Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96358
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李尉彰zh_TW
dc.contributor.advisorWei-Chang Lien
dc.contributor.author藍楷崴zh_TW
dc.contributor.authorKai-Wei Lanen
dc.date.accessioned2024-12-24T16:31:12Z-
dc.date.available2024-12-25-
dc.date.copyright2024-12-24-
dc.date.issued2024-
dc.date.submitted2024-12-04-
dc.identifier.citation[1] A. K. Samarao and F. Ayazi, "Temperature Compensation of Silicon Resonators via Degenerate Doping," IEEE Transactions on Electron Devices, vol. 59, no. 1, pp. 87-93, 2012, doi: 10.1109/TED.2011.2172613.
[2] Y. C. Liu, M. H. Tsai, W. C. Chen, M. H. Li, S. S. Li, and W. Fang, "Temperature-Compensated CMOS-MEMS Oxide Resonators," Journal of Microelectromechanical Systems, vol. 22, no. 5, pp. 1054-1065, 2013, doi: 10.1109/JMEMS.2013.2263091.
[3] J. R. Liu and W. C. Li, "A Temperature-Insensitive CMOS-MEMS Resonator Utilizing Electrical Stiffness Compensation," in 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS), 27-31 Jan. 2019 2019, pp. 161-164, doi: 10.1109/MEMSYS.2019.8870843.
[4] K. Sundaresan, G. K. Ho, S. Pourkamali, and F. Ayazi, "Electronically Temperature Compensated Silicon Bulk Acoustic Resonator Reference Oscillators," IEEE Journal of Solid-State Circuits, vol. 42, no. 6, pp. 1425-1434, 2007, doi: 10.1109/JSSC.2007.896521.
[5] C. Y. Liu, M. H. Li, H. G. Ranjith, and S. S. Li, "A 1 MHz 4 ppm CMOS-MEMS oscillator with built-in self-test and sub-mW ovenization power," in 2016 IEEE International Electron Devices Meeting (IEDM), 3-7 Dec. 2016 2016, pp. 26.7.1-26.7.4, doi: 10.1109/IEDM.2016.7838488.
[6] H. Wan-Thai and C. T. C. Nguyen, "Stiffness-compensated temperature-insensitive micromechanical resonators," in Technical Digest. MEMS 2002 IEEE International Conference. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.02CH37266), 24-24 Jan. 2002 2002, pp. 731-734, doi: 10.1109/MEMSYS.2002.984374.
[7] G. Wu et al., "Wafer-Level Vacuum-Packaged High-Performance AlN-on-SOI Piezoelectric Resonator for Sub-100-MHz Oscillator Applications," IEEE Transactions on Industrial Electronics, vol. 65, no. 4, pp. 3576-3584, 2018, doi: 10.1109/TIE.2017.2748041.
[8] M. Perrott et al., "A temperature-to-digital converter for a MEMS-based programmable oscillator with better than ±0.5ppm frequency stability," in 2012 IEEE International Solid-State Circuits Conference, 19-23 Feb. 2012 2012, pp. 206-208, doi: 10.1109/ISSCC.2012.6176977.
[9] I. C. Hsieh, H. S. Zheng, C. P. Tsai, T. Y. Chen, and W. C. Li, "Generic Temperature Compensation Scheme for CMOS-MEMS Resonators Based on ARC-Beam Derived Electrical Stiffness Frequency Pulling," in 2023 IEEE 36th International Conference on Micro Electro Mechanical Systems (MEMS), 15-19 Jan. 2023 2023, pp. 1155-1158, doi: 10.1109/MEMS49605.2023.10052231.
[10] K. Gabriel, J. Jarvis, W. Trimmer, and N. S. Foundation, Small Machines, Large Opportunities: A Report on the Emerging Field of Microdynamics : Report of the Workshop on Microelectromechanical Systems Research ; Sponsored by the National Science Foundation. AT & T Bell Laboratories, 1988.
[11] M. Bao and W. Wang, "Future of microelectromechanical systems (MEMS)," Sensors and Actuators A: Physical, vol. 56, no. 1, pp. 135-141, 1996/08/01/ 1996, doi: https://doi.org/10.1016/0924-4247(96)01274-5.
