請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96365
標題: | 用於高效水分解的原子層電催化劑設計 Atomically engineered electrochemical catalysts for efficient water splitting. |
作者: | 陳定睿 Ding-Rui Chen |
指導教授: | 謝雅萍 Ya-Ping Hsieh |
共同指導教授: | 謝馬利歐 Mario Hofmann |
關鍵字: | 二維材料,電催化劑,二硫化鉬,凡得瓦堆疊,二維邊緣,析氫反應,奈米帶陣列, 2D materials,electrocatalysis,MoS2,van-der-Waals stacking,2D edges,hydrogen evolution reaction (HER),nanoribbons, |
出版年 : | 2024 |
學位: | 博士 |
摘要: | 可再生能源需求的增長引起了世界對於水分解反應(2 H2O → 2 H2 + O2)的高度興趣,也突顯了高效催化劑的重要性。二維(2D)材料,如二硫化鉬(MoS2)的邊緣,展現了匹配的ΔGH*並具有作為析氫反應(HER)催化劑的潛力,然而這些材料的動力學尚未完全理解和解決。
在本論文中,我們首先研究了以邊緣主導的超窄MoS2 奈米帶陣列的電化學反應動力學表現。然後,我們通過二維邊緣的凡得瓦(vdW)堆疊實現了多位點電催化,除了透過實驗和模擬結果確認了優良的HER 和OER(析氧反應)以及多位點間中間體的交換反應,我們還展現了十分良好的整體水分解反應效果。 為了研究邊緣主導的電化學反應動力學,我們首先開發了一種模板減法圖案化方法(TSPP)。該型態工程法使我們能夠建立長距離、高密度和高質量的基面超窄奈米帶陣列,充當探索邊緣主導電化學的實驗平台。小於30 奈米的奈米帶陣列在評估電化學特性時展現出增強的HER動力學。由光電催化測量和載流子傳輸模擬證明這些改進是由於從基面向邊緣位置的電荷轉移效率的提高所貢獻的。我們的結果展示了邊緣主導電催化在HER 中的潛力,並為奈米帶製造和奈米帶增強電化學提供了一種有望的策略。 接著,我們繼續擴展透過vdW 堆疊2D 邊緣實現多位點邊緣催化。透過結合實驗與模擬結合,我們證明了vdW 堆疊活性位點在HER 中表現出協同作用,並確認了相鄰位點之間的中間體交換。此外,我們的結果展示了HER 和OER 的增強效果,優於均質疊層材料。vdW 堆疊的多位點催化成功應用於中性水分解微反應器,並表現出卓越的性能。 The growing demand for renewable energy has sparked interest in water-splitting reactions (2H2O → 2 H2 + O2), highlighting the crucial role of high-performance electrocatalysis.Two dimensional (2D) materials such as Molybdenum Disulfide (MoS2) edges exhibit the best matched ΔGH* for hydrogen evolution reactions (HER) if their kinetics can be addressed and understood. In this thesis, we first investigated the electrochemical reaction kinetics of edge-dominated ultranarrow MoS2 nanoribbon arrays. Then, multi-site electrocatalysis was achieved through the van der Waals (vdW) stacking of 2D edges. In addition to confirming excellent Hydrogen Evolution Reaction (HER) and Oxygen Evolution Reaction (OER), as well as intermediate exchange reactions through experimental and simulation results, we also demonstrated excellent performance in the overall water splitting reaction. To investigate edge-dominated electrochemical reaction kinetics, we first developed a morphological engineering method called the templated subtractive patterning process (TSPP). This method enables us to establish a long-range, high-density, and high-quality basal plane ultra-nanoribbon arrays, acting as an experimental platform for exploring edge-dominated electrochemistry. Sub-30nm nanoribbons demonstrate significantly enhanced HER kinetics through assessed electrochemical characterizations. These improvements are due to increased charge transfer efficiency from the basal plane toward the edge sites as revealed by Photo-electrocatalytic measurements and carrier transport simulations. Our findings demonstrate the potential of edge-dominated electrocatalysis for HER and provide a promising strategy for nanoribbon fabrication and nanoribbon-enhanced electrochemistry. Afterward, we extended our exploration to realize multi-site edge catalysis by forming vdw 2D edges. Combining direct experimental evidence and Ab-initio simulations, we demonstrated that vdW stacking at active sites exhibits synergistic interactions in the HER, and the exchange of intermediates between neighboring sites was confirmed. Furthermore, our results showcased enhanced efficiency in HER and OER, outperforming homogeneous materials. The vdw stacked multi-site catalysis were successfully applied to neutral water-splitting microreactors, demonstrating superior performance. |
URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96365 |
DOI: | 10.6342/NTU202400784 |
全文授權: | 同意授權(限校園內公開) |
電子全文公開日期: | 2029-12-16 |
顯示於系所單位: | 分子科學與技術國際研究生博士學位學程 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 目前未授權公開取用 | 6.83 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。