請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96385完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林啟萬 | zh_TW |
| dc.contributor.advisor | Chii-Wann Lin | en |
| dc.contributor.author | 簡雋諺 | zh_TW |
| dc.contributor.author | Chun-Yen Chien | en |
| dc.date.accessioned | 2025-02-13T16:13:58Z | - |
| dc.date.available | 2025-02-14 | - |
| dc.date.copyright | 2025-02-13 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-02-08 | - |
| dc.identifier.citation | [1] S. Vigneshvar, C. Sudhakumari, B. Senthilkumaran, and H. Prakash, "Recent advances in biosensor technology for potential applications–an overview," Frontiers in bioengineering and biotechnology, vol. 4, p. 11, 2016.
[2] C. Ziegler and W. Göpel, "Biosensor development," Current opinion in chemical biology, vol. 2, no. 5, pp. 585-591, 1998. [3] S. Zhang, G. Wright, and Y. Yang, "Materials and techniques for electrochemical biosensor design and construction," Biosensors and Bioelectronics, vol. 15, no. 5-6, pp. 273-282, 2000. [4] L. Blum, S. Gautier, and P. Coulet, "Luminescence fiber-optic biosensor," Analytical letters, vol. 21, no. 5, pp. 717-726, 1988. [5] J. Kirsch, C. Siltanen, Q. Zhou, A. Revzin, and A. Simonian, "Biosensor technology: recent advances in threat agent detection and medicine," Chemical Society Reviews, vol. 42, no. 22, pp. 8733-8768, 2013. [6] J. Homola and M. Piliarik, "Surface Plasmon Resonance (SPR) Sensors," in Surface Plasmon Resonance Based Sensors, vol. 4, J. Homola Ed., (Springer Series on Chemical Sensors and Biosensors. Berlin: Springer-Verlag Berlin, 2006, pp. 45-67. [7] 王超, "基於金屬-介電質-金屬架構之蕭特基勢壘表面電漿共振生物感測器:設計、製程與驗證," 碩士, 醫學工程學研究所, 國立臺灣大學, 台北市, 2017. [Online]. Available: https://hdl.handle.net/11296/6rwt82 [8] A. Rasooly and J. Jacobson, "Development of biosensors for cancer clinical testing," Biosensors and Bioelectronics, vol. 21, no. 10, pp. 1851-1858, 2006. [9] B. Srinivasan and S. Tung, "Development and applications of portable biosensors," Journal of laboratory automation, vol. 20, no. 4, pp. 365-389, 2015. [10] X. Wang, Y. Luo, K. Huang, and N. Cheng, "Biosensor for agriculture and food safety: Recent advances and future perspectives," Advanced Agrochem, vol. 1, no. 1, pp. 3-6, 2022. [11] P. Singh, "SPR biosensors: historical perspectives and current challenges," Sensors and actuators B: Chemical, vol. 229, pp. 110-130, 2016. [12] M. A. Iqbal et al., "Basic concepts, advances and emerging applications of nanophotonics," (in English), Arab. J. Chem., Review vol. 16, no. 9, p. 25, Sep 2023, Art no. 105040, doi: 10.1016/j.arabjc.2023.105040. [13] B. Douzi, "Protein–protein interactions: surface plasmon resonance," Bacterial Protein Secretion Systems: Methods and Protocols, pp. 257-275, 2017. [14] S. Das, S. Singh, V. Chawla, P. A. Chawla, and R. Bhatia, "Surface plasmon resonance as a fascinating approach in target-based drug discovery and development," TrAC Trends in Analytical Chemistry, vol. 171, p. 117501, 2024. [15] R. C. Jorgenson and S. S. Yee, "A fiber-optic chemical sensor based on surface plasmon resonance," Sensors and Actuators B: Chemical, vol. 12, no. 3, pp. 213-220, 1993. [16] C. Situ, M. H. Mooney, C. T. Elliott, and J. Buijs, "Advances in surface plasmon resonance biosensor technology towards high-throughput, food-safety analysis," TrAC Trends in Analytical Chemistry, vol. 29, no. 11, pp. 1305-1315, 2010. [17] D. G. Castner and B. D. Ratner, "Biomedical surface science: Foundations to frontiers," Surface Science, vol. 500, no. 1-3, pp. 28-60, 2002. [18] F. Fathi, M.-R. Rashidi, and Y. Omidi, "Ultra-sensitive detection by metal nanoparticles-mediated enhanced SPR biosensors," Talanta, vol. 192, pp. 118-127, 2019. [19] A. Amirjani and D. F. Haghshenas, "Ag nanostructures as the surface plasmon resonance (SPR)˗ based sensors: a mechanistic study with an emphasis on heavy metallic ions detection," Sensors and Actuators B: Chemical, vol. 273, pp. 1768-1779, 2018. [20] P. Rappaport, "The photovoltaic effect and its utilization," Solar Energy, vol. 3, no. 4, pp. 8-18, 1959. [21] A. W. Copeland, O. D. Black, and A. Garrett, "The Photovoltaic Effect," Chemical reviews, vol. 31, no. 1, pp. 177-226, 1942. [22] H. B. Tang et al., "Plasmonic hot electrons for sensing, photodetection, and solar energy applications: A perspective," (in English), J. Chem. Phys., Article vol. 152, no. 22, p. 21, Jun 2020, doi: 10.1063/5.0005334. [23] G. Tagliabue et al., "Quantifying the role of surface plasmon excitation and hot carrier transport in plasmonic devices," Nat Commun, vol. 9, no. 1, p. 3394, Aug 23 2018, doi: 10.1038/s41467-018-05968-x. [24] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices. 2006. [25] C. Herring and M. H. Nichols, "Thermionic Emission," Reviews of Modern Physics, vol. 21, no. 2, pp. 185-270, 04/01/ 1949, doi: 10.1103/RevModPhys.21.185. [26] N. C. Giebink, G. P. Wiederrecht, M. R. Wasielewski, and S. R. Forrest, "Ideal diode equation for organic heterojunctions. I. Derivation and application," Physical Review B—Condensed Matter and Materials Physics, vol. 82, no. 15, p. 155305, 2010. [27] T. A. Fjeldly, B.-J. Moon, and M. Shur, "Approximate analytical solution of generalized diode equation," IEEE Transactions on Electron Devices, vol. 38, no. 8, pp. 1976-1977, 1991. [28] 盧紀瑩, "共平面金屬-絕緣層-金屬架構之表面電漿共振感測晶片之建構與驗證," 碩士, 醫學工程學研究所, 國立臺灣大學, 台北市, 2015. [Online]. Available: https://hdl.handle.net/11296/qtkn4f [29] 廖勇翔, "基於奈米蕭特基二極體與快速熱退火處理建構之侷域式表面電漿子共振生物感測器," 碩士, 醫學工程學研究所, 國立臺灣大學, 台北市, 2022. [Online]. Available: https://hdl.handle.net/11296/9nntpq [30] T. Tsukagoshi, Y. Kuroda, K. Noda, N. Binh-Khiem, T. Kan, and I. Shimoyama, "Compact Surface Plasmon Resonance System with Au/Si Schottky Barrier," Sensors (Basel), vol. 18, no. 2, Jan 30 2018, doi: 10.3390/s18020399. [31] Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, "Surface Plasmon-Driven Hot Electron Flow Probed with Metal-Semiconductor Nanodiodes," (in English), Nano Lett., Article vol. 11, no. 10, pp. 4251-4255, Oct 2011, doi: 10.1021/nl2022459. [32] C. Hill, S. Jones, and D. Boys, "Rapid thermal annealing-theory and practice," in Reduced thermal processing for ULSI: Springer, 1989, pp. 143-180. [33] "The COMSOL Product Suite." COMSOL, Inc. https://www.comsol.com/products (accessed. [34] C. Multiphysics, "Introduction to comsol multiphysics®," COMSOL Multiphysics, Burlington, MA, accessed Feb, vol. 9, no. 2018, p. 32, 1998. [35] M. Yamamoto, "Surface plasmon resonance (SPR) theory: tutorial," Review of Polarography, vol. 48, no. 3, pp. 209-237, 2002. [36] A. Zaman, S. A. Gutub, and M. A. Wafa, "A review on FRP composites applications and durability concerns in the construction sector," Journal of Reinforced Plastics and Composites, vol. 32, no. 24, pp. 1966-1988, 2013. [37] L. C. Bank, Composites for construction: structural design with FRP materials. John Wiley & Sons, 2006. [38] "F&S Multi Wire Bonder." BONDING BONDTRONICS. https://www.bondtronics.com.tw/page/about/index.aspx?kind=174&lang=TW (accessed. [39] "Model 6487 Picoammeter/Voltage Source User’s Manual " Keithley Instruments, 2011. [40] "1N60P 1N60S POINT CONTACT GERMANIUM DIODE," SEMTECH ELECTRONICS LTD. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96385 | - |
| dc.description.abstract | 本研究設計、製作並驗證了一種N型摻雜矽(N doped Si)和金(Au)的表面電漿子共振(SPR)裝置,目的是探索它在生物感測方面的應用潛力。在設計階段,本研究利用COMSOL和MATLAB進行模擬。COMSOL模擬顯示,隨著入射光波長增加,電場強度也跟著增加,這跟本研究對矽晶圓的預期一致。模擬結果也指出,表面不同寬度的光柵微結構對電場分布與強度有明顯影響。MATLAB模擬中,觀察不同厚度的金層和入射光角度對反射光強度的影響,發現約48到51奈米的金層厚度能產生最強的SPR效果。這給本研究實驗提供了重要參考。本研究改變SPR裝置的設計並分別嘗試使用金屬探針、導線和USB進行電學性質測量,相比前人僅能使用探針進行量測,使用USB量測並不會大幅降低電流訊號,相比導線和金屬探針更方便、安全且快速地獲得訊號。在裝置製作過程中,本研究用鋁基板作為基底材料,在N型摻雜矽上蒸鍍48奈米的金層,這結構不僅有效產生SPR效應,還能形成蕭特基能障,進一步優化了晶片性能。實驗結果顯示,本研究設計的裝置在電流-電壓特性曲線上呈現蕭特基電阻特性,照射600奈米紅光後能產生約0.5 nA的光電流。為改進裝置,本研究也嘗試使用FRP板作為基板,蒸鍍金和鋁後再黏貼於基板上,測量電流-電壓曲線時,也能顯示蕭特基電阻性質。此外在其中一個樣本上,發現在未焊接電子零件時,測量電流-電壓曲線,能表現蕭特基電阻的性質,然而焊接電子零件後,電流-電壓曲線變得接近線性,推測晶片可能在高溫焊接時受損,導致蕭特基接觸的性質消失。最後本研究測量不同濃度的葡萄糖水溶液,從增加的光電流訊號來看,隨著溶液折射率增加,增加的電流訊號呈線性減少。本研究設計的N doped Si/Au SPR感測器展示了良好的蕭特基電阻性質,未來將進一步優化設計,提升性能並探索更多應用場景。 | zh_TW |
| dc.description.abstract | This study designed, fabricated, and validated an N-doped silicon (N-doped Si) and gold (Au) surface plasmon resonance (SPR) device to explore its potential in biosensing applications. During the design phase, simulations were conducted using COMSOL and MATLAB. The COMSOL simulation showed that the electric field intensity increased with the incident light wavelength, which aligned with expectations for the silicon wafer. The results also indicated that different widths of grating nanostructures significantly affected the light field distribution and electric field intensity. In the MATLAB simulation, the effects of gold layer thickness and incident light angle on reflected light intensity were analyzed. It was found that a gold layer thickness of about 48 to 51 nm produced the strongest SPR effect, providing crucial guidance for the experiments.
This study modified the SPR device design and tested electrical measurements using metal probes, wires, and USB connections. Compared to previous studies that only used probes, the USB method allowed for safer, faster, and more convenient signal acquisition without significantly reducing current signals. During the fabrication process, an aluminum substrate was used as the base material, with a 48 nm gold layer deposited on the N-doped silicon. This structure not only effectively generated the SPR effect but also formed a Schottky barrier, further improving chip performance. Experimental results showed that the device exhibited Schottky resistance characteristics on the current-voltage (I-V) curve and generated about 0.5 nA of photocurrent under 600 nm red light. To improve the device, this study experimented with FRP boards as substrates, depositing gold and aluminum before attaching them to the substrate. We can also observe the Schottky resistance characteristics from the I-V curve measurements. For one sample, Schottky resistance characteristics were observed before electronic components were soldered, but the curve became more linear after soldering. It is suspected that the chip was damaged by high temperatures during soldering, causing the Schottky contact properties to disappear. Finally, the device was tested with glucose solutions of different concentrations. The results showed that the increased current signals decreased linearly as the refractive index of the liquid increased. The N-doped Si/Au SPR sensor designed in this study demonstrated good Schottky resistance properties. Future work will focus on optimizing the design, improving performance, and exploring more application scenarios. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-13T16:13:58Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-13T16:13:58Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 ii
摘要 iii ABSTRACT iv 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 第二章 基本原理 4 2.1 光伏效應與熱電子產生 4 2.2 蕭特基接觸與歐姆接觸 5 2.3 Ti-TiO2-Au 晶片 6 2.4 LSPR 增強表面SPR 光電流訊號 9 2.5 材料的選擇 10 2.6 表面微結構處理 12 第三章 實驗方法與模擬 13 3.1 軟體模擬 - COMSOL 13 3.2 軟體模擬 - MATLAB 模擬 14 3.3 晶片設計 15 3.3.1 鋁基板設計 16 3.3.2 FRP板設計 17 3.4 晶片製程 19 3.4.1 晶圓切割 19 3.4.2 晶圓清洗 20 3.4.3 金屬蒸鍍 20 3.4.4 晶片組裝與打線製程 21 3.5 量測系統 22 3.5.1 探針的量測系統架構 24 3.5.2 連接導線與USB量測系統架構 24 第四章 實驗結果與討論 26 4.1 軟體模擬– COMSOL 26 4.1.1 軟體模擬背面入射 26 4.1.2 軟體模擬正面入射 27 4.1.3 軟體模擬表面奈米結構正面入射 28 4.2 軟體模擬晶片-MATLAB 29 4.3 晶片製程 32 4.4 晶片電學性質量測 33 4.4.1 電學量測系統測試 33 4.4.2 以鋁基板為基板 33 4.4.3 以FRP板為基板 39 4.5 850nm不同強度入射光測試 42 4.6 100nm Au- N doped Si- Al 43 第五章 結論與未來展望 46 參考文獻 48 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 表面電漿子共振裝置 | zh_TW |
| dc.subject | 表面電漿子共振 | zh_TW |
| dc.subject | 生物感測器 | zh_TW |
| dc.subject | 蕭特基能障 | zh_TW |
| dc.subject | 蕭特基電阻 | zh_TW |
| dc.subject | Surface Plasmon Resonance (SPR) | en |
| dc.subject | Surface Plasmon Resonance device | en |
| dc.subject | Biosensor | en |
| dc.subject | Schottky diode | en |
| dc.subject | Schottky barrier | en |
| dc.title | USB 介面之 N-型矽晶圓/金蕭特基能障之表面電漿子共振生物感測器設計、製作與量測驗證 | zh_TW |
| dc.title | Design, Fabrication, and Characterization of a USB Interface N-doped Si/Au Schottky Barrier Surface Plasmon Resonance Sensor | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林宗宏;林致廷 | zh_TW |
| dc.contributor.oralexamcommittee | Zong-Hong Lin;Chih-Ting Lin | en |
| dc.subject.keyword | 生物感測器,表面電漿子共振,蕭特基能障,蕭特基電阻,表面電漿子共振裝置, | zh_TW |
| dc.subject.keyword | Biosensor,Surface Plasmon Resonance (SPR),Schottky barrier,Schottky diode,Surface Plasmon Resonance device, | en |
| dc.relation.page | 50 | - |
| dc.identifier.doi | 10.6342/NTU202500494 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-02-10 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 醫學工程學系 | - |
| dc.date.embargo-lift | 2030-02-07 | - |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 4.75 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