[12] H. Baltes, O. Brand, A. Hierlemann, D. Lange, and C. Hagleitner, "CMOS MEMS - present and future," in Technical Digest. MEMS 2002 IEEE International Conference. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.02CH37266), 24-24 Jan. 2002 2002, pp. 459-466, doi: 10.1109/MEMSYS.2002.984302.
[13] W. Fang et al., "CMOS MEMS: A key technology towards the “More than Moore” era," in 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 16-20 June 2013 2013, pp. 2513-2518, doi: 10.1109/Transducers.2013.6627317.
[14] A. Witvrouw, "CMOS-MEMS Integration: Why, How and What?," in 2006 IEEE/ACM International Conference on Computer Aided Design, 5-9 Nov. 2006 2006, pp. 826-827, doi: 10.1109/ICCAD.2006.320128.
[15] M. A. Lombardi, "Time and Frequency," in Encyclopedia of Physical Science and Technology (Third Edition), R. A. Meyers Ed. New York: Academic Press, 2003, pp. 783-801.
[16] J. C. Brice, "Crystals for quartz resonators," Reviews of Modern Physics, vol. 57, no. 1, pp. 105-146, 01/01/ 1985, doi: 10.1103/RevModPhys.57.105.
[17] C. Y. Chen, M.-H. Li, and S.-S. Li, "CMOS-MEMS resonators and oscillators: A review," Sensors and Materials, vol. 30, pp. 733-756, 01/01 2018, doi: 10.18494/SAM.2018.1857.
[18] W. Kun, W. Ark-Chew, and C. T. C. Nguyen, "VHF free-free beam high-Q micromechanical resonators," Journal of Microelectromechanical Systems, vol. 9, no. 3, pp. 347-360, 2000, doi: 10.1109/84.870061.
[19] S. M. Han, H. Benaroya, and T. Wei, "DYNAMICS OF TRANSVERSELY VIBRATING BEAMS USING FOUR ENGINEERING THEORIES," Journal of Sound and Vibration, vol. 225, no. 5, pp. 935-988, 1999/09/02/ 1999, doi: https://doi.org/10.1006/jsvi.1999.2257.
[20] H. Benaroya, M. Nagurka, and S. M. Han, Mechanical vibration: theory and application. Rutgers University Press, 2022.
[21] D. J. Inman and R. C. Singh, Engineering vibration. Prentice Hall Englewood Cliffs, NJ, 1994.
[22] L. Meirovitch, Fundamentals of vibrations. Waveland Press, 2010.
[23] W. Thomson, Theory of vibration with applications. CrC Press, 2018.
[24] C. T. C. Nguyen, "Micromechanical resonators for oscillators and filters," in 1995 IEEE Ultrasonics Symposium. Proceedings. An International Symposium, 7-10 Nov. 1995 1995, vol. 1, pp. 489-499 vol.1, doi: 10.1109/ULTSYM.1995.495626.
[25] M. H. Li, C. Y. Chen, C. S. Li, C. H. Chin, and S. S. Li, "A Monolithic CMOS-MEMS Oscillator Based on an Ultra-Low-Power Ovenized Micromechanical Resonator," Journal of Microelectromechanical Systems, vol. 24, no. 2, pp. 360-372, 2015, doi: 10.1109/JMEMS.2014.2331497.
[26] C.-L. Cheng, M.-H. Tsai, and W. Fang, "Determining the thermal expansion coefficient of thin films for a CMOS MEMS process using test cantilevers," Journal of Micromechanics and Microengineering, vol. 25, no. 2, p. 025014, 2015/01/22 2015, doi: 10.1088/0960-1317/25/2/025014.
[27] M. Bîrsan, D. Pietras, and T. Sadowski, "Determination of effective stiffness properties of multilayered composite beams," Continuum Mechanics and Thermodynamics, vol. 33, no. 4, pp. 1781-1803, 2021/07/01 2021, doi: 10.1007/s00161-021-01006-2.
[28] R. Melamud et al., "Temperature-Insensitive Composite Micromechanical Resonators," Journal of Microelectromechanical Systems, vol. 18, no. 6, pp. 1409-1419, 2009, doi: 10.1109/JMEMS.2009.2030074.
[29] M. H. Li, C. Y. Chen, C. S. Li, C. H. Chin, and S. S. Li, "Design and Characterization of a Dual-Mode CMOS-MEMS Resonator for TCF Manipulation," Journal of Microelectromechanical Systems, vol. 24, no. 2, pp. 446-457, 2015, doi: 10.1109/JMEMS.2014.2332884.
[30] X. Liu, Q. Xie, A. Ozgurluk, Q. Jin, and C. T. C. Nguyen, "Temperature Compensation Using an In-Situ Gap-Based Temperature Sensor," in 2024 IEEE 37th International Conference on Micro Electro Mechanical Systems (MEMS), 21-25 Jan. 2024 2024, pp. 144-147, doi: 10.1109/MEMS58180.2024.10439585.
[31] C.-H. Hsueh, "Modeling of elastic deformation of multilayers due to residual stresses and external bending," Journal of Applied Physics, vol. 91, no. 12, pp. 9652-9656, 2002, doi: 10.1063/1.1478137.
[32] J.-H. Kim, H.-J. Kil, S. Lee, J. Park, and J.-W. Park, "Interfacial Delamination at Multilayer Thin Films in Semiconductor Devices," ACS Omega, vol. 7, no. 29, pp. 25219-25228, 2022/07/26 2022, doi: 10.1021/acsomega.2c02122.
[33] Y. Shi, J. Xu, Y. Li, Z. Liu, K. Zhang, and J. Su, "Theoretical Model of Thermal Stress in the Film-Substrate System of Optical Thin Film," Journal of Electronic Materials, vol. 51, no. 10, pp. 5937-5945, 2022/10/01 2022, doi: 10.1007/s11664-022-09819-w.
[34] P. Chen, P. Raghavan, K. Yazzie, and H. Fei, "On the effective coefficient of thermal expansion (CTE) of bilayer/trilayer in semiconductor package substrates," in 2015 IEEE 65th Electronic Components and Technology Conference (ECTC), 26-29 May 2015 2015, pp. 1932-1937, doi: 10.1109/ECTC.2015.7159865.
[35] H. Qu, "CMOS MEMS Fabrication Technologies and Devices," Micromachines, vol. 7, no. 1, p. 14, 2016. [Online]. Available: https://www.mdpi.com/2072-666X/7/1/14.
[36] S.-H. Tseng, "CMOS MEMS Design and Fabrication Platform," (in English), Frontiers in Mechanical Engineering, Review vol. 8, 2022-April-26 2022, doi: 10.3389/fmech.2022.894484.
[37] S.-S. Li, "CMOS-MEMS Resonators," in Encyclopedia of Nanotechnology, B. Bhushan Ed. Dordrecht: Springer Netherlands, 2016, pp. 557-574.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96358-
dc.description.abstract此研究主要在CMOS-MEMS平台上,針對金屬基垂直出平面電容式共振器輸出頻率進行被動式溫度補償。無須搭配額外的補償電路或晶片便可以實現垂直式出平面共振器對溫度的穩定輸出,對於垂直式振盪器、感測器、制動器皆能應用本研究的被動補償機制。
利用CMOS製程平台後道工序(BEOL)上設計一階梯狀結構微機電共振器。當溫度變化時,由於CMOS後道工序中,材料的熱膨脹係數有所差異,階梯狀結構各層將因熱應變產生開口向上的彎曲形變,進而被動式改變共振器與驅動電極間的距離。隨著溫度上升,傳感間隙持續加大、電剛性降低,進一步抵抗高溫造成結構機械剛性下降的問題,使得共振器頻率輸出能維持穩定而不隨溫度飄移。通過理論分析與有限元素輔助,設計出一最適合階梯狀結構,通過調整驅動時的直流偏壓,可以找到一最適合之驅動條件,降低整體共振器受溫度的影響,提高穩定性。在溫度範圍-20至80攝氏度之間,共振器之TCF1從每度368.4 ppm降至每度0.164 ppm,整體頻率飄移從36745 ppm降至2420 ppm,有近15倍改善。雖然相比於其他主動式補償或商用振盪器的表現,被動式補償依舊有很大的進步空間。
zh_TW
dc.description.abstractThis study focuses on passive temperature compensation for the output frequency of metal-based out-of-plane capacitive resonators on the CMOS-MEMS platform. The proposed mechanism enables stable temperature-independent output for vertical out-of-plane resonators without the need for additional compensation circuits or chips. This passive compensation approach can be applied to vertical oscillators, sensors, and actuators.
A stepped-structure MEMS resonator is designed using the back-end-of-line (BEOL) process of the CMOS platform. Due to differences in the thermal expansion coefficients of materials in the CMOS BEOL process, the layers of the stepped structure undergo upward bending deformation caused by thermal strain as the temperature changes. This deformation passively alters the gap between the resonator and the driving electrode. As the temperature increases, the sensing gap widens, reducing electrostatic stiffness, which counteracts the reduction in mechanical stiffness of the structure caused by high temperatures. Consequently, the resonator’s frequency output remains stable without temperature drift.
Through theoretical analysis and finite element simulations, an optimal stepped structure design is developed. By adjusting the DC bias during operation, the best driving conditions can be identified to minimize the resonator’s temperature influence and improve stability. Within the temperature range of -20°C to 80°C, the resonator’s TCF1 is reduced from 368.4 ppm/°C to 0.164 ppm/°C, and the overall frequency drift is improved from 36,745 ppm to 2,420 ppm, achieving nearly 15-fold enhancement.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-12-24T16:31:12Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-12-24T16:31:12Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
ABSTRACT ii
致謝 iii
目次 iv
圖次 vi
表次 ix
1 第一章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 2
1-2-1 主動式溫度補償 2
1-2-2 被動式溫度補償 7
1-3 論文架構 9
2 第二章 靜電式微機電共振器之原理 10
2-1 CMOS-MEMS雙端固定樑共振器 10
2-2 雙端固定樑之等效質量-阻尼-彈簧系統 11
2-2-1 尤拉-白努力樑理論求樑之共振模態與頻率 12
2-2-2 等效質量-阻尼-彈簧係數 15
2-2-3 共振器之電剛性 16
2-2-4 機電耦合係數η與共振器等效電路 22
2-3 CMOS-MEMS雙端固定樑之材料參數 24
2-4 CMOS-MEMS雙端固定樑之溫度頻率係數TCF 26
3 第三章 階梯式結構用於改善溫度不穩定性 29
3-1 溫度頻率補償 29
3-2 複合樑彎曲理論 30
3-3 階梯狀結構熱應變計算 34
3-4 利用有限元素法驗證 36
4 第四章 元件製程 40
4-1 TSMC CMOS 0.35-µm 製程 40
4-2 後製程 41
4-3 溼蝕刻流程 42
5 第五章 量測結果 44
5-1 共振器表面輪廓量測 44
5-2 電容式微機電共振器量測架設 46
5-3 雙端固定樑於各溫度下之頻譜響應 47
5-4 階梯式結構於被動式溫度頻率補償 49
6 第六章 結論與未來展望 51
6-1 結論 51
6-2 未來展望 52
參考文獻 54
-
dc.language.isozh_TW-
dc.subject階梯狀結構zh_TW
dc.subject溫度頻率係數zh_TW
dc.subject電剛性zh_TW
dc.subject被動式溫度補償zh_TW
dc.subjectCMOS-MEMSzh_TW
dc.subjecttemperature coefficient of frequency (TCF)en
dc.subjectCMOS-MEMSen
dc.subjectpassive temperature compensationen
dc.subjectelectrostatic stiffnessen
dc.subjectstepped structureen
dc.title階梯式結構用於CMOS-MEMS共振器頻率溫度補償zh_TW
dc.titleTCF-Tailoring Vertically Stepped Structures for Temperature-Insensitive CMOS-MEMS Resonatorsen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李銘晃;劉建豪zh_TW
dc.contributor.oralexamcommitteeMing-Huang Li;Chien-Hao Liuen
dc.subject.keywordCMOS-MEMS,被動式溫度補償,電剛性,階梯狀結構,溫度頻率係數,zh_TW
dc.subject.keywordCMOS-MEMS,passive temperature compensation,electrostatic stiffness,stepped structure,temperature coefficient of frequency (TCF),en
dc.relation.page57-
dc.identifier.doi10.6342/NTU202404669-
dc.rights.note未授權-
dc.date.accepted2024-12-04-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
7.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved