lohmann, G., 2017. Arctic Ocean sea ice cover during the penultimate glacial and the last interglacial. Nature communications, 8(1), p.373. Stein, R. and Fahl, K., 2013. Biomarker proxy shows potential for studying the entire Quaternary Arctic sea ice history. Organic Geochemistry, 55, pp.98-102. Stein, R., Fahl, K. and Müller, J., 2012. Proxy reconstruction of Cenozoic Arctic Ocean sea ice history–from IRD to IP25. Polarforschung, 82(1), pp.37-71. Stein, R., Grobe, H. and Wahsner, M., 1994. Organic carbon, carbonate, and clay mineral distributions in eastern central Arctic Ocean surface sediments. Marine Geology, 119(3-4), pp.269-285. Steuerwald, B.A., Clark, D.L. and Andrew, J.A., 1968. Magnetic stratigraphy and faunal patterns in Arctic Ocean sediments. Earth and Planetary Science Letters, 5, pp.79-85. Stroeve, J., Serreze, M., Drobot, S., Gearheard, S., Holland, M., Maslanik, J., Meier, W. and Scambos, T., 2008. Arctic sea ice extent plummets in 2007. Eos, Transactions American Geophysical Union, 89(2), pp.13-14. Stroeve, J.C., Serreze, M.C., Holland, M.M., Kay, J.E., Malanik, J. and Barrett, A.P., 2012. The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Climatic change, 110, pp.1005-1027. Stuiver, M. and Reimer, P.J., 1986. A computer program for radiocarbon age calibration. Radiocarbon, 28(2B), pp.1022-1030. Stuiver, M. and Reimer, P.J., 1993. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon, 35(1), pp.215-230. Subba Rao, D.V. and Platt, T., 1984. Primary production of Arctic waters. Polar Biology, 3, pp.191-201. Svendsen, J.I., Astakhov, V.I., Bolshiyanov, D.Y., Demidov, I., Dowdeswell, J.A., Gataullin, V., Hjort, C., Hubberten, H.W., Larsen, E., Mangerud, J.A.N. and Melles, M., 1999. Maximum extent of the Eurasian ice sheets in the Barents and Kara Sea region during the Weichselian. Boreas, 28(1), pp.234-242. Svendsen, J.I., Alexanderson, H., Astakhov, V.I., Demidov, I., Dowdeswell, J.A., Funder, S., Gataullin, V., Henriksen, M., Hjort, C., Houmark-Nielsen, M. and Hubberten, H.W., 2004. Late Quaternary ice sheet history of northern Eurasia. Quaternary Science Reviews, 23(11-13), pp.1229-1271. Svendsen, J.I. and Mangerud, J., 1997. Holocene glacial and climatic variations on Spitsbergen, Svalbard. The Holocene, 7(1), pp.45-57. Sweeney, J.F., 1985. Comments about the age of the Canada Basin. Tectonophysics, 114(1-4), pp.1-10. Taldenkova, E., Bauch, H.A., Gottschalk, J., Nikolaev, S., Rostovtseva, Y., Pogodina, I., Ovsepyan, Y. and Kandiano, E., 2010. History of ice-rafting and water mass evolution at the northern Siberian continental margin (Laptev Sea) during Late Glacial and Holocene times. Quaternary Science Reviews, 29(27-28), pp.3919-3935. Tarasov, P.E., Peyron, O., Guiot, J., Brewer, S., Volkova, V.S., Bezusko, L.G., Dorofeyuk, N.I., Kvavadze, E.V., Osipova, I.M. and Panova, N.K., 1999. Last Glacial Maximum climate of the former Soviet Union and Mongolia reconstructed from pollen and plant macrofossil data. Climate Dynamics, 15, pp.227-240. Taylor, P.T., Kovacs, L.C., Vogt, P.R. and Johnson, G.L., 1981. Detailed aeromagnetic investigation of the Arctic Basin: 2. Journal of Geophysical Research: Solid Earth, 86(B7), pp.6323-6333. Tütken, T., Eisenhauer, A., Wiegand, B. and Hansen, B.T., 2002. Glacial–interglacial cycles in Sr and Nd isotopic composition of Arctic marine sediments triggered by the Svalbard/Barents Sea ice sheet. Marine Geology, 182(3-4), pp.351-372. Vermassen, F., O’Regan, M., de Boer, A., Schenk, F., Razmjooei, M., West, G., Cronin, T.M., Jakobsson, M. and Coxall, H.K., 2023. A seasonally ice-free Arctic Ocean during the Last Interglacial. Nature Geoscience, 16(8), pp.723-729. Volkman, J.K., Barrett, S.M., Dunstan, G.A. and Jeffrey, S.W., 1993. Geochemical significance of the occurrence of dinosterol and other 4-methyl sterols in a marine diatom. Organic Geochemistry, 20(1), pp.7-15. Volkman, J.K., Barrett, S.M., Blackburn, S.I., Mansour, M.P., Sikes, E.L. and Gelin, F., 1998. Microalgal biomarkers: a review of recent research developments. Organic Geochemistry, 29(5-7), pp.1163-1179. Volkman, J., 2003. Sterols in microorganisms. Applied microbiology and Biotechnology, 60, pp.495-506. Volkman, J.K., 2006. Lipid markers for marine organic matter. Marine organic matter: Biomarkers, isotopes and DNA, pp.27-70. Vonk, J.E., Sánchez-García, L., Van Dongen, B.E., Alling, V., Kosmach, D., Charkin, A., Semiletov, I.P., Dudarev, O.V., Shakhova, N., Roos, P. and Eglinton, T.I., 2012. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia. Nature, 489(7414), pp.137-140. Wang, M., Wang, H., Zhu, Z., Yang, X., Zhang, K., Zhang, Y., Liu, W., Zheng, Z., Zong, Y. and Liu, Z., 2021. Late Miocene-Pliocene Asian summer monsoon variability linked to both tropical Pacific temperature and Walker Circulation. Earth and Planetary Science Letters, 561, p.116823. Wang, M., Chen, X., Qin, L., Man, M., Su, M. and Jia, G., 2023. Concomitant changes of lipid biomarker and water column mixing since mid-Holocene. Chemical Geology, 629, p.121502. Wang, M., Zhou, Q., Cao, J. and Jia, G., 2023. Upper intermediate layer-derived brGDGTs revealed from surface sediments along an elevation transect of a seamount. Chemical Geology, 619, p.121318. Wang, R., Polyak, L., Xiao, W., Wu, L. and Li, W., 2023. Middle to Late Quaternary changes in ice rafting and deep current transport on the Alpha Ridge, central Arctic Ocean and their responses to climatic cyclicities. Global and Planetary Change, 220, p.104019. Wang, Y., Bi, H., Huang, H., Liu, Y., Liu, Y., Liang, X., Fu, M. and Zhang, Z., 2019. Satellite-observed trends in the Arctic sea ice concentration for the period 1979–2016. Journal of Oceanology and Limnology, 37(1), pp.18-37. Wassmann, P., 2011. Arctic marine ecosystems in an era of rapid climate change. Progress in Oceanography, 90(1-4), pp.1-17. Wehmiller, J.F. and Miller, G.H., 2000. Aminostratigraphic dating methods in Quaternary geology. Quaternary geochronology: methods and applications, 4, pp.187-222. Weijers, J.W., Schouten, S., Spaargaren, O.C. and Damsté, J.S.S., 2006. Occurrence and distribution of tetraether membrane lipids in soils: Implications for the use of the TEX86 proxy and the BIT index. Organic Geochemistry, 37(12), pp.1680-1693. Weijers, J.W., Schouten, S., van den Donker, J.C., Hopmans, E.C. and Damsté, J.S.S., 2007. Environmental controls on bacterial tetraether membrane lipid distribution in soils. Geochimica et Cosmochimica Acta, 71(3), pp.703-713. Weijers, J.W., Schefuß, E., Kim, J.H., Damsté, J.S.S. and Schouten, S., 2014. Constraints on the sources of branched tetraether membrane lipids in distal marine sediments. Organic Geochemistry, 72, pp.14-22. West, G., Kaufman, D.S., Muschitiello, F., Forwick, M., Matthiessen, J., Wollenburg, J. and O'Regan, M., 2019. Amino acid racemization in Quaternary foraminifera from the Yermak Plateau, Arctic Ocean. Geochronology, 1(1), pp.53-67. Wetzel, A., 1991. Ecologic interpretation of deep-sea trace fossil communities. Palaeogeography, palaeoclimatology, palaeoecology, 85(1-2), pp.47-69. Wetzel, A. and Werner, F., 1980. Morphology and ecological significance of Zoophycos in deep-sea sediments off NW Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 32, pp.185-212. Wheeler, P.A., Gosselin, M., Sherr, E., Thibaultc, D., Kirchman, D.L., Benner, R. and Whitledge, T.E., 1996. Active cycling of organic carbon in the central Arctic Ocean. Nature, 380(6576), pp.697-699. Wiers, S., Snowball, I., O'Regan, M. and Almqvist, B., 2019. Late Pleistocene chronology of sediments from the Yermak Plateau and uncertainty in dating based on geomagnetic excursions. Geochemistry, Geophysics, Geosystems, 20(7), pp.3289-3310. Williford, T., Amon, R.M., Kaiser, K., Benner, R., Stedmon, C., Bauch, D., Fitzsimmons, J.N., Gerringa, L.J., Newton, R., Hansell, D.A. and Granskog, M.A., 2022. Spatial complexity in dissolved organic matter and trace elements driven by hydrography and freshwater input across the Arctic Ocean during 2015 Arctic GEOTRACES expeditions. Journal of Geophysical Research: Oceans, 127(11), p.e2022JC018917. Wilson, B., Müller, O., Nordmann, E.L., Seuthe, L., Bratbak, G. and Øvreås, L., 2017. Changes in marine prokaryote composition with season and depth over an Arctic polar year. Frontiers in Marine Science, 4, p.95. Wolfe, A.P., Miller, G.H., Olsen, C.A., Forman, S.L., Doran, P.T. and Holmgren, S.U., 2004. Geochronology of high latitude lake sediments. Long-term environmental change in Arctic and Antarctic lakes, pp.19-52. Wollenburg, I., 1993. Sediment transport by Arctic sea ice: the recent load of lithogenic and biogenic material. Reports on Polar Research, 127, p.159. Wollenburg, J.E., Matthiessen, J., Vogt, C., Nehrke, G., Grotheer, H., Wilhelms-Dick, D., Geibert, W. and Mollenhauer, G., 2023. Omnipresent authigenic calcite distorts Arctic radiocarbon chronology. Communications Earth & Environment, 4(1), p.136. Wollenburg, J.E., Kuhnt, W. and Mackensen, A., 2001. Changes in Arctic Ocean paleoproductivity and hydrography during the last 145 kyr: the benthic foraminiferal record. Paleoceanography, 16(1), pp.65-77. Wollenburg, J.E. and Mackensen, A., 1998. Living benthic foraminifers from the central Arctic Ocean: faunal composition, standing stock and diversity. Marine Micropaleontology, 34(3-4), pp.153-185. Xiao, W., Wang, Y., Zhou, S., Hu, L., Yang, H. and Xu, Y., 2016. Ubiquitous production of branched glycerol dialkyl glycerol tetraethers (brGDGTs) in global marine environments: a new source indicator for brGDGTs. Biogeosciences, 13(20), pp.5883-5894. Xiao, W., Wang, Y., Liu, Y., Zhang, X., Shi, L. and Xu, Y., 2020. Predominance of hexamethylated 6-methyl branched glycerol dialkyl glycerol tetraethers in the Mariana Trench: source and environmental implication. Biogeosciences, 17(7), pp.2135-2148. Xiao, W., Polyak, L., Wang, R., Not, C., Dong, L., Liu, Y., Ma, T. and Zhang, T., 2021. A sedimentary record from the Makarov Basin, Arctic Ocean, reveals changing middle to Late Pleistocene glaciation patterns. Quaternary Science Reviews, 270, p.107176. Xiao, W., Xu, Y., Lin, J., Zeng, Z., Liu, Y., Zhang, H. and Zhang, C., 2022. Global scale production of brGDGTs by benthic marine bacteria: Implication for developing ocean bottom environmental proxies. Global and Planetary Change, 211, p.103783. Xiao, X., Fahl, K., Müller, J. and Stein, R., 2015. Sea-ice distribution in the modern Arctic Ocean: Biomarker records from trans-Arctic Ocean surface sediments. Geochimica et Cosmochimica Acta, 155, pp.16-29. Xiao, X., Stein, R. and Fahl, K., 2015. MIS 3 to MIS 1 temporal and LGM spatial variability in Arctic Ocean sea ice cover: Reconstruction from biomarkers. Paleoceanography, 30(7), pp.969-983. Xuan, C., Channell, J.E., Polyak, L. and Darby, D.A., 2012. Paleomagnetism of Quaternary sediments from Lomonosov Ridge and Yermak Plateau: implications for age models in the Arctic Ocean. Quaternary Science Reviews, 32, pp.48-63. Yamamoto, M., Okino, T., Sugisaki, S. and Sakamoto, T., 2008. Late Pleistocene changes in terrestrial biomarkers in sediments from the central Arctic Ocean. Organic geochemistry, 39(6), pp.754-763. Yamamoto, M., Shimamoto, A., Fukuhara, T., Tanaka, Y. and Ishizaka, J., 2012. Glycerol dialkyl glycerol tetraethers and TEX86 index in sinking particles in the western North Pacific. Organic Geochemistry, 53, pp.52-62. Yamamoto, M. and Polyak, L., 2009. Changes in terrestrial organic matter input to the Mendeleev Ridge, western Arctic Ocean, during the Late Quaternary. Global and Planetary Change, 68(1-2), pp.30-37. Yang, Z., Qian, Q., Chen, M., Zhang, R., Yang, W., Zheng, M. and Qiu, Y., 2020. Enhanced but highly variable bioturbation around seamounts in the northwest Pacific. Deep Sea Research Part I: Oceanographic Research Papers, 156, p.103190. Ye, L., März, C., Polyak, L., Yu, X. and Zhang, W., 2019. Dynamics of manganese and cerium enrichments in Arctic Ocean sediments: a case study from the Alpha Ridge. Frontiers in Earth Science, 6, p.236. Young, G.M., 2017. Ice ages in earth history: Puzzling paleolatitudes and regional provenance of ice sheets on an evolving planet. In Sediment Provenance (pp. 533-562). Elsevier. Young, N.E., Schaefer, J.M., Briner, J.P. and Goehring, B.M., 2013. A 10 B e production‐rate calibration for the Arctic. Journal of Quaternary Science, 28(5), pp.515-526. Youngblood, W.W. and Blumer, M., 1973. Alkanes and alkenes in marine benthic algae. Marine Biology, 21, pp.163-172. Zahn, R., Markussen, B. and Thiede, J., 1985. Stable isotope data and depositional environments in the late Quaternary Arctic Ocean. Nature, 314(6010), pp.433-435. Zell, C., Kim, J.H., Moreira-Turcq, P., Abril, G., Hopmans, E.C., Bonnet, M.P., Sobrinho, R.L. and Damsté, J.S.S., 2013. Disentangling the origins of branched tetraether lipids and crenarchaeol in the lower Amazon River: Implications for GDGT‐based proxies. Limnology and Oceanography, 58(1), pp.343-353. Zell, C., Kim, J.H., Hollander, D., Lorenzoni, L., Baker, P., Silva, C.G., Nittrouer, C. and Damsté, J.S.S., 2014. Sources and distributions of branched and isoprenoid tetraether lipids on the Amazon shelf and fan: Implications for the use of GDGT-based proxies in marine sediments. Geochimica et Cosmochimica Acta, 139, pp.293-312. Zhang, P., Chen, G., Ting, M., Ruby Leung, L., Guan, B. and Li, L., 2023. More frequent atmospheric rivers slow the seasonal recovery of Arctic sea ice. Nature Climate Change, 13(3), pp.266-273. Zuhr, A.M., Dolman, A.M., Ho, S.L., Groeneveld, J., Löwemark, L., Grotheer, H., Su, C.C. and Laepple, T., 2022. Age-Heterogeneity in marine sediments revealed by three-dimensional high-resolution radiocarbon measurements. Frontiers in Earth Science, 10, p.871902. Zweck, C. and Huybrechts, P., 2005. Modeling of the northern hemisphere ice sheets during the last glacial cycle and glaciological sensitivity. Journal of Geophysical Research: Atmospheres, 110(D7). | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96389 | - |
dc.description.abstract | 北極海冰在調節地球的能量收支、海氣氣體交換、海洋生產力以及全球溫鹽環流中扮演著重要角色。研究其演變及其與環境參數在地質時間尺度上的交互作用是關鍵的研究領域。要理解北極海冰的變化,需要發展新型代理指標並改進傳統指標,因為現有方法在北極地區仍面臨挑戰且理解有限。本論文通過兩項重點研究,探討了北極地區晚更新世和全新世期間海冰條件的變化及其對有機質(OM)分布和產量的影響。
第一項研究利用新穎的行為遺跡指數(Ethological Ichno Quotient, EIQ),檢測晚更新世海冰範圍變化下,底棲生物挖掘行為(行為組)的變化,通過分析岩芯中生痕化石及生物擾動的變化來驗證假設。研究發現,在海冰覆蓋減少的時期,沉積物攝食型生痕增多,而在厚實的多年生海冰下,化能共生型遺跡生痕占主導地位。這些發現證實了耶爾馬克高原(Yermak Plateau)在冰期間存在更多開放水域條件的觀點,並突顯了生物擾動在不同海冰條件下連接底棲與浮游生態系統中的作用。 北極海冰分布還影響從邊緣海域到北極中心有機質和沉積物的運輸。生物標記為研究有機質運輸和分布有前景的代理指標,但在最後一個冰期循環中,其時空變化及來源在北極中心仍不明確。為解決這一問題,第二項研究集中於建立生物標記代理指標並探討其在北極中心的分布及來源。在此研究中,對北極中心的九個岩芯進行了多種代理指標分析,包括總有機碳(TOC)、正烷烴(n-alkane)及甘油二烷基甘油四醚脂(GDGTs)。研究結果顯示,用於確定北極中心支鏈GDGT (brGDGTs)來源的兩個指數得出了相反的結果:MIS 3–1期間升高的IIIa/IIa值表明海洋來源,而#ringstetra比率則指向陸源。然而,由於IIIa/IIa比率對pH變化的敏感性更高,在北極中心地區可能是更可靠的指標,可以準確反映海洋環境中brGDGT的產生。TOC和生物標記濃度在靠近西伯利亞大陸棚的中央羅蒙諾索夫脊(CLR)岩芯中最高,隨著距離大陸棚越遠而逐漸減少。這些空間模式結合北極中心低生產力,表明海洋和陸源生物標記通過海冰漂移從西伯利亞大陸棚運輸至北極中心,該過程在MIS 3–1期間持續,但在冰期中強度有所減弱。此外,冰期中北極中心的高BIT指數值可能反映了大陸棚上crenarchaeol和brGDGT生產的變化和/或crenarchaeol在運輸過程中的選擇性降解。 總體而言,本論文通過改進傳統代理指標和開發新指標,增進了對晚更新世-全新世北極中心古海洋變化的研究,提供了關於過去海冰變化及其時間演化的寶貴見解,並克服了北極代理指標發展中的挑戰。 | zh_TW |
dc.description.abstract | Arctic sea ice is a critical component in regulating the earth's energy balance, ocean-air gas exchange, marine productivity and the global thermohaline circulation. The evolution and interactions of the Arctic sea ice with environmental parameters over geological timescales are key areas of research. Understanding this Artic sea ice variability requires developing novel proxies and improving traditional ones, as existing methods in the Arctic remain challenging and poorly understood. This thesis explores the variability of sea ice conditions and their influence on the distribution and production of organic matter (OM) in the Arctic during the late Pleistocene and Holocene, explored through two focused studies.
The first study examined downcore trace fossils and bioturbation variation using the novel Ethological Ichno Quotient (EIQ) to evaluate the hypothesis that different activities of burrowing benthic organisms (ethological groups) vary in response to the changes in the sea ice extent during the late Pleistocene. The findings revealed an increase in deposit-feeding traces during periods of decreased sea ice cover and a dominance of chemosymbiotic traces under thick perennial sea ice. These findings support the idea of enhanced open-water conditions on the Yermak Plateau during glacial periods and highlight the role of bioturbation in linking benthic and pelagic ecosystems under varying sea ice regimes. Arctic sea ice distribution also impacts the transport of sediment and OM from marginal seas to the central Arctic. Biomarkers offer a promising proxy to study OM transport and distribution, but their spatio-temporal variation and sources in the central Arctic during the last glacial cycle remain unclear. To address this, the second study focused on establishing biomarker proxies and understanding their distribution and sources in the central Arctic. In this study, a multiproxy analysis, including total organic carbon (TOC), glycerol dialkyl glycerol tetraethers (GDGTs) and n-alkanes was conducted on nine sediment cores collected from the central Arctic region. Two indices used for determining the source of branched GDGT (brGDGTs) in the central Arctic yielded contrasting results: elevated IIIa/IIa values during MIS 3–1 suggest a marine origin, while #ringstetra ratios indicate a terrigenous source. However, the IIIa/IIa ratio may be more reliable in the central Arctic due to its better sensitivity to pH changes, making it a stronger indicator of brGDGT production in the marine environment. TOC and biomarker concentrations were highest in the Central Lomonosov Ridge (CLR) cores, closer to the Siberian shelves, and decreased moving further from the shelves. These spatial patterns, coupled with the reduced productivity in the central Arctic, suggest that both marine- and terrestrial-derived biomarkers were transported via sea ice drift from the Siberian shelves, a process that persisted through MIS 3–1, albeit with reduced intensity during glacial periods. Additionally, elevated Branched Isoprenoid Tetraether (BIT) index values in the central Arctic during glacial periods likely reflect changes in brGDGT and crenarchaeol production along the shelves and/or the preferential breakdown of crenarchaeol during the transport. Overall, this thesis advances the study of paleoceanographic changes in the central Arctic by improving our understanding of sea ice variability during the late Pleistocene–Holocene and contributing to the refinement of traditional proxies as well as the development of new ones. It addresses the challenges of proxy development in the Arctic, providing valuable insights into past sea ice variability and its temporal evolution. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-13T16:15:09Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-13T16:15:09Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Acknowledgement - i
摘要 - iii Abstract - v List of Figures - x List of Tables - xii Chapter 1. Introduction - 1 1.1 Arctic sea ice extent and variability - 1 1.2. Arctic geological overview - 5 1.3. Arctic Ocean circulation - 7 1.3.1. Arctic Ocean hydrographic structure - 10 1.4. Sea ice reconstruction proxies and its challenges - 11 1.5. Quaternary arctic paleoceanography - 14 1.6 Arctic chronostratigraphy - 16 Chapter 2. Scope of dissertation - 20 Chapter 3. Materials and methods - 23 Chapter 4. Paper I - 29 Exploring late Pleistocene Bioturbation on Yermak Plateau to access sea-ice conditions and Primary Productivity through the Ethological Ichno Quotient - 29 4.1 Introduction - 30 4.2 Materials and Methods - 35 4.2.1. Core locations - 35 4.2.2. Sedimentology and core scanning - 35 4.2.3. Age Model - 36 4.2.4. Bioturbation and lithology analyses - 38 4.3. Results - 41 4.3.1. Sediment type and color - 41 4.3.2. Ichnological analysis - 43 4.4. Discussion - 47 4.5. Conclusions - 53 Chapter 5. Paper II - 55 Spatial distribution of n-alkanes and GDGTs in the central Arctic Ocean during Marine Isotope Stages 1, 2 and 3 - 55 5.1. Introduction - 56 5.2. Paleoceanographic conditions - 62 5.3. Materials and Methods - 62 5.3.1. Sample collection and age model - 62 5.3.2. TOC measurement - 66 5.3.3. Biomarker analysis - 66 5.3.3.1. n-Alkane analysis - 67 5.3.3.2. Glycerol dialkyl glycerol tetraether (GDGT) analysis - 68 5.3.4 Calculation of biomarker indices - 69 5.3.5. Analysis of Variance (ANOVA) - 70 5.4. Results - 70 5.4.1. TOC content - 70 5.4.2. n-Alkanes - 70 5.4.3. GDGTs - 71 5.4.4. BIT index - 75 5.5. Discussion - 76 5.5.1. Origin of brGDGTs in the central Arctic - 76 5.5.2. Origin and transport pathways of marine-derived GDGTs in the central Arctic - 79 5.5.3. Variation in BIT values from the Siberian shelf region to the central Arctic - 82 5.5.4. Consistent transport pathways of biomarkers during glacial and interglacial times - 86 5.6. Conclusions - 88 Chapter 6. Conclusion and outlook - 90 Chapter 7. References - 93 Chapter 8. Appendix - 139 Appendix A: Includes data presented in Chapter 4 - 139 Appendix B: Includes data presented in Chapter 5 - 151 Appendix C: Paper III - 171 Influence of deep-reaching bioturbation on Arctic Ocean radiocarbon chronology - 171 | - |
dc.language.iso | en | - |
dc.title | 北極海中部古海洋學變化: 來自生痕化石和生物標記代理指標之見解 | zh_TW |
dc.title | Paleoceanographic changes in the central Arctic: Insights from trace fossil and biomarker proxies | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 博士 | - |
dc.contributor.coadvisor | 賀詩琳 | zh_TW |
dc.contributor.coadvisor | Sze-Ling Ho | en |
dc.contributor.oralexamcommittee | 羅立;任昊佳;陳明德;張詠斌 | zh_TW |
dc.contributor.oralexamcommittee | Li Lo ;Haojia Abby Ren;Min-Te Chen;Yuan-Pin Chang | en |
dc.subject.keyword | 北極海冰,生物攪動,生痕化石,生物標記,正烷烴, | zh_TW |
dc.subject.keyword | Arctic Sea ice,Bioturbation,Trace fossils,Biomarker,GDGT,n-alkane, | en |
dc.relation.page | 177 | - |
dc.identifier.doi | 10.6342/NTU202500431 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2025-02-06 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 地質科學系 | - |
dc.date.embargo-lift | 2025-02-14 | - |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf | 4.4 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。