請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96338
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳信樹 | zh_TW |
dc.contributor.advisor | Hsin-Shu Chen | en |
dc.contributor.author | 陳宥霖 | zh_TW |
dc.contributor.author | You-Lin Chen | en |
dc.date.accessioned | 2024-12-24T16:25:27Z | - |
dc.date.available | 2024-12-25 | - |
dc.date.copyright | 2024-12-24 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-12-17 | - |
dc.identifier.citation | [ 1 ] H. -P. Le, C. -S. Chae, K. -C. Lee, S. -W. Wang, G. -H. Cho and G. -H. Cho, "A Single-Inductor Switching DC-DC Converter With Five Outputs and Ordered Power-Distributive Control," in IEEE Journal of Solid-State Circuits, vol. 42, no. 12, pp. 2706-2714, Dec. 2007, doi: 10.1109/JSSC.2007.908767.
[ 2 ] C. Kuan and H. Lin, "Near-independently regulated 5-output single-inductor DC-DC buck converter delivering 1.2W/mm2 in 65nm CMOS," 2012 IEEE International Solid-State Circuits Conference, 2012, pp. 274-276, doi: 10.1109/ISSCC.2012.6177013. [ 3 ] N. -S. Pham, T. Yoo, T. T. -H. Kim, C. -G. Lee and K. -H. Baek, "A 0.016 mV/mA Cross-Regulation 5-Output SIMO DC-DC Buck Converter Using Output-Voltage-Aware Charge Control Scheme," in IEEE Transactions on Power Electronics, vol. 33, no. 11, pp. 9619-9630, Nov. 2018, doi: 10.1109/TPEL.2017.2785838. [ 4 ] D. Lu, Y. Qian and Z. Hong, "4.3 An 87%-peak-efficiency DVS-capable single-inductor 4-output DC-DC buck converter with ripple-based adaptive off-time control," 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014, pp. 82-83, doi: 10.1109/ISSCC.2014.6757347. [ 5 ] Y. Zhang and D. Ma, "A Fast-Response Hybrid SIMO Power Converter with Adaptive Current Compensation and Minimized Cross-Regulation," in IEEE Journal of Solid-State Circuits, vol. 49, no. 5, pp. 1242-1255, May 2014, doi: 10.1109/JSSC.2014.2304497. [ 6 ] T. Miki, "Analysis and Design of Continuous-Time Comparator," IEICE Transactions on Electronics, vol. E104-C, no. 10, pp. 635-642, Oct. 2021. doi: 10.1587/transele.2020CTI0001. [ 7 ] Chen, K-H. (2016). Power Management Techniques for Integrated Circuit Design. Wiley. [ 8 ] Dongsheng Ma, Wing-Hung Ki, and Chi-Ying Tsui, "A pseudo-CCM/DCM SIMO switching converter with freewheel switching," in IEEE Journal of Solid-State Circuits, vol. 38, no. 6, pp. 1007-1014, June 2003, doi: 10.1109/JSSC.2003.811976. [ 9 ] M. Y. Jung, S. H. Park, J. S. Bang, and G. H. Cho, “An error-based controlled single-inductor 10 output dc-dc buck converter with high efficiency under light load using adaptive pulse modulation,” IEEE J. Solid-State Circuits, vol. 50, no. 12, pp. 2825–2838, Dec. 2015 [ 10 ] 王信雄,開關轉換器控制理論與設計實務,2015年,立錡科技股份有限公司 [ 11 ] Raymond B. Ridley, "A New Small-Signal Model for Current-Mode Control, "1999 Ridley Engineering, Inc. [ 12 ] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. Norwell, MA, USA: Kluwer, 2001. [ 13 ] C. J. Solis and G. A. Rincón-Mora, "0.6-μm CMOS-Switched-Inductor Dual-Supply Hysteretic Current-Mode Buck Converter," in IEEE Transactions on Power Electronics, vol. 32, no. 3, pp. 2387-2394, March 2017, doi: 10.1109/TPEL.2016.2568041. [ 14 ] L. -C. Chu et al., "10.5 A three-level single-inductor triple-output converter with an adjustable flying-capacitor technique for low output ripple and fast transient response," 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2017, pp. 186-187, doi: 10.1109/ISSCC.2017.7870323. [ 15 ] S. Kim et al., "11.3 A 1.8W High-Frequency SIMO Converter Featuring Digital Sensor-Less Computational Zero-Current Operation and Non-Linear Duty-Boost," 2023 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2023, pp. 10-12, doi: 10.1109/ISSCC42615.2023.10067637. [ 16 ] C. J. Solis and G. A. Rincón-Mora, "87%-Efficient 330-mW 0.6-μm Single-Inductor Triple-Output Buck–Boost Power Supply," in IEEE Transactions on Power Electronics, vol. 33, no. 8, pp. 6837-6844, Aug. 2018, doi: 10.1109/TPEL.2017.2756636. [ 17 ] T. -H. Yang et al., "A 94.3% Peak Efficiency Adaptive Switchable CCM and DCM Single-Inductor Multiple-Output Converter With 0.03 mV/mA Low Crosstalk and 185 nA Ultralow Quiescent," in IEEE Journal of Solid-State Circuits, vol. 57, no. 9, pp. 2731-2740, Sept. 2022, doi: 10.1109/JSSC.2022.3142207. [ 18 ] J. Xu, Z. Weng, H. Jiang, C. Zhang, Z. Wang, and Q. Lin, "A high efficiency single-inductor dual-output buck converter with adaptive freewheel current and hybrid mode control," 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, Canada, 2016, pp. 1614-1617, doi: 10.1109/ISCAS.2016.7538874. [ 19 ] C. -W. Chen and A. Fayed, "A Low-Power Dual-Frequency SIMO Buck Converter Topology With Fully-Integrated Outputs and Fast Dynamic Operation in 45 nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 50, no. 9, pp. 2161-2173, Sept. 2015, doi: 10.1109/JSSC.2015.2422782. [ 20 ] W. Sun, C. Han, M. Yang, S. Xu and S. Lu, "A Ripple Control Dual-Mode Single-Inductor Dual-Output Buck Converter With Fast Transient Response," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 1, pp. 107-117, Jan. 2015, doi: 10.1109/TVLSI.2014.2299873. [ 21 ] Y. Zheng, M. Ho, J. Guo, and K. N. Leung, "A Single-Inductor Multiple-Output Auto-Buck–Boost DC-DC Converter With Tail-Current Control," in IEEE Transactions on Power Electronics, vol. 31, no. 11, pp. 7857-7875, Nov. 2016, doi: 10.1109/TPEL.2015.2512619. [ 22 ] Y. Zheng, J. Guo, and K. N. Leung, "A Single-Inductor Multiple-Output Buck/Boost DC-DC Converter With Duty-Cycle and Control-Current Predictor," in IEEE Transactions on Power Electronics, vol. 35, no. 11, pp. 12022-12039, Nov. 2020, doi: 10.1109/TPEL.2020.2988940. [ 23 ] A. Salimath et al., "An 86% efficiency SIMO DC-DC converter with one boost, one buck, and a floating output voltage for car-radio," 2018 IEEE International Solid-State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2018, pp. 426-428, doi: 10.1109/ISSCC.2018.8310366. [ 24 ] Y. -P. Su et al., "CCM/GM Relative Skip Energy Control and Bidirectional Dynamic Slope Compensation in a Single-Inductor Multiple-Output DC-DC Converter for Wearable Device Power Solution," in IEEE Transactions on Power Electronics, vol. 31, no. 8, pp. 5871-5884, Aug. 2016, doi: 10.1109/TPEL.2015.2490020. [ 25 ] T. Y. Goh and W. T. Ng, "Single Discharge Control for Single-Inductor Multiple-Output DC-DC Buck Converters," in IEEE Transactions on Power Electronics, vol. 33, no. 3, pp. 2307-2316, March 2018, doi: 10.1109/TPEL.2017.2700483. [ 26 ] W. -C. Chen et al., "Single-Inductor Quad-Output Switching Converter With Priority-Scheduled Program for Fast Transient Response and Unlimited Load Range in 40 nm CMOS Technology," in IEEE Journal of Solid-State Circuits, vol. 50, no. 7, pp. 1525-1539, July 2015, doi: 10.1109/JSSC.2015.2422071. [ 27 ] Z. -Y. Hsu, C. -W. Liu, J. -W. Wu, W. -J. Chang, T. -L. Li and P. -H. Chen, "A Single-Inductor Triple-Output Buck-Boost Converter with Output Ripple Control for Wearable Devices," 2022 IEEE International Symposium on Circuits and Systems (ISCAS), Austin, TX, USA, 2022, pp. 3575-3578, doi: 10.1109/ISCAS48785.2022.9937353. [ 28 ] F. -F. Ma, W. -Z. Chen and J. -C. Wu, "A Monolithic Current-Mode Buck Converter With Advanced Control and Protection Circuits," in IEEE Transactions on Power Electronics, vol. 22, no. 5, pp. 1836-1846, Sept. 2007, doi: 10.1109/TPEL.2007.904237. [ 29 ] B. Razavi, Design of Analog CMOS Integrated Circuits, 2nd ed. New York, NY, USA: McGraw-Hill, 2017. [ 30 ] B.-X. Peng, “A Four-Switch Three-Mode Non-Inverting Buck-Boost DC-DC Converter with Low Mode Transition Voltage Ripples for Wearable Application,” M.S. thesis, Grad. Inst. Elect. Eng., Nat. Taiwan Univ., Taipei, Taiwan, 2022. [ 31 ] Y.-C. Huang, “A Dead-Zone-Free Hybrid Buck-Boost Converter with 92% Peak-Efficiency Using Only Low-Voltage Devices,” M.S. thesis, Grad. Inst. Elect. Eng., Nat. Taiwan Univ., Taipei, Taiwan, 2023. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96338 | - |
dc.description.abstract | 在可穿戴設備興起的背景下,笨重的被動元件依舊是在實現最小化電源管理IC這一目標中的瓶頸。單電感多輸出直流-直流轉換器透過使用單個電感來生成多輸出電壓級而成為一個可行的解決方案。然而,單電感多輸出直流-直流轉換器中的交互調節問題不可避免的威脅到系統的可靠性。現有的解決方案透過精確計算輸入和輸出之間的能量差來減少交互調節,但往往導致系統複雜性增加。其設計關鍵挑戰在於如何在最小化面積的同時,保持直流-直流轉換器的可靠性。
本論文提出了一種使用快速調變飛輪電流控制的單電感多輸出直流-直流轉換器用以增強暫態響應。主要設計目標為顯著減少控制電路的面積大小以及複雜度,同時又能最大化單電感多輸出直流-直流轉換器的優勢。此外,透過使用變頻控制,系統得以更快速的因應輸出負載變化,有效減少交互調節現象。 此晶片透過台積電0.18μm 1P6M High Voltage Mixed Signal CMOS製程實現。量測結果證實,該轉換器能在動態負載條件下穩定調節三個不同的輸出電壓,分別為2.2伏、1.8伏和1.2伏。轉換器的峰值效率達到85.87%,並可提供最高達850mW的總輸出功率。透過應用靈敏飛輪電流控制和變頻控制技術,轉換器具備快速的暫態響應,有效減少電壓偏差和在負載突變達到250毫安培時的穩定時間。所提出的單電感多輸出直流-直流轉換器在優化功率密度和效率的同時,確保了系統的穩定性和可靠性。 | zh_TW |
dc.description.abstract | The bulky passive components remain a bottleneck in achieving the goal of minimizing power management ICs, especially with the rise of wearable devices. Single-Inductor Multiple-Output (SIMO) DC-DC converters offer a suitable solution by using a single inductor to generate multiple output voltage levels. However, the cross-regulation issues inevitably threaten the system's reliability. Existing solutions minimize cross-regulation by precisely calculating the input-output energy difference, but they often lead to increased system complexity. The design challenge lies in achieving a balance between minimizing area cost and maintaining the reliability of DC-DC converters.
This thesis proposes a SIMO converter using Responsive Freewheeling Current Control (RFCC) for transient response enhancement. The design aims to reduce the complexity and size of the control circuitry significantly while maximizing the benefits of SIMO converters. Additionally, by applying variable frequency control, the system can respond more quickly to changes in output load, effectively reducing the cross-regulation phenomenon. This chip was implemented using the TSMC 0.18μm 1P6M High Voltage Mixed Signal CMOS process. Measurement results confirm the converter’s capability to regulate three distinct output voltages, 2.2V, 1.8V, and 1.2V, under dynamic load conditions. The converter achieves a peak efficiency of 85.87% and delivers a total output power of up to 850 mW. The application of Responsive Freewheeling Current Control (RFCC) and variable frequency control contributes to a swift transient response, significantly reducing voltage deviations and settling times during load transient up to 250mA. The proposed SIMO converter optimizes power density and efficiency while maintaining system stability and reliability. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-12-24T16:25:27Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-12-24T16:25:27Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 論文口試委員審定書 i
致謝 ii 摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES ix LIST OF TABLES xiii Chapter 1 Introduction 1 1.1 Background of DC-DC Converter 1 1.2 Single-Inductor Multiple-Output (SIMO) DC-DC Converter 5 1.2.1 System Architecture 5 1.2.2 Cross-Regulation Phenomenon 6 1.3 Motivation 7 1.4 Thesis Organization 7 Chapter 2 Fundamentals of Inductive Switching DC-DC Converter 8 2.1 Basic Concept of Switching Power Regulators 8 2.1.1 The Pulsewidth Modulation Technique 8 2.1.2 Power Stage Topologies 10 2.2 Steady-State Operation Principles 11 2.2.1 Small-Ripple Approximation 11 2.2.2 Inductor Volt-Second Balance and Capacitor Charge Balance 12 2.2.3 Steady-State Analysis 13 2.2.4 Output Voltage Ripple Estimation 15 2.2.5 Continuous and Discontinuous Conduction Mode 18 2.3 Small Signal Model and Analysis 19 2.3.1 AC Equivalent Circuit Model 20 2.3.1.1 Pulse-Width Modulator Model 21 2.3.1.2 Open-Loop Transfer Function 22 2.3.2 Small Signal Analysis and Closed-Loop Function 26 2.4 Feedback Control Method 28 2.4.1 Voltage Mode Control 29 2.4.2 Peak Current Mode Control 30 2.4.3 Ripple-Based Control 34 Chapter 3 Design Considerations and Control Methods of SIMO Converter 38 3.1 Performance Standard 38 3.1.1 Cross-Regulation 38 3.1.2 Transient Response 39 3.1.3 Power-Conversion Efficiency 40 3.1.4 Die Area Cost 42 3.2 Modulation Strategies for SIMO Converter 43 3.2.1 Error Minimization Modulation 43 3.2.2 Ripple Control Modulation 44 3.3 Energy Balancing Techniques for SIMO Converter 46 3.3.1 Ordered Power-Distributive Control 47 3.3.2 Insertion of Freewheel Buffer Duration 49 3.3.3 Charge Control Mechanisms 50 3.3.4 Techniques for Enhancing Transient Response 54 3.3.4.1 Ripple-based Adaptive Off-Time Control 54 3.3.4.2 Integration of Additional LDO Components 55 3.3.5 Overview of Methods with Benefits and Limitations 57 Chapter 4 Proposed SIMO Converter with Responsive Freewheeling Current Control (RFCC) in Pseudo Continuous Conduction Mode (PCCM) 58 4.1 Design Goal 58 4.2 Operation Principles in PCCM 59 4.3 Proposed Responsive Freewheeling Current Control 62 4.4 System Architecture 64 4.5 Circuit Implementation 66 4.5.1 Power Stage 66 4.5.2 Priority Logic Circuit 68 4.5.3 RFCC Circuit 69 4.5.4 Low-Side Current Sensor 71 4.5.5 Output Comparator 74 4.5.6 Soft-Start Circuit 76 4.6 Simulation Result 77 4.6.1 Soft Start-Up and Steady-State Operation 77 4.6.2 Transient Response 79 4.6.3 Efficiency and Quiescent Current 80 Chapter 5 Measurement Results 84 5.1 Chip Micrograph and Packaging 84 5.2 Measurement Environment Setup 85 5.3 Measurement Result 88 5.3.1 Steady State Operation 88 5.3.2 Transient Response 90 5.3.3 Efficiency 93 5.4 Performance Summary 96 5.4.1 Measurement And Design Specification Comparison 96 5.4.2 Comparison Table 98 Chapter 6 Conclusion and Future Work 100 6.1 Conclusions 100 6.2 Future Work 100 REFERENCE 102 LIST OF FIGURES Figure 1 1 DC-DC Converters in Power Management IC 1 Figure 1 2 Low-Dropout Regulator(LDO) architecture 2 Figure 1 3 The series-parallel 1/2 SC converter 4 Figure 1 4 The inductor-based DC-DC buck converter 4 Figure 1 5 Simplified architecture of the SIMO DC-DC converter 5 Figure 1 6 Cross-regulation example 6 Figure 2 1 SPDT switch operation and output voltage waveform 9 Figure 2 2 The architecture and output voltage waveform of PWM DC-DC converter 9 Figure 2 3 The topologies of asynchronous converters (a) buck converter (b) boost converter (c) buck-boost converter 10 Figure 2 4 The topologies of synchronous converters (a) buck converter (b) boost converter (c) buck-boost converter 11 Figure 2 5 Practice output voltage waveform 12 Figure 2 6 Inductor current waveform in steady state 13 Figure 2 7 Buck converter circuit: (a)On-time period (b)Off-time period 14 Figure 2 8 Buck converter: (a)power stage (b)output voltage ripple waveform 16 Figure 2 9 Inductor current waveform in (a)CCM (b) BCM (c) DCM 18 Figure 2 10 Closed-loop diagram of a PWM control converter 20 Figure 2 11 The small signal model diagram of a PWM control converter 20 Figure 2 12 The PWM modulator (a)circuit diagram (b)operation waveform 21 Figure 2 13 (a)buck converter (b) on-time subcircuit (c)off-time subcircuit 23 Figure 2 14 Small signal closed-loop block diagram 27 Figure 2 15 The bode plot of the closed-loop transfer function(a) Gv,C.L(b) Zo,C.L 28 Figure 2 16 Circuit diagram of a VMC buck converter 29 Figure 2 17 Circuit diagram of a PCMC buck converter 31 Figure 2 18 Operation waveforms of PCMC buck converter without an external ramp 31 Figure 2 19 Sub-harmonic oscillation waveforms (a)unstable (b)w/ slope compensation 32 Figure 2 20 Circuit diagram of the RBCOT-controlled buck converter 35 Figure 2 21 Operational waveforms of the RBCOT-controlled buck converter 35 Figure 2 22 Circuit diagram of the modified RBCOT-controlled buck converter 37 Figure 3 1 Circuit diagram of EMM for a SIMO converter 44 Figure 3 2 Circuit diagram of RCM for a SIMO converter 45 Figure 3 3 Block diagrams of modulation duties (a)conventional (b)SIMO 46 Figure 3 4 The architecture of the OPDC SIMO converter 47 Figure 3 5 The operation waveform of inductor current of the AERC technique 50 Figure 3 6 System block diagram of a conventional charge control 51 Figure 3 7 (a)Charge control block diagram (b)Operational waveforms of charge control 53 Figure 4 1 The architecture of the proposed SIMO buck converter 60 Figure 4 2 The inductor current waveform of COT control in PCCM 61 Figure 4 3 Output voltages waveform of the SIMO converter with priority order 62 Figure 4 4 Transient response and IFW modulation in RFCC control 63 Figure 4 5 System architecture of the proposed SIMO converter 66 Figure 4 6 The power stage of the proposed SIMO converter 67 Figure 4 7 Schematic of the priority logic circuit 69 Figure 4 8 Concept diagram of the RFCC circuit (a) schematic (b) operation waveform 70 Figure 4 9 The transient enhancement controller (a) schematic (b) operation waveform 71 Figure 4 10 Concept diagram of low-side current sensor (a)circuit (b)waveforms 72 Figure 4 11 Low-side current sensor schematic 73 Figure 4 12 Output comparator schematic 75 Figure 4 13 The simulation results of the output comparator 76 Figure 4 14 Soft-Start circuit schematic 77 Figure 4 15 Soft-Start function voltage waveform 77 Figure 4 16 Soft start-up simulation 78 Figure 4 17 Steady-state simulation @ ITotal = 50mA 78 Figure 4 18 Steady-state simulation @ ITotal = 150mA 79 Figure 4 19 Transient response simulation without TEC @ ∆ITotal=200mA 80 Figure 4 20 Transient response simulation with TEC @ ∆ITotal=200mA 80 Figure 4 21 Package models for pre-simulation 81 Figure 4 22 Presim efficiency @ VIN = 4.2V 82 Figure 4 23 Quiescent current breakdown diagram 83 Figure 5 1 Chip micrograph and bond wire diagram 85 Figure 5 2 Measurement environment setup diagram 86 Figure 5 3 Switching operation measurement waveform @ PVDD= 4.2V, ITotal = 65mA 88 Figure 5 4 Switching operation measurement waveform @ PVDD= 4.2V, ITotal = 155mA 89 Figure 5 5 Output voltage steady-state waveforms @ PVDD= 4.2V, (a) ITotal = 30mA 90 Figure 5 6 Transient step up waveform @ IOA =10mA, IOB =10mA to 260mA, 91 Figure 5 7 Transient step down waveform @ IOA =10mA, IOB =260mA to 10mA, 91 Figure 5 8 Transient step up waveform @ IOA =50mA, IOB =10mA to 260mA, 92 Figure 5 9 Transient step down waveform @ IOA =50mA, IOB =260mA to 10mA, 93 Figure 5 10 Efficiency measurement results for synchronized load sweep 94 Figure 5 11 Efficiency measurement results for one output load sweep 95 Figure 5 12 Efficiency comparison between pre-simulation and measurement 96 LIST OF TABLES Table 1 1 Comparison of three types of DC-DC converters 4 Table 2 1 The steady-state parameter of the buck, boost, and buck-boost converter 15 Table 2 2 The open-loop transfer function variables’ value 26 Table 3 1 Summary of proposed work 57 Table 4 1 Passive parameters and design goals 59 Table 4 2 The size of the power MOS switches 67 Table 5 1 The description of the chip’s pins 87 Table 5 2 The comparison table of design goals, simulation, and measurement results 97 Table 5 3 Comparison of performance metrics for SIMO converters from recent works 99 | - |
dc.language.iso | en | - |
dc.title | 一個使用靈敏飛輪電流控制以改善暫態響應的單電感多輸出直流-直流轉換器 | zh_TW |
dc.title | A Single-Inductor Multiple-Output DC-DC Converter Using Responsive Freewheeling Current Control for Transient Enhancement | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 吳文中;陳景然 | zh_TW |
dc.contributor.oralexamcommittee | Wen-Jong Wu;Ching-Jan Chen | en |
dc.subject.keyword | 穿戴式裝置,單電感多輸出直流-直流轉換器,交互調節,虛連續導通模式,快速調變飛輪電流控制, | zh_TW |
dc.subject.keyword | wearable devices,Single Inductor Multiple Output(SIMO) DC-DC converters,cross-regulation,Pseudo Continuous Conduction Mode (PCCM),Responsive Freewheeling Current Control(RFCC)), | en |
dc.relation.page | 106 | - |
dc.identifier.doi | 10.6342/NTU202404737 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-12-17 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 電子工程學研究所 | - |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 目前未授權公開取用 | 9.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。