請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96346完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇柏青 | zh_TW |
| dc.contributor.advisor | Borching Su | en |
| dc.contributor.author | 許曼楨 | zh_TW |
| dc.contributor.author | Man-Chen Hsu | en |
| dc.date.accessioned | 2024-12-24T16:27:49Z | - |
| dc.date.available | 2024-12-25 | - |
| dc.date.copyright | 2024-12-24 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-12-03 | - |
| dc.identifier.citation | [1] A. K. M. Baki, K. Hashimoto, N. Shinohara, T. Mitani, and H. Matsumoto. New and improved method of beam forming with reduced side lobe levels for microwave power transmission. In 2008 International Conference on Electrical and Computer Engineering, pages 773–777, 2008.
[2] L. Cai, R. Chu, Z. Ding, Y. Zou, and H. Li. Robust low-sidelobe transmit beamforming under peak-to-average-power ratio constraint. Sensors, 23(9), 2023. [3] M. Cai, K. Gao, D. Nie, B. Hochwald, J. N. Laneman, H. Huang, and K. Liu. Effect of wideband beam squint on codebook design in phased-array wireless systems, 2016. [4] J. Dattorro. Convex optimization & Euclidean distance geometry. Lulu. com, 2010. [5] H. Duan, B. P. Ng, C. M. S. See, and J. Fang. Applications of the srv constraint in broadband pattern synthesis. Signal Processing, 88(4):1035–1045, 2008. [6] D. K. Fadeev and A. V. Rashich. Optimal input power backoff of a nonlinear power amplifier for sefdm system. In S. Balandin, S. Andreev, and Y. Koucheryavy, editors, Internet of Things, Smart Spaces, and Next Generation Networks and Systems, pages 669–678. Springer International Publishing, 2015. [7] L. Feng, G. Cui, X. Yu, R. Liu, and Q. Lu. Wideband frequency-invariant beamforming with dynamic range ratio constraints. Signal Processing, 181:107908, 2021. [8] F. Gao, B. Wang, C. Xing, J. An, and G. Y. Li. Wideband beamforming for hybrid massive mimo terahertz communications. IEEE Journal on Selected Areas in Communications, 39(6):1725–1740, 2021. [9] F. Gao, L. Xu, and S. Ma. Integrated sensing and communications with joint beam-squint and beam-split for mmwave/thz massive mimo. IEEE Transactions on Communications, 71(5):2963–2976, 2023. [10] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming, version 2.1. https://cvxr.com/cvx, Mar. 2014. [11] M. B. Hawes and W. Liu. Sparse array design for wideband beamforming with reduced complexity in tapped delay-lines. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(8):1236–1247, 2014. [12] H. He, P. Stoica, and J. Li. Wideband mimo systems: Signal design for transmit beampattern synthesis. IEEE Transactions on Signal Processing, 59(2):618–628, 2011. [13] Y. Li, Y. Huang, M. H. Nielsen, F. Jalili, W. Wei, J. Ren, Y. Yin, M. Shen, and G. F. Pedersen. A cross-mode universal digital pre-distortion technology for low-sidelobe active antenna arrays in 5g and satellite communications. Electronics, 10(16), 2021. [14] X. L. Liang and M. Matin. Ultra-wideband antenna and design. Ultra wideband-current status and future trends, pages 127–152, 2012. [15] W. Lin, Y. Wu, and B. Su. Broadened-beam uniform rectangular array coefficient design in leo satcoms under quality of service and constant modulus constraints, 2024. [16] W. Liu and S. Weiss. Wideband beamforming: concepts and techniques. John Wiley & Sons, 2010. [17] R. Mudumbai, D. R. Brown Iii, U. Madhow, and H. V. Poor. Distributed transmit beamforming: challenges and recent progress. IEEE Communications Magazine, 47(2):102–110, 2009. [18] A. Piacibello, R. Giofrè, R. Quaglia, R. Figueiredo, N. Carvalho, P. Colantonio, V. Valenta, and V. Camarchia. A 5-w gan doherty amplifier for ka-band satellite downlink with 4-ghz bandwidth and 17-db npr. IEEE Microwave and Wireless Components Letters, 32(8):964–967, 2022. [19] Y. Rahayu, T. A. Rahman, R. Ngah, and P. Hall. Ultra wideband technology and its applications. In 2008 5th IFIP International Conference on Wireless and Optical Communications Networks (WOCN ’08), pages 1–5, 2008. [20] F. Sabath, E. L. Mokole, and S. N. Samaddar. Definition and classification of ultrawideband signals and devices. URSI Radio Science Bulletin, 2005(313):12–26, 2005. [21] M. A. Sarker, M. S. Hossain, and M. S. Masud. Robust beamforming synthesis technique for low side lobe level using taylor excited antenna array. In 2016 2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE), pages 1–4, 2016. [22] K. Tekbıyık, E. Ulusoy, A. R. Ekti, S. Yarkan, T. Baykaş, A. Görçin, and G. K. Kurt. Statistical channel modeling for short range line–of–sight terahertz communication. In 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pages 1–5, 2019. [23] N. Tervo, B. Khan, J. P. Aikio, O. Kursu, M. Jokinen, M. E. Leinonen, M. Sonkki, T. Rahkonen, and A. Pärssinen. Combined sidelobe reduction and omnidirectional linearization of phased array by using tapered power amplifier biasing and digital predistortion. IEEE Transactions on Microwave Theory and Techniques, 69(9):4284–4299, 2021. [24] K. K. Tokgoz, S. Maki, S. Kawai, N. Nagashima, Y. Kawano, T. Suzuki, T. Iwai, K. Okada, and A. Matsuzawa. W-band ultra-high data-rate 65nm cmos wireless transceiver. In 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC), pages 5–6, 2017. [25] B. Wang, M. Jian, F. Gao, G. Y. Li, and H. Lin. Beam squint and channel estimation for wideband mmwave massive mimo-ofdm systems. IEEE Transactions on Signal Processing, 67(23):5893–5908, 2019. [26] S. Yan, C. Hou, X. Ma, and Y. Ma. Convex optimization based time-domain broadband beamforming with sidelobe control. The Journal of the Acoustical Society of America, 121(1):46–49, 01 2007. [27] X. Yang, S. Li, Y. Sun, T. Long, and T. K. Sarkar. Robust wideband adaptive beamforming with null broadening and constant beamwidth. IEEE Transactions on Antennas and Propagation, 67(8):5380–5389, 2019. [28] Y. Zhang, A. Liu, P. Li, and S. Jiang. Deep learning (dl)-based channel prediction and hybrid beamforming for leo satellite massive mimo system. IEEE Internet of Things Journal, 9(23):23705–23715, 2022. [29] B. Zheng, S. Lin, and R. Zhang. Intelligent reflecting surface-aided leo satellite communication: Cooperative passive beamforming and distributed channel estimation. IEEE Journal on Selected Areas in Communications, 40(10):3057–3070, 2022. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96346 | - |
| dc.description.abstract | 波束成形 (beamforming) 技術非常重要,尤其是針對像衛星通訊這樣的長距離通訊中。在現今的通訊系統中,寬頻傳輸變得越來越重要,為了要達到更高的傳輸率並提升通道容量。本論文中將聚焦寬頻均勻線性陣列 (uniform linear array) 波束成形之設計。為了確保在所有頻率下訊號皆具有一致的發射方向,頻率不變 (frequency-invariant) 約束將被採用。此外,考慮動態範圍比 (dynamic range ratio) 約束,將盡可能地避免傳輸訊號的失真藉由減少輸入功率後退。而滿足恆定模量限制 (constant modulus constraint) 將最大化功率放大器 (power amplifier) 的效率。此外,旁瓣 (peak sidelobe level) 抑制將減少功率洩漏至不希望的方向。據作者所知,在寬頻波束成形的設計中,並沒有論文同時涉及旁瓣的抑制及恆定模量的約束。該問題將會被轉換成一個秩為一的非凸優化問題,並且將透過基於Dattorro迭帶演算法所提出的演算法來解決該問題。數值結果顯示,與先前的研究相比,在此篇論文中所構建的問題與所提出的方法將會在旁瓣抑制達到更好的效果,並且,波束成形係數將會滿足恆定模量的限制,而且此約束並沒有被達成在前人的偉業中。 | zh_TW |
| dc.description.abstract | Beamforming is essential to compensate path loss between the transmitter and the receiver, particularly in long-range communications, such as satellite communications (SatComs). Wideband transmission is increasingly necessary in contemporary communication systems to enhance channel capacity and support high data rate transmissions. In this thesis, wideband uniform linear array (ULA) beamforming coefficients design was studied. The frequency-invariant constraint is employed to maintain a consistent direction
of departure (DoD) for transmitted signals across all frequencies and to ensure a constant beamwidth. Also, dynamic range ratio (DRR) constraints are considered to keep transmitted signals from distortion to the fullest extent possible by reducing the input power backoff. Constant modulus constraints (CMCs) are met to maximize the efficiency of power amplifiers (PAs). Moreover, peak sidelobe level (PSL) is suppressed to reduce power leakage to undesired direction. The optimization problem will be transferred into a problem with rank-one constraint, which is nonconvex. Then the problem will be solved through the proposed algorithm based on Dattorro iterative algorithm. The numerical results show that the proposed method can obtain a lower PSL compared with the previous work. Additionally, beamforming coefficients satisfy CMCs which has not been achieved in the previous works. To the best of the author’s knowledge, this is the first work that addresses both PSL suppression and CMCs in wideband beamforming coefficients design. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-12-24T16:27:49Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-12-24T16:27:49Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝iii
摘要v Abstract vii Contents ix List of Figures xiii List of Tables xvii Chapter 1 Introduction 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Chapter 2 System Model 7 2.1 Wideband Uniform Linear Array (ULA) Transmitter System Model . 8 2.2 Baseband Equivalent Model of Wideband ULA beamformer . . . . . 12 Chapter 3 Problem Formulation 17 3.1 Beam Squint Issue and Frequency-Invariant Beamforming . . . . . . 18 3.2 Dynamic Range Ratio (DRR) Constraints and Constant Modulus Constraints (CMCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Chapter 4 Proposed Method 29 4.1 Problem Reformulation . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2 Dattorro Iterative Algorithm . . . . . . . . . . . . . . . . . . . . . . 32 Chapter 5 Simulation Result 37 5.1 Case 1: Wideband Beamforming Design Considering DRR . . . . . . 38 5.1.1 Case (a) : M = 12, J = 20, θ0 = 20 . . . . . . . . . . . . . 39 5.1.1.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . 39 5.1.1.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.1.2 Case (b) : M = 12, J = 10, θ0 = 20 . . . . . . . . . . . . . 46 5.1.2.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . 46 5.1.2.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.1.3 Case (c) : M = 12, J = 20, θ0 = −10 . . . . . . . . . . . . 49 5.1.3.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . 49 5.1.3.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.1.4 Case (d) : M = 9, J = 15, θ0 = 20 . . . . . . . . . . . . . . 52 5.1.4.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . 52 5.1.4.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.2 Case 2: Wideband Beamforming Design Considering CMCs . . . . . 54 5.2.1 Case (a) : M = 12, J = 20, θ0 = 20 . . . . . . . . . . . . . 55 5.2.1.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . 55 5.2.1.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.2.2 Case (b) : M = 12, J = 10, θ0 = 20 . . . . . . . . . . . . . 59 5.2.2.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . 59 5.2.2.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.2.3 Case (c) : M = 12, J = 20, θ0 = −10 . . . . . . . . . . . . 62 5.2.3.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . 62 5.2.3.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.2.4 Case (d) : M = 9, J = 15, θ0 = 20 . . . . . . . . . . . . . . 65 5.2.4.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . 65 5.2.4.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.3 Comparisons between Cases . . . . . . . . . . . . . . . . . . . . . . 67 Chapter 6 Conclusion and Future Work 71 References 73 Appendix A — Remark on the Simulation Result of the Referenced Paper [Feng2021] 77 A.1 Remark on the Simulation Result . . . . . . . . . . . . . . . . . . . 78 Appendix B — True Time Delay (TTD) System Model 81 Appendix C — Antenna Element Spacing 85 C.1 Nyquist Sampling Theorem . . . . . . . . . . . . . . . . . . . . . . 86 C.2 Spatial Frequency Sampling . . . . . . . . . . . . . . . . . . . . . . 87 Appendix D — Linear System Constraint 89 D.1 Linear System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 | - |
| dc.language.iso | en | - |
| dc.subject | 均勻線性陣列波束成形設計 | zh_TW |
| dc.subject | 頻率不變 | zh_TW |
| dc.subject | 寬頻 | zh_TW |
| dc.subject | 旁瓣峰值等級 | zh_TW |
| dc.subject | 凸函數最佳化 | zh_TW |
| dc.subject | 恆定模量 | zh_TW |
| dc.subject | convex optimization | en |
| dc.subject | wideband | en |
| dc.subject | uniform linear array (ULA) beamforming | en |
| dc.subject | frequency-invariant | en |
| dc.subject | constant modulus constraints (CMCs) | en |
| dc.subject | peak sidelobe level (PSL) | en |
| dc.title | 基於頻率不變與恆定模量約束下抑制峰值旁瓣之寬頻波束成形設計 | zh_TW |
| dc.title | Wideband Beamforming Coefficients Design with Peak Sidelobe Suppression under Frequency-Invariant and Constant Modulus Constraints | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 馮世邁;林源倍 | zh_TW |
| dc.contributor.oralexamcommittee | See-May Phoong;Yuan-Pei Lin | en |
| dc.subject.keyword | 寬頻,均勻線性陣列波束成形設計,頻率不變,恆定模量,旁瓣峰值等級,凸函數最佳化, | zh_TW |
| dc.subject.keyword | wideband,uniform linear array (ULA) beamforming,frequency-invariant,constant modulus constraints (CMCs),peak sidelobe level (PSL),convex optimization, | en |
| dc.relation.page | 90 | - |
| dc.identifier.doi | 10.6342/NTU202404656 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-12-04 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| dc.date.embargo-lift | 2029-12-01 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 8.26 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
