Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96354
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃心豪zh_TW
dc.contributor.advisorHsin-Haou Huangen
dc.contributor.author陳品傑zh_TW
dc.contributor.authorPin-Chieh Chenen
dc.date.accessioned2024-12-24T16:30:03Z-
dc.date.available2024-12-25-
dc.date.copyright2024-12-24-
dc.date.issued2024-
dc.date.submitted2024-12-02-
dc.identifier.citation[1] T. Eguchi, "Simulation of position error signal degradation due to operational vibration for hard disk drives in a storage server box." IEEE Transactions on Magnetics, 45.11, 5162-5167, 2009. doi: 10.1109/TMAG.2009.2029646.
[2] V. M. Shalaev, "Optical negative-index metamaterials." Nature Photonics, vol. 1, no. 1, pp. 41-48, 2007. doi: org/10.1038/nphoton.2006.49.
[3] G. Hu, L. Tang, J. Xu, C. Lan, and R. Das, "Metamaterial with local resonators coupled by negative stiffness springs for enhanced vibration suppression." Journal of Applied Mechanics, vol. 86, no. 8, p. 081009, 2019. doi: org/10.1115/1.4043827.
[4] H. H. Huang, C. T. Sun, and G. L. Huang, "On the negative effective mass density in acoustic metamaterials." International Journal of Engineering Science, vol. 47, no. 4, pp. 610-617, 2009. doi: org/10.1016/j.ijengsci.2008.12.007.
[5] C. Huang and L. Chen, "Negative poisson's ratio in modern functional materials." Advanced Materials, vol. 28, no. 37, pp. 8079-8096, 2016. doi: org/10.1002/adma.201601363.
[6] J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index." Nature, vol. 455, no. 7211, pp. 376-379, 2008. doi: org/10.1038/nature07247.
[7] B. J. Kwon, J. Y. Jung, D. Lee, K. C. Park, and I. K. Oh, "Tunable acoustic waveguide based on vibro-acoustic metamaterials with shunted piezoelectric unit cells." Smart Materials and Structures, vol. 24, no. 10, p. 105018, 2015. doi: 10.1088/0964-1726/24/10/105018.
[8] S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, "Acoustic metamaterial with negative density." Physics Letters A, vol. 373, no. 48, pp. 4464-4469, 2009. doi: org/10.1016/j.physleta.2009.10.013.
[9] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber." Physical Review Letters, vol. 100, no. 20, p. 207402, 2008. doi: org/10.1103/PhysRevLett.100.207402.
[10] Y. J. Yoo, H. Y. Zheng, Y. J. Kim, J. Y. Rhee, J. H. Kang, K. W. Kim, H. Cheong, Y. H. Kim, Y. P. Lee, "Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell." Applied Physics Letters, vol. 105, no. 4, 2014. doi: org/10.1063/1.4885095.
[11] H. Chen and B. Zheng, "Broadband polygonal invisibility cloak for visible light." Scientific Reports, vol. 2, no. 1, p. 255, 2012. doi: org/10.1038/srep00255.
[12] J. Xiong, F. Ren, S. Li, S. Tian, Y. Li, and J. Mo, "A study on low-frequency vibration mitigation by using the metamaterial-tailored composite concrete-filled steel tube column." Engineering Structures, vol. 305, p. 117673, 2024. doi: org/10.1016/j.engstruct.2024.117673.
[13] D. Manushyna, M. Hülsebrock, A. Kuisl, A. D. Vivo, P. Heloret, H. Atzrodt, and S. Rapp, "Application of vibroacoustic metamaterials for structural vibration reduction in space structures," Mechanics Research Communications, vol. 129, p. 104090, 2023. doi: org/10.1016/j.mechrescom.2023.104090.
[14] Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, P. Sheng, "Locally resonant sonic materials." Science, vol. 289, no. 5485, pp. 1734-1736, 2000. doi:10.1126/science.289.5485.1734.
[15] P. Sheng, X. X. Zhang, Z. Liu, and C. T. Chan, "Locally resonant sonic materials." Physica B: Condensed Matter, vol. 338, no. 1-4, pp. 201-205, 2003. doi: org/10.1016/S0921-4526(03)00487-3.
[16] Z. Liu, C. T. Chan, and P. Sheng, "Analytic model of phononic crystals with local resonances." Physical Review B, vol. 71, no. 1, p. 014103, 2005. doi: org/10.1103/PhysRevB.71.014103.
[17] G. W. Milton and J. R. Willis, "On modifications of Newton's second law and linear continuum elastodynamics." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 463, no. 2079, pp. 855-880, 2007. .
[18] S. Yao, X. Zhou, and G. Hu, "Experimental study on negative effective mass in a 1D mass–spring system." New Journal of Physics, vol. 10, no. 4, p. 043020, 2008. doi: 10.1088/1367-2630/10/4/043020.
[19] H. H. Huang and C. T. Sun, "Theoretical investigation of the behavior of an acoustic metamaterial with extreme Young's modulus," Journal of the Mechanics and Physics of Solids, vol. 59, no. 10, pp. 2070-2081, 2011. doi: org/10.1016/j.jmps.2011.07.002.
[20] H. H. Huang, C. K. Lin, and K. T. Tan, "Attenuation of transverse waves by using a metamaterial beam with lateral local resonators." Smart Materials and Structures, vol. 25, no. 8, p. 085027, 2016. doi: 10.1088/0964-1726/25/8/085027.
[21] Y. Ding, Z. Liu, C. Qiu, and J. Shi, "Metamaterial with simultaneously negative bulk modulus and mass density." Physical Review Letters, vol. 99, no. 9, p. 093904, 2007. doi: org/10.1103/PhysRevLett.99.093904.
[22] S. A. Pope and S. Daley, "Viscoelastic locally resonant double negative metamaterials with controllable effective density and elasticity." Physics Letters A, vol. 374, no. 41, pp. 4250-4255, 2010. doi: org/10.1016/j.physleta.2010.08.037.
[23] X. Wang, "Dynamic behaviour of a metamaterial system with negative mass and modulus." International Journal of Solids and Structures, vol. 51, no. 7-8, pp. 1534-1541, 2014. doi:org/10.1016/j.ijsolstr.2014.01.004.
[24] J. S. Chen, B. Sharma, and C. T. Sun, "Dynamic behaviour of sandwich structure containing spring-mass resonators." Composite Structures, vol. 93, no. 8, pp. 2120-2125, 2011. doi: org/10.1016/j.compstruct.2011.02.007.
[25] H. Bao, C. Wu, W. Zheng, and B. Yan, "Vibration bandgap of a locally resonant beam considering horizontal springs." Journal of Vibration and Control, vol. 28, no. 3-4, pp. 452-464, 2022. doi: org/10.1177/10775463209801.
[26] T. Wang, M. P. Sheng, and Q. H. Qin, "Multi-flexural band gaps in an Euler–Bernoulli beam with lateral local resonators." Physics Letters A, vol. 380, no. 4, pp. 525-529, 2016. doi: org/10.1016/j.physleta.2015.12.010.
[27] K. Lu, G. Zhou, N. Gao, L. Li, H. Lei, and M. Yu, "Flexural vibration bandgaps of the multiple local resonance elastic metamaterial plates with irregular resonators." Applied Acoustics, vol. 159, p. 107115, 2020. doi: org/10.1016/j.apacoust.2019.107115.
[28] J. H. He and H. H. Huang, "Complete vibrational bandgap in thin elastic metamaterial plates with periodically slot-embedded local resonators." Archive of Applied Mechanics, vol. 88, pp. 1263-1274, 2018. doi: org/10.1007/s00419-018-1371-0.
[29] T. Wang, M. P. Sheng, Z. W. Guo, and Q. H. Qin, "Flexural wave suppression by an acoustic metamaterial plate." Applied Acoustics, vol. 114, pp. 118-124, 2016. doi: org/10.1016/j.apacoust.2016.07.023.
[30] Z. Wu, W. Liu, F. Li, and C. Zhang, "Band-gap property of a novel elastic metamaterial beam with X-shaped local resonators." Mechanical Systems and Signal Processing, vol. 134, p. 106357, 2019. doi: org/10.1016/j.ymssp.2019.106357.
[31] J. Deng, O. Guasch, L. Maxit, and N. Gao, "A metamaterial consisting of an acoustic black hole plate with local resonators for broadband vibration reduction." Journal of Sound and Vibration, vol. 526, p. 116803, 2022. doi: org/10.1016/j.jsv.2022.116803.
[32] S. El-Borgi, R. Fernandes, P. Rajendran, R. Yazbeck, J. G. Boyd, and D. C. Lagoudas, "Multiple bandgap formation in a locally resonant linear metamaterial beam: Theory and experiments," Journal of Sound and Vibration, vol. 488, p. 115647, 2020. doi: org/10.1016/j.jsv.2020.115647.
[33] C. Qiang, Y. Hao, W. Zhang, J. Li, S. Yang, and Y. Cao, "Bandgaps and vibration isolation of local resonance sandwich-like plate with simply supported overhanging beam." Applied Mathematics and Mechanics, vol. 42, no. 11, pp. 1555-1570, 2021. doi: org/10.1007/s10483-021-2790-7.
[34] X. Fan, J. Li, X. Zhang, and F. Li, "Multi-bandgaps metamaterial plate design using complex mass-beam resonator." International Journal of Mechanical Sciences, vol. 236, p. 107742, 2022. doi: org/10.1016/j.ijmecsci.2022.107742.
[35] X. Fang, J. Wen, J. Yin, D. Yu, and Y. Xiao, "Broadband and tunable one-dimensional strongly nonlinear acoustic metamaterials: Theoretical study." Physical Review E, vol. 94, no. 5, p. 052206, 2016. doi: org/10.1103/PhysRevE.94.052206.
[36] N. Shen, J. Jiang, F. Zhang, and M. Ding, "Nonlinear tunability of elastic waves in one-dimensional mass-spring lattices attached with local resonators." Aerospace, vol. 9, no. 12, p. 818, 2022. doi: org/10.3390/aerospace9120818.
[37] X. Fang, J. Wen, D. Yu, and J. Yin, "Bridging-coupling band gaps in nonlinear acoustic metamaterials." Physical Review Applied, vol. 10, no. 5, p. 054049, 2018. doi: org/10.1103/PhysRevApplied.10.054049.
[38] M. Yu, X. Fang, and D. Yu, "Combinational design of linear and nonlinear elastic metamaterials." International Journal of Mechanical Sciences, vol. 199, p. 106422, 2021. doi: org/10.1016/j.ijmecsci.2021.106422.
[39] X. Fang, J. Wen, B. Bonello, J. Yin, and D. Yu, "Ultra-low and ultra-broad-band nonlinear acoustic metamaterials." Nature Communications, vol. 8, no. 1, p. 1288, 2017. doi:10.5061/dryad.6m8nt.
[40] X. Fang, P. Sheng, J. Wen, W. Chen, and L. Cheng, "A nonlinear metamaterial plate for suppressing vibration and sound radiation." International Journal of Mechanical Sciences, vol. 228, p. 107473, 2022. doi: org/10.1016/j.ijmecsci.2022.107473.
[41] P. Sheng, X. Fang, J. Wen, and D. Yu, "Vibration properties and optimized design of a nonlinear acoustic metamaterial beam." Journal of Sound and Vibration, vol. 492, p. 115739, 2021. doi: org/10.1016/j.jsv.2020.115739.
[42] X. Xu, M. V. Barnhart, X. Li, Y. Chen, and G. Huang, "Tailoring vibration suppression bands with hierarchical metamaterials containing local resonators." Journal of Sound and Vibration, vol. 442, pp. 237-248, 2019. doi: org/10.1016/j.jsv.2018.10.065.
[43] S. Hao, H. Sheng, X. Lyu, and Q. Ding, "A novel locally resonant metastructure with soft-material rings for broadband and low frequency vibration attenuation." Engineering Structures, vol. 272, p. 114978, 2022. doi: org/10.1016/j.engstruct.2022.114978.
[44] J. Deng, O. Guasch, L. Maxit, and N. Gao, "Sound radiation and non-negative intensity of a metaplate consisting of an acoustic black hole plus local resonators." Composite Structures, vol. 304, p. 116423, 2023. doi: org/10.1016/j.compstruct.2022.116423.
[45] H. Han, V. Sorokin, L. Tang, and D. Cao, "Origami-based tunable mechanical memory metamaterial for vibration attenuation." Mechanical Systems and Signal Processing, vol. 188, p. 110033, 2023. doi: org/10.1016/j.ymssp.2022.110033.
[46] Y. Liu, D. Yu, L. Li, H. Zhao, J. Wen, and X. Wen, "Design guidelines for flexural wave attenuation of slender beams with local resonators." Physics Letters A, vol. 362, no. 5-6, pp. 344-347, 2007. doi: org/10.1016/j.physleta.2006.10.056.
[47] H. Landau, "Sampling, data transmission, and the Nyquist rate." Proceedings of the IEEE, vol. 55, no. 10, pp. 1701-1706, 1967. doi: 10.1109/PROC.1967.5962.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96354-
dc.description.abstract振動在工程中扮演至關重要的角色,振動對伺服器的負面影響近年來備受矚目。本研究聚焦於振動抑制的關鍵問題,並應用了一種新興方法,即超穎材料局部共振的應用,以改善伺服器中的硬碟存儲性能。超穎材料是一種人造材料,其特殊的結構設計使其能夠在如電磁波、聲波、振動波或其他波動的控制方面具有特殊的性能。利用局部共振的減振機制,能夠在特定頻率範圍內形成帶隙,用於抑制特定頻率的振動,降低振動傳遞和振幅,並有效地減少振動對結構的不利影響。本研究中,已知目標伺服器易受到300~400 Hz來自冷卻風扇振動的主頻及其倍頻之影響,利用局部共振的原理,設計出適合目標伺服器之幾何限制的局部共振子,並且藉由實驗驗證共振子具有良好的效果,相較原始機台情況,加了共振子的伺服器在頻譜密度圖的峰值振動下降了50%,硬碟讀寫效率經過測試提升了10%以上。zh_TW
dc.description.abstractVibration plays a crucial role in engineering, and the negative impact of vibrations on servers has gained significant attention in recent years. This study focuses on the critical issue of vibration suppression and applies an emerging method involving the application of local resonance in metamaterials to enhance hard drive storage performance in servers. Metamaterials are artificial materials whose unique structural design enables them to exhibit special properties in controlling waves, such as electromagnetic waves, sound waves, vibration waves, and other forms of vibrations. By leveraging the damping mechanism of local resonance, band gaps can be created within specific frequency ranges to suppress vibrations at those frequencies, reduce vibration transmission and amplitude, and effectively mitigate adverse effects on structures. In this study, it is known that the target server is particularly susceptible to the primary frequency vibrations of 300~400 Hz from cooling fans and their harmonics. Using the principle of local resonance, we designed local resonators suited to the geometric constraints of the target server. Experimental verification showed that these resonators significantly reduced peak vibration in the power spectral density by 50% and improved hard drive read/write efficiency by over 10% compared to the original server setup.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-12-24T16:30:03Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-12-24T16:30:03Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
謝辭 ii
中文摘要 iii
英文摘要 iv
目次 v
圖次 ix
表次 xiii
名詞對照 xiv
符號說明表 xvi
第一章 緒論 1
1.1 研究動機 1
1.2 研究背景 2
1.3 研究目的 2
1.4 重要性與貢獻 5
1.5 研究流程 6
第二章 文獻探討 8
2.1 超穎材料 8
2.2 局部共振子 8
2.3 梁超穎共振子結構 10
2.4 其他共振子結構 12
2.4.1 非線性共振子 12
2.4.2 軟材料共振子 13
2.4.3 局部共振子結合聲學黑洞 14
2.4.4 摺紙超穎結構 15
第三章 研究方法 16
3.1 頻散方程式 16
3.2 局部共振 18
3.3 超穎結構設計方法 19
3.4 超穎共振子單元 20
3.4.1 彈簧質量共振子與梁型共振子 20
3.4.2 質量補償結構 23
3.5 模擬設置與研究模組 24
3.5.1 頻域研究模組 24
3.5.2 特徵頻率研究模組 24
3.5.3 固定約束 25
3.5.4 受迫運動 25
3.5.5 薄彈性層 25
3.5.6 單元測試模擬邊界條件設置 26
3.5.7 模擬頻散圖繪製方法 26
3.5.8 頻率響應函數模擬設置與方法 28
3.6 振動量測及數據處理 28
3.6.1 快速傅立葉轉換 29
3.6.2 振動量測的數據處理方式 30
3.6.3 頻率響應函數 32
3.6.4 權重因子 33
3.7 實驗方法 34
3.7.1 奈奎斯特採樣定理 34
3.7.2 共振子單元自然頻率測試 34
3.7.3 伺服器振動實驗 35
3.7.4 硬碟讀寫效率實驗 36
3.8 實驗設備介紹 37
3.8.1 伺服器 37
3.8.2 硬碟 38
3.8.3 加速度規安裝裝置 38
3.8.4 振動量測儀器 38
3.8.5 受迫振動輸入訊號儀器 39
第四章 超穎共振子結構實驗及模擬驗證結果 40
4.1 超穎共振子頻散分析 40
4.2 單元測試結果 44
4.2.1 彈簧質量共振子自然頻率測試結果 44
4.2.2 梁型共振子頻率調控驗證 47
4.2.3 梁型共振子自然頻率測試結果 48
4.2.4 彈簧質量共振子與梁型共振子單元測試比較 49
4.3 伺服器振動量測實驗結果 51
4.3.1 彈簧質量共振子 51
4.3.2 針對風扇主頻率之梁型共振子 53
4.3.3 針對硬碟敏感頻率之梁型共振子 55
4.4 IOPS實驗結果 57
4.4.1 彈簧質量共振子 57
4.4.2 針對風扇主頻率之梁型共振子 59
4.4.3 針對硬碟敏感頻率之梁型共振子 61
第五章 超穎共振子結構討論 64
5.1 質量彈簧共振子數量討論 64
5.1.1 共振子數量對振動及硬碟讀寫效率的影響 64
5.1.2 不同間距的彈簧質量共振子對硬碟讀寫效率討論 66
5.2 梁型共振子數量討論 67
5.3 週期性及頻率響應模擬討論 69
5.3.1 不同列數討論 69
5.3.2 相同列數不同位置的討論 71
5.4 共振子尺寸討論 72
5.5 阻尼大小對減振能力討論 73
5.6 彈簧質量共振子重要參數對頻率的影響討論 75
5.7 梁型共振子重要參數對頻率的影響討論 76
5.8 磁鐵對伺服器的影響討論 77
第六章 結論與未來展望 79
6.1 結論 79
6.2 未來展望 80
參考文獻 81
附錄 87
-
dc.language.isozh_TW-
dc.title基於局部共振帶隙及可變頻率設計的共振子在伺服器的振動控制zh_TW
dc.titleVibration Control in Servers Using Resonators with Local Resonance Bandgaps and Tunable Frequency Designen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee宋家驥;陳伯修;施文彬;周光武zh_TW
dc.contributor.oralexamcommitteeChia-Chi Sung;Po-Hsiu CHEN;Wen-Pin Shih;Kuang-Wu Chouen
dc.subject.keyword局部共振,頻散方程式,伺服器,硬碟性能,振動隔離,超穎材料,zh_TW
dc.subject.keywordLocal resonance,dispersion equation,server,hard drive performance,vibration isolation,metamaterials,en
dc.relation.page103-
dc.identifier.doi10.6342/NTU202404661-
dc.rights.note未授權-
dc.date.accepted2024-12-03-
dc.contributor.author-college工學院-
dc.contributor.author-dept工程科學及海洋工程學系-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  目前未授權公開取用
9.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved