Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96369
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王為豪zh_TW
dc.contributor.advisorWei-Hao Wangen
dc.contributor.author井上拓也zh_TW
dc.contributor.authorTakuya Inoueen
dc.date.accessioned2025-02-13T16:09:19Z-
dc.date.available2025-02-14-
dc.date.copyright2025-02-13-
dc.date.issued2025-
dc.date.submitted2025-02-11-
dc.identifier.citation[1] Weinberg, D. H., Mortonson, M. J., Eisenstein, D. J., et al., “Observational probes of cosmic acceleration,” Phys. Rept. , Vol. 530, No. 2, Sept. 2013, pp. 87–255.
[2] Kaiser, N., “Clustering in real space and in redshift space,” MNRAS, Vol. 227, July 1987, pp. 1–21.
[3] Sánchez, A. G., Montesano, F., Kazin, E. A., et al., “The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the full shape of the clustering wedges in the data release 10 and 11 galaxy samples,” MNRAS, Vol. 440, No. 3, May 2014, pp. 2692–2713.
[4] Hamilton, A. J. S., “Measuring Omega and the Real Correlation Function from the Redshift Correlation Function,” Astrophys. J. Lett, Vol. 385, Jan. 1992, pp. L5.
[5] Guzzo, L., Pierleoni, M., Meneux, B., et al., “A test of the nature of cosmic acceleration using galaxy redshift distortions,” Nature, Vol. 451, No. 7178, Jan. 2008, pp. 541–544.
[6] Linder, E. V., “Redshift distortions as a probe of gravity,” Astroparticle Physics, Vol. 29, No. 5, June 2008, pp. 336–339.
[7] Alam, S., Ata, M., Bailey, S., et al., “The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample,” arXiv e-prints, July 2016, pp. arXiv:1607.03155.
[8] Bonvin, C., Hui, L., and Gaztañaga, E., “Asymmetric galaxy correlation functions,” Phys. Rev. D., Vol. 89, No. 8, April 2014, pp. 083535.
[9] McDonald, P., “Gravitational redshift and other redshift-space distortions of the imaginary part of the power spectrum,” JCAP, Vol. 11, No. 11, Nov. 2009, pp. 026.
[10] Croft, R. A. C., “Gravitational redshifts from large-scale structure,” MNRAS, Vol. 434, No. 4, Oct. 2013, pp. 3008–3017.
[11] Bonvin, C. and Fleury, P., “Testing the equivalence principle on cosmological scales,” JCAP, Vol. 5, No. 5, May 2018, pp. 061.
[12] Saga, S., Taruya, A., Rasera, Y., et al., “Cosmological test of local position invariance from the asymmetric galaxy clustering,” MNRAS, Vol. 524, No. 3, Sept. 2023, pp. 4472–4481.
[13] Alam, S., Zhu, H., Croft, R. A. C., et al., “Relativistic distortions in the large-scale clustering of SDSS-III BOSS CMASS galaxies,” MNRAS, Vol. 470, No. 3, Sept. 2017, pp. 2822–2833.
[14] Saga, S., Taruya, A., Rasera, Y., et al., “Detectability of the gravitational redshift effect from the asymmetric galaxy clustering,” MNRAS, Vol. 511, No. 2, April 2022, pp. 2732–2754.
[15] Pound, R. V. and Rebka, G. A., “Gravitational Red-Shift in Nuclear Resonance,” Phys. Rev. Lett., Vol. 3, No. 9, Nov. 1959, pp. 439–441.
[16] Pound, R. V. and Snider, J. L., “Effect of Gravity on Gamma Radiation,” Physical Review, Vol. 140, No. 3B, Nov. 1965, pp. 788–803.
[17] Chisari, N. E., Dvorkin, C., Schmidt, F., et al., “Multitracing anisotropic non-Gaussianity with galaxy shapes,” Phys. Rev. D., Vol. 94, No. 12, Dec. 2016, pp. 123507.
[18] Schmidt, F. and Jeong, D., “Large-scale structure with gravitational waves. II. Shear,” Phys. Rev. D., Vol. 86, No. 8, Oct. 2012, pp. 083513.
[19] Schmidt, F., Chisari, N. E., and Dvorkin, C., “Imprint of inflation on galaxy shape correlations,” JCAP, Vol. 10, No. 10, Oct. 2015, pp. 032–032.
[20] Taruya, A. and Okumura, T., “Improving Geometric and Dynamical Constraints on Cosmology with Intrinsic Alignments of Galaxies,” Astrophys. J. Lett, Vol. 891, No. 2, March 2020, pp. L42.
[21] Okumura, T. and Taruya, A., “Tightening geometric and dynamical constraints on dark energy and gravity: Galaxy clustering, intrinsic alignment, and kinetic Sunyaev-Zel’dovich effect,” Phys. Rev. D., Vol. 106, No. 4, Aug. 2022, pp. 043523.
[22] Okumura, T. and Taruya, A., “First Constraints on Growth Rate from Redshift-space Ellipticity Correlations of SDSS Galaxies at 0.16 < z < 0.70,” Astrophys. J. Lett, Vol. 945, No. 2, March 2023, pp. L30.
[23] Saga, S., Okumura, T., Taruya, A., et al., “Relativistic distortions in galaxy density-ellipticity correlations: gravitational redshift and peculiar velocity effects,” MNRAS, Vol. 518, No. 4, Feb. 2023, pp. 4976–4990.
[24] Kurita, T. and Takada, M., “Analysis method for 3D power spectrum of projected tensor fields with fast estimator and window convolution modeling: An application to intrinsic alignments,” Phys. Rev. D., Vol. 105, No. 12, June 2022, pp. 123501.
[25] Komatsu, E., Smith, K. M., Dunkley, J., et al., “Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation,” Astrophys. J. Suppl. , Vol. 192, No. 2, Feb. 2011, pp. 18.
[26] Hamilton, A. J. S., “Linear Redshift Distortions: a Review,” The Evolving Universe, edited by D. Hamilton, Vol. 231 of Astrophysics and Space Science Library, Jan. 1998, p. 185.
[27] Dodelson, S. and Schmidt, F., Modern Cosmology, Academic Press, 2020.
[28] Sargent, W. L. W. and Turner, E. L., “A statistical method for determining the cosmological density parameter from the redshifts of a complete sample of galaxies.” Astrophys. J. Lett, Vol. 212, Feb. 1977, pp. L3–L7.
[29] Hirata, C. M. and Seljak, U., “Intrinsic alignment-lensing interference as a contaminant of cosmic shear,” Phys. Rev. D., Vol. 70, No. 6, Sept. 2004, pp. 063526.
[30] Joachimi, B., Cacciato, M., Kitching, T. D., et al., “Galaxy Alignments: An Overview,” Space Sci. Rev., Vol. 193, Nov. 2015, pp. 1–65.
[31] Kurita, T., Takada, M., Nishimichi, T., et al., “Power spectrum of halo intrinsic alignments in simulations,” MNRAS, Vol. 501, No. 1, Feb. 2021, pp. 833–852.
[32] Catelan, P., Kamionkowski, M., and Blandford, R. D., “Intrinsic and extrinsic galaxy alignment,” MNRAS, Vol. 320, No. 1, Jan. 2001, pp. L7–L13.
[33] Joachimi, B., Mandelbaum, R., Abdalla, F. B., et al., “Constraints on intrinsic alignment contamination of weak lensing surveys using the MegaZ-LRG sample,” Astron. Astrophys., Vol. 527, March 2011, pp. A26.
[34] Chuang, Y.-T., Okumura, T., and Shirasaki, M., “Distinguishing between ΛCDM and f(R) gravity models using halo ellipticity correlations in simulations,” MNRAS, Vol. 515, No. 3, Sept. 2022, pp. 4464–4470.
[35] Alcock, C. and Paczynski, B., “An evolution free test for non-zero cosmological constant,” Nature, Vol. 281, Oct. 1979, pp. 358.
[36] Seo, H.-J. and Eisenstein, D. J., “Probing Dark Energy with Baryonic Acoustic Oscillations from Future Large Galaxy Redshift Surveys,” ApJ, Vol. 598, No. 2, Dec. 2003, pp. 720–740.
[37] Kobayashi, Y., Nishimichi, T., Takada, M., et al., “Cosmological information content in redshift-space power spectrum of SDSS-like galaxies in the quasinonlinear regime up to k =0.3 h Mpc−1,” Phys. Rev. D., Vol. 101, No. 2, Jan. 2020, pp. 023510.
[38] Taruya, A., Saito, S., and Nishimichi, T., “Forecasting the cosmological constraints with anisotropic baryon acoustic oscillations from multipole expansion,” Phys. Rev. D., Vol. 83, No. 10, May 2011, pp. 103527.
[39] Oka, A., Saito, S., Nishimichi, T., et al., “Simultaneous constraints on the growth of structure and cosmic expansion from the multipole power spectra of the SDSS DR7 LRG sample,” MNRAS, Vol. 439, No. 3, April 2014, pp. 2515–2530.
[40] Reid, B. A., Samushia, L., White, M., et al., “The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measurements of the growth of structure and expansion rate at z = 0.57 from anisotropic clustering,” MNRAS, Vol. 426, No. 4, Nov. 2012, pp. 2719–2737.
[41] Hall, A. and Bonvin, C., “Measuring cosmic velocities with 21 cm intensity mapping and galaxy redshift survey cross-correlation dipoles,” Phys. Rev. D., Vol. 95, No. 4, Feb. 2017, pp. 043530.
[42] Tegmark, M., Taylor, A. N., and Heavens, A. F., “Karhunen-Loève Eigenvalue Problems in Cosmology: How Should We Tackle Large Data Sets?” ApJ, Vol. 480, No. 1, May 1997, pp. 22–35.
[43] Tegmark, M., “Measuring Cosmological Parameters with Galaxy Surveys,” Phys. Rev. Lett., Vol. 79, No. 20, Nov. 1997, pp. 3806–3809.
[44] Sasaki, M., “The magnitude-redshift relation in a perturbed Friedmann universe,” MNRAS, Vol. 228, Oct. 1987, pp. 653–669.
[45] Matsubara, T., “The Gravitational Lensing in Redshift-Space Correlation Functions of Galaxies and Quasars,” Astrophys. J. Lett, Vol. 537, No. 2, July 2000, pp. L77–L80.
[46] Yoo, J., Fitzpatrick, A. L., and Zaldarriaga, M., “New perspective on galaxy clustering as a cosmological probe: General relativistic effects,” Phys. Rev. D., Vol. 80, No. 8, Oct. 2009, pp. 083514.
[47] Bonvin, C. and Durrer, R., “What galaxy surveys really measure,” Phys. Rev. D., Vol. 84, No. 6, Sept. 2011, pp. 063505.
[48] Challinor, A. and Lewis, A., “Linear power spectrum of observed source number counts,” Phys. Rev. D., Vol. 84, No. 4, Aug. 2011, pp. 043516.
[49] Yoo, J., Hamaus, N., Seljak, U., et al., “Going beyond the Kaiser redshift-space distortion formula: a full general relativistic account of the effects and their detectability in galaxy clustering,” arXiv e-prints, June 2012, pp. arXiv:1206.5809.
[50] Jeong, D., Schmidt, F., and Hirata, C. M., “Large-scale clustering of galaxies in general relativity,” Phys. Rev. D., Vol. 85, No. 2, Jan. 2012, pp. 023504.
[51] Yoo, J., “Relativistic effect in galaxy clustering,” Classical and Quantum Gravity, Vol. 31, No. 23, Dec. 2014, pp. 234001.
[52] Raccanelli, A., Bertacca, D., Jeong, D., et al., “Doppler term in the galaxy two-point correlation function: Wide-angle, velocity, Doppler lensing and cosmic acceleration effects,” Physics of the Dark Universe, Vol. 19, March 2018, pp. 109–123.
[53] Bonvin, C., “Isolating relativistic effects in large-scale structure,” Classical and Quantum Gravity, Vol. 31, No. 23, Dec. 2014, pp. 234002.
[54] Kodwani, D. and Desmond, H., “Screened fifth forces in parity-breaking correlation functions,” Phys. Rev. D., Vol. 100, No. 6, Sept. 2019, pp. 064030.
[55] Bonvin, C., Oliveira Franco, F., and Fleury, P., “A null test of the equivalence principle using relativistic effects in galaxy surveys,” JCAP, Vol. 2020, No. 8, Aug. 2020, pp. 004.
[56] Umeh, O., Koyama, K., and Crittenden, R., “Testing the equivalence principle on cosmological scales using the odd multipoles of galaxy cross-power spectrum and bispectrum,” JCAP, Vol. 2021, No. 8, Aug. 2021, pp. 049.
[57] Wojtak, R., Hansen, S. H., and Hjorth, J., “Gravitational redshift of galaxies in clusters as predicted by general relativity,” Nature, Vol. 477, No. 7366, Sept. 2011, pp. 567–569.
[58] Sadeh, I., Feng, L. L., and Lahav, O., “Gravitational Redshift of Galaxies in Clusters from the Sloan Digital Sky Survey and the Baryon Oscillation Spectroscopic Survey,” Phys. Rev. Lett., Vol. 114, No. 7, Feb. 2015, pp. 071103.
[59] Jimeno, P., Broadhurst, T., Coupon, J., et al., “Comparing gravitational redshifts of SDSS galaxy clusters with the magnified redshift enhancement of background BOSS galaxies,” MNRAS, Vol. 448, No. 3, April 2015, pp. 1999–2012.
[60] Gaztanaga, E., Bonvin, C., and Hui, L., “Measurement of the dipole in the cross-correlation function of galaxies,” JCAP, Vol. 1, No. 1, Jan. 2017, pp. 032.
[61] Zhu, H., Alam, S., Croft, R. A. C., et al., “N-body simulations of gravitational redshifts and other relativistic distortions of galaxy clustering,” MNRAS, Vol. 471, No. 2, Oct. 2017, pp. 2345–2356.
[62] Breton, M.-A., Rasera, Y., Taruya, A., et al., “Imprints of relativistic effects on the asymmetry of the halo cross-correlation function: from linear to non-linear scales,” MNRAS, Vol. 483, No. 2, Feb. 2019, pp. 2671–2696.
[63] Beutler, F. and Di Dio, E., “Modeling relativistic contributions to the halo power spectrum dipole,” JCAP, Vol. 7, No. 7, July 2020, pp. 048.
[64] Saga, S., Taruya, A., Breton, M.-A., et al., “Modelling the asymmetry of the halo cross-correlation function with relativistic effects at quasi-linear scales,” MNRAS, Vol. 498, No. 1, Oct. 2020, pp. 981–1001.
[65] Giusarma, E., Alam, S., Zhu, H., et al., “Relativistic asymmetries in the galaxy cross-correlation function,” arXiv e-prints, Sept. 2017, pp. arXiv:1709.07854.
[66] Di Dio, E. and Seljak, U., “The relativistic dipole and gravitational redshift on LSS,” JCAP, Vol. 4, No. 4, April 2019, pp. 050.
[67] Takada, M., Ellis, R. S., Chiba, M., et al., “Extragalactic science, cosmology, and Galactic archaeology with the Subaru Prime Focus Spectrograph,” PASJ, Vol. 66, No. 1, Feb. 2014, pp. R1.
[68] DESI Collaboration, Aghamousa, A., Aguilar, J., et al., “The DESI Experiment Part I: Science,Targeting, and Survey Design,” arXiv e-prints, Oct. 2016, pp. arXiv:1611.00036.
[69] Euclid Collaboration, Mellier, Y., Abdurro’uf, et al., “Euclid. I. Overview of the Euclid mission,” arXiv e-prints, May 2024, pp. arXiv:2405.13491.
[70] Square Kilometre Array Cosmology Science Working Group, Bacon, D. J., Battye, R. A., et al., “Cosmology with Phase 1 of the Square Kilometre Array Red Book 2018: Technical specifications and performance forecasts,” Publications of the Astronomical Society of Australia, Vol. 37, March 2020, pp. e007.
[71] Bonvin, C., Lepori, F., Schulz, S., et al., “A case study for measuring the relativistic dipole of a galaxy cross-correlation with the Dark Energy Spectroscopic Instrument,” MNRAS, Vol. 525, No. 3, Nov. 2023, pp. 4611–4627.
[72] Lepori, F., Schulz, S., Tutusaus, I., et al., “Euclid: Relativistic effects in the dipole of the 2-point correlation function,” arXiv e-prints, Oct. 2024, pp. arXiv:2410.06268.
[73] Will, C. M., Theory and Experiment in Gravitational Physics, Cambridge University Press, 2nd ed., 2018.
[74] Blanco, D. S., Bonvin, C., Clarkson, C., et al., “Using relativistic effects in large-scale structure to constrain astrophysical properties of galaxy populations,” JCAP, Vol. 12, No. 12, Dec. 2024, pp. 029.
[75] Zhao, H., Peacock, J. A., and Li, B., “Testing gravity theories via transverse Doppler and gravitational redshifts in galaxy clusters,” Phys. Rev. D., Vol. 88, No. 4, Aug. 2013, pp. 043013.
[76] Kaiser, N., “Measuring gravitational redshifts in galaxy clusters,” MNRAS, Vol. 435, No. 2, Oct. 2013, pp. 1278–1286.
[77] Cai, Y.-C., Kaiser, N., Cole, S., et al., “Gravitational redshift and asymmetric redshift-space distortions for stacked clusters,” MNRAS, Vol. 468, No. 2, June 2017, pp. 1981–1993.
[78] Navarro, J. F., Frenk, C. S., and White, S. D. M., “The Structure of Cold Dark Matter Halos,” ApJ, Vol. 462, May 1996, pp. 563.
[79] Łokas, E. L. and Mamon, G. A., “Properties of spherical galaxies and clusters with an NFW density profile,” MNRAS, Vol. 321, No. 1, Feb. 2001, pp. 155–166.
[80] Sheth, R. K. and Diaferio, A., “Peculiar velocities of galaxies and clusters,” MNRAS, Vol. 322, No. 4, April 2001, pp. 901–917.
[81] Hikage, C., Mandelbaum, R., Takada, M., et al., “Where are the Luminous Red Galaxies (LRGs)? Using correlation measurements and lensing to relate LRGs to dark matter haloes,” MNRAS, Vol. 435, No. 3, Nov. 2013, pp. 2345–2370.
[82] Yan, Z., Raza, N., Van Waerbeke, L., et al., “An analysis of galaxy cluster miscentring using cosmological hydrodynamic simulations,” MNRAS, Vol. 493, No. 1, March 2020, pp. 1120–1129.
[83] Taruya, A., Saga, S., Breton, M.-A., et al., “Wide-angle redshift-space distortions at quasi-linear scales: cross-correlation functions from Zel’dovich approximation,” MNRAS, Vol. 491, No. 3, Jan. 2020, pp. 4162–4179.
[84] Reimberg, P., Bernardeau, F., and Pitrou, C., “Redshift-space distortions with wide angular separations,” JCAP, Vol. 1, No. 1, Jan. 2016, pp. 048–048.
[85] Castorina, E. and White, M., “Beyond the plane-parallel approximation for redshift surveys,” MNRAS, Vol. 476, No. 4, June 2018, pp. 4403–4417.
[86] Castorina, E. and White, M., “The Zeldovich approximation and wide-angle redshift-space distortions,” MNRAS, Vol. 479, No. 1, Sept. 2018, pp. 741–752.
[87] Masaki, S., Hikage, C., Takada, M., Spergel, D. N., and Sugiyama, N., “Understanding the nature of luminous red galaxies (LRGs): connecting LRGs to central and satellite subhaloes,” MNRAS, Vol. 433, No. 4, Aug. 2013, pp. 3506–3522.
[88] Lepori, F., Di Dio, E., Villa, E., et al., “Optimal galaxy survey for detecting the dipole in the cross-correlation with 21 cm Intensity Mapping,” JCAP, Vol. 5, No. 5, May 2018, pp. 043.
[89] Sheth, R. K. and Tormen, G., “Large-scale bias and the peak background split,” MNRAS, Vol. 308, No. 1, Sept. 1999, pp. 119–126.
[90] Peebles, P. J. E. and Yu, J. T., “Primeval Adiabatic Perturbation in an Expanding Universe,” ApJ, Vol. 162, Dec. 1970, pp. 815.
[91] Eisenstein, D. J. and Hu, W., “Baryonic Features in the Matter Transfer Function,” ApJ, Vol. 496, No. 2, March 1998, pp. 605–614.
[92] Meiksin, A., White, M., and Peacock, J. A., “Baryonic signatures in large-scale structure,” MNRAS, Vol. 304, No. 4, April 1999, pp. 851–864.
[93] Peebles, P. J. E., The large-scale structure of the universe, Princeton University Press, 1980.
[94] Croft, R. A. C. and Metzler, C. A., “Weak-Lensing Surveys and the Intrinsic Correlation of Galaxy Ellipticities,” ApJ, Vol. 545, No. 2, Dec. 2000, pp. 561–571.
[95] Heavens, A., Refregier, A., and Heymans, C., “Intrinsic correlation of galaxy shapes: implications for weak lensing measurements,” MNRAS, Vol. 319, No. 2, Dec. 2000, pp. 649–656.
[96] Troxel, M. A. and Ishak, M., “The intrinsic alignment of galaxies and its impact on weak gravitational lensing in an era of precision cosmology,” Phys. Rept. , Vol. 558, Feb. 2015, pp. 1–59.
[97] Kiessling, A., Cacciato, M., Joachimi, B., et al., “Galaxy Alignments: Theory, Modelling & Simulations,” Space Sci. Rev., Vol. 193, Nov. 2015, pp. 67–136.
[98] Kirk, D., Brown, M. L., Hoekstra, H., et al., “Galaxy Alignments: Observations and Impact on Cosmology,” Space Sci. Rev., Vol. 193, Nov. 2015, pp. 139–211.
[99] Lamman, C., Tsaprazi, E., Shi, J., et al., “The IA Guide: A Breakdown of Intrinsic Alignment Formalisms,” The Open Journal of Astrophysics, Vol. 7, Feb. 2024, pp. 14.
[100] Blazek, J., McQuinn, M., and Seljak, U., “Testing the tidal alignment model of galaxy intrinsic alignment,” JCAP, Vol. 5, No. 5, May 2011, pp. 010.
[101] Blazek, J., Vlah, Z., and Seljak, U., “Tidal alignment of galaxies,” JCAP, Vol. 08, No. 8, Aug. 2015, pp. 015–015.
[102] Okumura, T. and Taruya, A., “Anisotropies of galaxy ellipticity correlations in real and redshift space: angular dependence in linear tidal alignment model,” MNRAS, Vol. 493, No. 1, March 2020, pp. L124–L128.
[103] Okumura, T., Taruya, A., and Nishimichi, T., “Testing tidal alignment models for anisotropic correlations of halo ellipticities with N-body simulations,” MNRAS, Vol. 494, No. 1, May 2020, pp. 694–702.
[104] Okumura, T., Matsubara, T., Eisenstein, D. J., et al., “Large-Scale Anisotropic Correlation Function of SDSS Luminous Red Galaxies,” ApJ, Vol. 676, No. 2, April 2008, pp. 889–898.
[105] Cole, S., Fisher, K. B., and Weinberg, D. H., “Fourier Analysis of Redshift Space Distortions and the Determination of Omega,” MNRAS, Vol. 267, April 1994, pp. 785.
[106] Singh, S. and Mandelbaum, R., “Intrinsic alignments of BOSS LOWZ galaxies II. Impact of shape measurement methods,” MNRAS, Vol. 457, No. 3, April 2016, pp. 2301–2317.
[107] Zwetsloot, K. and Chisari, N. E., “Impact of intrinsic alignments on clustering constraints of the growth rate,” MNRAS, Vol. 516, No. 1, Oct. 2022, pp. 787–793.
[108] Kurita, T. and Takada, M., “Constraints on anisotropic primordial non-Gaussianity from intrinsic alignments of SDSS-III BOSS galaxies,” Phys. Rev. D., Vol. 108, No. 8, Oct. 2023, pp. 083533.
[109] Shi, J., Sunayama, T., Kurita, T., et al., “The intrinsic alignment of galaxy clusters and impact of projection effects,” MNRAS, Vol. 528, No. 2, Feb. 2024, pp. 1487–1499.
[110] Singh, S., Shakir, A., Jagvaral, Y., et al., “Increasing the power of weak lensing data with multipole-based intrinsic alignment estimators,” MNRAS, Vol. 530, No. 4, June 2024, pp. 3515–3526.
[111] Okumura, T., Taruya, A., Kurita, T., et al., “Nonlinear redshift space distortion in halo ellipticity correlations: Analytical model and N -body simulations,” Phys. Rev. D., Vol. 109, No. 10, May 2024, pp. 103501.
[112] Grieb, J. N., Sánchez, A. G., Salazar-Albornoz, S., et al., “Gaussian covariance matrices for anisotropic galaxy clustering measurements,” MNRAS, Vol. 457, No. 2, April 2016, pp. 1577–1592.
[113] Matsubara, T., “Integrated perturbation theory for cosmological tensor fields. III. Projection effects,” Phys. Rev. D., Vol. 110, No. 6, Sept. 2024, pp. 063545.
[114] Taruya, A. and Akitsu, K., “Lagrangian approach to super-sample effects on biased tracers at field level: galaxy density fields and intrinsic alignments,” JCAP, Vol. 11, No. 11, Nov. 2021, pp. 061.
[115] Mavromatis, H. and Alassar, R., “A generalized formula for the integral of three associated Legendre polynomials,” Applied Mathematics Letters, Vol. 12, No. 3, 1999, pp. 101–105.
[116] Shiraishi, M., Okumura, T., Sugiyama, N. S., et al., “Minimum variance estimation of galaxy power spectrum in redshift space,” MNRAS, Vol. 498, No. 1, Nov. 2020, pp. L77–L81.
[117] Taruya, A., Nishimichi, T., and Saito, S., “Baryon acoustic oscillations in 2D: Modeling redshift-space power spectrum from perturbation theory,” Phys. Rev. D., Vol. 82, No. 6, Sept. 2010, pp. 063522.
[118] Shi, J., Osato, K., Kurita, T., et al., “An Optimal Estimator of Intrinsic Alignments for Star-forming Galaxies in IllustrisTNG Simulation,” ApJ, Vol. 917, No. 2, Aug. 2021, pp. 109.
[119] Takahashi, R., Yoshida, N., Takada, M., et al., “Simulations of Baryon Acoustic Oscillations. II. Covariance Matrix of the Matter Power Spectrum,” ApJ, Vol. 700, No. 1, July 2009, pp. 479–490.
[120] Takahashi, R., Yoshida, N., Takada, M., et al., “Non-Gaussian Error Contribution to Likelihood Analysis of the Matter Power Spectrum,” ApJ, Vol. 726, No. 1, Jan. 2011, pp. 7.
[121] Blot, L., Corasaniti, P. S., Alimi, J. M., et al., “Matter power spectrum covariance matrix from the DEUS-PUR ΛCDM simulations: mass resolution and non-Gaussian errors,” MNRAS, Vol. 446, No. 2, Jan. 2015, pp. 1756–1764.
[122] Blot, L., Crocce, M., Sefusatti, E., et al., “Comparing approximate methods for mock catalogues and covariance matrices II: power spectrum multipoles,” MNRAS, Vol. 485, No. 2, May 2019, pp. 2806–2824.
[123] Chan, K. C. and Blot, L., “Assessment of the information content of the power spectrum and bispectrum,” Phys. Rev. D., Vol. 96, No. 2, July 2017, pp. 023528.
[124] Padmanabhan, N. and White, M., “Constraining anisotropic baryon oscillations,” Phys. Rev. D., Vol. 77, No. 12, June 2008, pp. 123540.
[125] Scoccimarro, R., “Redshift-space distortions, pairwise velocities, and nonlinearities,” Phys. Rev. D., Vol. 70, No. 8, Oct. 2004, pp. 083007.
[126] Shiraishi, M., Taruya, A., Okumura, T., et al., “Wide-angle effects on galaxy ellipticity correlations,” MNRAS, Vol. 503, No. 1, May 2021, pp. L6–L10.
[127] Varshalovich, D. A., Moskalev, A. N., and Khersonskii, V. K., Quantum Theory of Angular Momentum, World Scientific, 1988.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96369-
dc.description.abstract在宇宙尺度上檢驗引力理論對於理解宇宙加速膨脹及引力機制至關重要。本論文提出了一種利用非對稱星系聚類與內在排列(IA)統計來檢驗廣義相對論的框架。隨著當前及未來高精度星系巡天數據的提供,從這些新型探針中提取宇宙學信息的高級方法變得愈發關鍵。本論文主要針對兩個核心挑戰:在非對稱聚類統計中納入高階奇數極矩,以及在 IA 統計中選擇最佳極展開基底。

本論文的第一部分探討了高階極矩在非對稱星系聚類中的作用。Saga 等人最近的研究提出,利用不同星系樣本之間的互相關函數來檢驗愛因斯坦等效原理(EEP)的關鍵組成部分——局部位置不變性(LPI),但其分析僅限於偶極矩。本論文在其基礎上進一步研究了高階奇數極矩——八極矩在 LPI 違反參數 α 之約束能力,並預測了來自 Dark Energy Spectroscopic Instrument、Euclid Space Telescope、Subaru Prime Focus Spectrograph 及 Square Kilometre Array 等星系巡天的結果。我們發現,當分析局限於較大尺度,即選擇較大的最小分離距離 smin 時,結合八極矩與偶極矩能顯著提升約束能力。在保守設定 smin = 15Mpc/h 的情況下,相較於僅使用偶極矩,平均約束能力提升 11%。本研究結果突顯了高階極矩的重要性,提供了一種更穩健的方法來在宇宙尺度上檢驗 EEP。

論文的第二部分探討了極展開基底選擇對 IA 統計的影響。我們研究了 IA 統計的自然基底——伴隨勒讓德多項式,並將該基底所得的約束與傳統勒讓德基底所得的結果進行比較。我們發現,IA 功率譜極矩在伴隨勒讓德基底下收斂至完整 2D 功率譜的信息量較慢。在高星系數密度情況下,即便使用最高至 l = 6 的極矩,伴隨勒讓德基底下的 IA 互功率譜與自功率譜對哈勃參數的誤差,分別比完整 2D 分析大約 6% 和 10%。本研究結果表明,基底選擇雖然是任意的,但會根據樣本與統計方法影響極矩所承載的信息量。

總結來說,本論文證明了高階奇數極矩在非對稱聚類中的重要性,以及基底選擇對內在排列統計的影響,從而改進了對引力理論與標準宇宙學模型的檢驗。雖然本研究基於理論 Fisher 分析,未來的工作應將這些方法應用於模擬與觀測數據,以獲得更精確的約束並深入理解宇宙的基本性質。
zh_TW
dc.description.abstractTesting gravity on cosmological scales is crucial for understanding the accelerated expansion of the Universe and the mechanisms of gravity. This thesis proposes a framework for testing general relativity using asymmetric galaxy clustering and intrinsic alignment (IA) statistics. As ongoing and upcoming galaxy survey data with high precision provide, the need for advanced methods to extract the cosmological information from these novel probes becomes increasingly critical. This thesis addresses two key challenges: the incorporation of a higher-order odd multipole in asymmetric clustering statistics and the optimal choice of the basis for multipole expansion in IA statistics.

The first part explores the role of higher-order multipoles in asymmetric galaxy clus- tering. Recent work by Saga et al. proposed the validation of the local position invariance (LPI), a key aspect of the Einstein equivalence principle (EEP), using the cross-correlation function between distinct galaxy samples, but their analysis focused solely on the dipole. In this thesis, we extend their work by further analyzing a higher-order odd multipole, the octupole, in the constraints on the LPI-violating parameter, α, expected from galaxy surveys such as Dark Energy Spectroscopic Instrument, Euclid space telescope, Subaru Prime Focus Spectrograph, and Square Kilometre Array. We demonstrate that combining the octupole and dipole moments significantly improves the constraints, particularly when the analysis is restricted to larger scales, characterized by a large minimum separation smin. For a conservative setup with smin = 15Mpc/h, we find an average improvement of 11% compared to using the dipole alone. Our results highlight the importance of higher-order multipoles, providing a more robust approach to testing the EEP on cosmological scales.

In the second part, we investigate the impact of basis choice for multipole expansion in IA statistics. We examine the associated Legendre polynomials, a natural basis for IA statistics, and compare the constraints obtained from this basis with those obtained from the conventional Legendre basis. Our findings reveal that the information in the multipoles of the IA power spectra in the associated Legendre basis converges more slowly to that in the full 2D power spectra than in the Legendre basis. In this high number density case, we show that the errors on the Hubble parameter obtained from the multipoles of the IA cross- and auto-power spectra in the associated Legendre basis are respectively about 6% and 10% larger than the full 2D case even when we use multipoles up to l = 6. Our results demonstrate that the choice of basis is arbitrary but changes the information content encoded in multipoles depending on the sample and statistics under consideration.

In conclusion, this thesis demonstrates the importance of higher-order odd multipoles in asymmetric clustering and the choice of basis in IA statistics, improving tests of gravity and the standard cosmological model. While based on theoretical Fisher analysis, future work should apply these methods to simulations and observational data, leading to more precise constraints and deeper insights into the fundamental nature of the Universe.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-13T16:09:18Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-13T16:09:19Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgements iii
摘要 v
Abstract vii
Contents xi
List of Figures xv
Chapter 1 Introduction 1
1.1 Background and Research Goals . . . . . . . . . . . . . . . . . . . . 2
Chapter 2 Large-Scale Structures 9
2.1 Standard Cosmological Model . . . . . . . . . . . . . . . . . . . . . 9
2.2 Structure Formation . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Galaxy Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Two-Point Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Galaxy Distribution in Galaxy Surveys . . . . . . . . . . . . . . . . 18
2.3.3 Galaxy Bias and Redshift-Space Distortions . . . . . . . . . . . . . 20
2.4 Intrinsic Alignments . . . . . . . . . . . . . . . . . . . . . . . . . .28
2.4.1 Observed Galaxy Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . .28
2.4.2 Linear Alignment Model . . . . . . . . . . . . . . . . . . . . . . . 30
2.5 Alcock-Paczynski Effect . . . . . . . . . . . . . . . . . . . . . . . . 34
2.6 Gaussian Covariance Matrix . . . . . . . . . . . . . . . . . . . . . . 36
Chapter 3 Methodology 41
3.1 Fisher Information Matrix . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Marginalized Errors . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Chapter 4 Testing Local Position Invariance with Odd Multipoles of Galaxy
Clustering Statistics 45
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Asymmetric Correlation Function . . . . . . . . . . . . . . . . . . . 47
4.3 Forecast Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Chapter 5 Information Content in Anisotropic Cosmological Fields: Impact
of Different Multipole Expansion Scheme for Galaxy Density and Ellipticity
Correlations 63
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Multipole Moments in the Associated Legendre Basis . . . . . . . . 66
5.2.1 Power Spectrum Multipoles . . . . . . . . . . . . . . . . . . . . . . 67
5.2.2 Gaussian Covariance for the Power Spectrum Multipoles . . . . . . 71
5.3 Forecast Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.1 Signal-to-Noise Ratio . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.2 Fisher Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.4.2 Error of Power Spectrum Multipoles . . . . . . . . . . . . . . . . . 78
5.4.3 Signal-to-Noise Ratio . . . . . . . . . . . . . . . . . . . . . . . . .81
5.4.4 Parameter Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.5.1 Number Density Dependence . . . . . . . . . . . . . . . . . . . . . 87
5.5.1.1 High vs Low Number Density . . . . . . . . . . . . . .87
5.5.1.2 Impact of Bias and Redshift . . . . . . . . . . . . . . .89
5.5.2 Combinations of the Different Statistics . . . . . . . . . . . . . . . 90
5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Chapter 6 Conclusions of Thesis 95
References 97
Appendix A — Analytic Formulas of Intrinsic Alignment Statistics 113
A.1 Useful Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
A.2 A.3 Multipole Covariance . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Derivatives of Power Spectra . . . . . . . . . . . . . . . . . . . . . . 120
-
dc.language.isoen-
dc.subject愛因斯坦等效原理zh_TW
dc.subject星系聚集zh_TW
dc.subject內在排列zh_TW
dc.subject大尺度結構zh_TW
dc.subject廣義相對zh_TW
dc.subjectIntrinsic alignmentsen
dc.subjectGeneral relativityen
dc.subjectEinstein equivalence principleen
dc.subjectLarge-scale structuresen
dc.subjectGalaxy clusteringen
dc.title利用非對稱星系聚集與本徵排列進行重力的宇宙學檢驗zh_TW
dc.titleCosmological Test of Gravity with Asymmetric Galaxy Clustering and Intrinsic Alignmentsen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee奥村哲平;梅津敬一;砂山朋美;吳建宏zh_TW
dc.contributor.oralexamcommitteeTeppei Okumura;Keiichi Umetsu;Tomomi Sunayama;Kin-Wang Ngen
dc.subject.keyword廣義相對,愛因斯坦等效原理,大尺度結構,星系聚集,內在排列,zh_TW
dc.subject.keywordGeneral relativity,Einstein equivalence principle,Large-scale structures,Galaxy clustering,Intrinsic alignments,en
dc.relation.page125-
dc.identifier.doi10.6342/NTU202404708-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-02-11-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
dc.date.embargo-lift2025-02-14-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf3.45 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved