Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96335
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor單偉彌zh_TW
dc.contributor.advisorVianney Denisen
dc.contributor.author蔡佳蓉zh_TW
dc.contributor.authorChia-Jung Tsaien
dc.date.accessioned2024-12-24T16:24:36Z-
dc.date.available2024-12-25-
dc.date.copyright2024-12-24-
dc.date.issued2024-
dc.date.submitted2024-12-10-
dc.identifier.citationAlbert, S., Tawake, A., Vave, R., Fisher, P., & Grinham, A. (2016). Indicators of herbivorous fish biomass in community-based marine management areas in Fiji. Pacific Conservation Biology, 22(1), 20-28. https://doi.org/10.1071/PC15051

Allan, J. D., Castillo, M. M., & Capps, K. A. (2021). Primary Producers. In: Stream Ecology: Structure and function of running waters (pp. 141-176). Springer, Cham. https://doi.org/10.1007/978-3-030-61286-3_6

Allgeier, J. E., Layman, C. A., Mumby, P. J., & Rosemond, A. D. (2014). Consistent nutrient storage and supply mediated by diverse fish communities in coral reef ecosystems. Global Change Biology, 20(8), 2459-2472. https://doi.org/10.1111/gcb.12566

Allgeier, J. E., Layman, C. A., Mumby, P. J., & Rosemond, A. D. (2015). Biogeochemical implications of biodiversity and community structure across multiple coastal ecosystems. Ecological Monographs, 85(1), 117-132. https://doi.org/10.1890/14-0331.1

Allgeier, J. E., Valdivia, A., Cox, C., & Layman, C. A. (2016). Fishing down nutrients on coral reefs. Nature Communications, 7(1), 12461. https://doi.org/10.1038/ncomms12461

Bak, R. P. M. (1994). Sea urchin bioerosion on coral reefs: place in the carbonate budget and relevant variables. Coral Reefs, 13, 99-103. https://doi.org/10.1007/bf00300768

Beijbom, O., Edmunds, P. J., Roelfsema, C., Smith, J., Kline, D. I., Neal, B. P., Dunlap, M. J., Moriarty, V., Fan, T. Y., Tan, C. J., Chan, S., Treibitz, T., Gamst, A., Mitchell, B. G., & Kriegman, D. (2015). Towards automated annotation of benthic survey images: Variability of human experts and operational modes of automation. Plos One, 10(7), e0130312. https://doi.org/10.1371/journal.pone.0130312

Bellwood, D. R. (1995). Direct estimate of bioerosion by two parrotfish species, Chlorurus gibbus and C. sordidus, on the Great Barrier Reef, Australia. Marine Biology, 121, 419-429. https://doi.org/10.1007/bf00349451

Bellwood, D. R., Brandl, S. J., McWilliam, M., Streit, R. P., Yan, H. F., & Tebbett, S. B. (2024). Studying functions on coral reefs: past perspectives, current conundrums, and future potential. Coral Reefs, 43, 281-297. https://doi.org/10.1007/s00338-024-02474-z

Bellwood, D. R., & Choat, J. H. (1990). A functional analysis of grazing in parrotfishes (family Scaridae): The ecological implications. Environmental Biology of Fishes, 28, 189-214. https://doi.org/10.1007/bf00751035

Bellwood, D. R., Hughes, T. P., Folke, C., & Nyström, M. (2004). Confronting the coral reef crisis. Nature, 429, 827-833. https://doi.org/10.1038/nature02691

Bellwood, D. R., Pratchett, M. S., Morrison, T. H., Gurney, G. G., Hughes, T. P., Álvarez-Romero, J. G., Day, J. C., Grantham, R., Grech, A., Hoey, A. S., Jones, G. P., Pandolfi, J. M., Tebbett, S. B., Techera, E., Weeks, R., & Cumming, G. S. (2019). Coral reef conservation in the Anthropocene: Confronting spatial mismatches and prioritizing functions. Biological Conservation, 236, 604-615. https://doi.org/10.1016/j.biocon.2019.05.056

Bellwood, D. R., Streit, R. P., Brandl, S. J., & Tebbett, S. B. (2019). The meaning of the term ‘function’ in ecology: A coral reef perspective. Functional Ecology, 33(6), 948-961. https://doi.org/10.1111/1365-2435.13265

Bessell-Browne, P., Negri, A. P., Fisher, R., Clode, P. L., & Jones, R. (2017). Impacts of light limitation on corals and crustose coralline algae. Scientific Reports, 7, 11553. https://doi.org/10.1038/s41598-017-11783-z

Bosch, N. E., Espino, F., Tuya, F., Haroun, R., Bramanti, L., & Otero-Ferrer, F. (2023). Black coral forests enhance taxonomic and functional distinctiveness of mesophotic fishes in an oceanic island: implications for biodiversity conservation. Scientific Reports, 13, 4963. https://doi.org/10.1038/s41598-023-32138-x

Brandl, S. J., Rasher, D. B., Côté, I. M., Casey, J. M., Darling, E. S., Lefcheck, J. S., & Duffy, J. E. (2019). Coral reef ecosystem functioning: Eight core processes and the role of biodiversity. Frontiers in Ecology and the Environment, 17(8), 445-454. https://doi.org/10.1002/fee.2088

Carreiro-Silva, M., & McClanahan, T. R. (2012). Macrobioerosion of dead branching Porites, 4 and 6 years after coral mass mortality. Marine Ecology Progress Series, 458, 103-122. https://doi.org/10.3354/meps09726

Chazottes, V., Le Campion-Alsumard, T., & Peyrot-Clausade, M. (1995). Bioerosion rates on coral reefs: Interactions between macroborers, microborers and grazers (Moorea, French Polynesia). Palaeogeography, Palaeoclimatology, Palaeoecology, 113(2-4), 189-198. https://doi.org/10.1016/0031-0182(95)00043-L

Cheal, A. J., Emslie, M., Macneil, M. A., Miller, I., & Sweatman, H. (2013). Spatial variation in the functional characteristics of herbivorous fish communities and the resilience of coral reefs. Ecological Applications, 23(1), 174-188. https://doi.org/10.1890/11-2253.1

Chen, C. A., & Shashank, K. (2009). Taiwan as a connective stepping-stone in the Kuroshio traiangle and the conservation of coral ecosystems under the impacts of climate change. Graduate School of Kuroshio Science, Kochi University, 3(1), 15-22. http://hdl.handle.net/10126/3171

Cindewiyani, & Herdiansyah, H. (2019). The health of coral reefs and underwater ecosystems in shallow waters: Study on Tidung Island. AIP Conference Proceedings, 2120(1), 040017. https://doi.org/10.1063/1.5115655

Cornwall, C. E., Diaz-Pulido, G., & Comeau, S. (2019). Impacts of ocean warming on coralline algal calcification: Meta-analysis, knowledge gaps, and key recommendations for future research. Frontiers in Marine Science, 6, 186. https://doi.org/10.3389/fmars.2019.00186

Courtney, T. A., Barkley, H. C., Chan, S., Couch, C. S., Kindinger, T. L., Oliver, T. A., Kriegman, D. J., & Andersson, A. J. (2022). Rapid assessments of Pacific Ocean net coral reef carbonate budgets and net calcification following the 2014–2017 global coral bleaching event. Limnology and Oceanography, 67(8), 1687-1700. https://doi.org/10.1002/lno.12159

Cryer, S. E., Evans, C., Fowell, S. E., Andrews, G., Brown, P., Carvalho, F., Degallerie, D., Ludgate, J., Rosado, S., Sanders, R., Strong, J. A., Theophille, D., Young, A., & Loucaides, S. (2023). Characterizing reef net metabolism via the diel co-variation of pH and dissolved oxygen from high resolution in situ sensors. Global Biogeochemical Cycles, 37(9), e2022GB007577. https://doi.org/10.1029/2022GB007577

Dai, C. F. (2007). Distribution and species diversity of reef corals in Taiwan III [in Chinese]. Council of Agriculture, Executive Yuan, Taipei, Taiwan. https://www.grb.gov.tw/search/planDetail?id=1494498

Dai, C. F., Soong, K., Chen, C. A., Fan, T. Y., Hsieh, H. J., Jeng, M. S., Chen, C. H., & Horng, S. (2004). Status of coral reefs of Taiwan. GCRM Report of East China Sea Region, 3, 153-163. https://api.semanticscholar.org/CorpusID:197681290

Dee, S., DeCarlo, T., Lozić, I., Nilsen, J., & Browne, N. K. (2023). Low bioerosion rates on inshore turbid reefs of western Australia. Diversity, 15(1), 62. https://doi.org/10.3390/d15010062

Denis, V., Soto, D., De Palmas, S., Lin, Y. V., Benayahu, Y., Huang, Y. M., Liu, S.-L., Chen, J.-W., Chen, Q., Sturaro, N., Ho, M.-J., Su, Y., Dai, C. F., & Chen, C. A. (2019). Taiwan. In: Loya, Puglise, K., Bridge, T. (eds) Mesophotic Coral Ecosystems (pp. 245–248). Coral Reefs of the World, 12. Springer, Cham. https://doi.org/10.1007/978-3-319-92735-0_14

Dove, S. G., Brown, K. T., Van Den Heuvel, A., Chai, A., & Hoegh-Guldberg, O. (2020). Ocean warming and acidification uncouple calcification from calcifier biomass which accelerates coral reef decline. Communications Earth & Environment, 1, 55. https://doi.org/10.1038/s43247-020-00054-x

Froese, R. (2006). Cube law, condition factor and weight-length relationships:History, meta-analysis and recommendations. Journal of Applied Ichthyology, 22(4), 241-253. https://doi.org/10.1111/j.1439-0426.2006.00805.x

Froese, R., & Pauly., D. (2024). FishBase. World Wide Web electronic publication. www.fishbase.org

Gislason, H., Daan, N., Rice, J. C., & Pope, J. G. (2010). Size, growth, temperature and the natural mortality of marine fish. Fish and Fisheries, 11(2), 149-158. https://doi.org/10.1111/j.1467-2979.2009.00350.x

Goetze, J. S., Bond, T., McLean, D. L., Saunders, B. J., Langlois, T. J., Lindfield, S., Fullwood, L. A. F., Driessen, D., Shedrawi, G., & Harvey, E. S. (2019). A field and video analysis guide for diver operated stereo‐video. Methods in Ecology and Evolution, 10(7), 1083-1090. https://doi.org/10.1111/2041-210x.13189

González-Gándara, C. (2023). Unusual high fish biomass suggests healthy conditions in a Mexican reef on the southern Gulf of Mexico. Latin American Journal of Aquatic Research, 51(3), 443-446. https://doi.org/10.3856/vol51-issue3-fulltext-3010

Gori, A., Grinyó, J., Dominguez-Carrió, C., Ambroso, S., López-González, P. J., Gili, J.-M., Bavestrello, G., & Bo, M. (2019). 20 Gorgonian and black coral assemblages in deep coastal bottoms and continental shelves of the Mediterranean Sea. In: Orejas, C., Jiménez, C. (eds) Mediterranean cold-water corals: Past, present and future (pp. 245-248). Coral Reefs of the World, 9. Springer, Cham. https://doi.org/10.1007/978-3-319-91608-8_20

Graham, N. A. J., & Nash, K. L. (2013). The importance of structural complexity in coral reef ecosystems. Coral Reefs, 32(2), 315-326. https://doi.org/10.1007/s00338-012-0984-y

Guest, J., Baria-Rodriguez, M. V., Toh, T. C., Dela Cruz, D., Vicentuan, K., Gomez, E., Villanueva, R., Steinberg, P., & Edwards, A. (2023). Live slow, die old: Larval propagation of slow-growing, stress-tolerant corals for reef restoration. Coral Reefs, 42(6), 1365-1377. https://doi.org/10.1007/s00338-023-02440-1

Harborne, A. R., Rogers, A., Bozec, Y.-M., & Mumby, P. J. (2017). Multiple stressors and the functioning of coral reefs. Annual Review of Marine Science, 9(1), 445-468. https://doi.org/10.1146/annurev-marine-010816-060551

Ho, M.-J., & Dai, C.-F. (2014). Coral recruitment of a subtropical coral community at Yenliao Bay, northern Taiwan. Zoological Studies, 53(1), 5. https://doi.org/10.1186/1810-522x-53-5

Hoey, A. S., & Bellwood, D. R. (2008). Cross-shelf variation in the role of parrotfishes on the Great Barrier Reef. Coral Reefs, 27(1), 37-47. https://doi.org/10.1007/s00338-007-0287-x

Hoey, A. S., & Bellwood, D. R. (2009). Limited functional redundancy in a high diversity system: Single species dominates key ecological process on Coral Reefs. Ecosystems, 12(8), 1316-1328. https://doi.org/10.1007/s10021-009-9291-z

Hoey, A. S., Berumen, M. L., Bonaldo, R. M., Burt, J. A., Feary, D. A., Ferreira, C. E., Floeter, S. R., & Nakamura, Y. (2018). The ecology of parrotfishes in marginal reef systems. In: Biology of parrotfishes (pp. 276-301). CRC Press. https://doi.org/10.1201/9781315118079-12

Hsiao, W. V., Lin, Y. V., Lin, H. T., & Denis, V. (2021). Learning from differences: Abiotic determinism of benthic communities in northern Taiwan. Marine Environmental Research, 170, 105361. https://doi.org/10.1016/j.marenvres.2021.105361

Hughes, T. P., Barnes, M. L., Bellwood, D. R., Cinner, J. E., Cumming, G. S., Jackson, J. B. C., Kleypas, J., Van De Leemput, I. A., Lough, J. M., Morrison, T. H., Palumbi, S. R., Van Nes, E. H., & Scheffer, M. (2017). Coral reefs in the Anthropocene. Nature, 546, 82-90. https://doi.org/10.1038/nature22901

Humphries, A. T., McClanahan, T. R., & McQuaid, C. D. (2020). Algal turf consumption by sea urchins and fishes is mediated by fisheries management on coral reefs in Kenya. Coral Reefs, 39, 1137-1146. https://doi.org/10.1007/s00338-020-01943-5

Johansson, C. L. (2012). A functional analysis of herbivory on Ningaloo Reef, Australia [Doctoral thesis]. James Cook University, Astralia. https://doi.org/10.25903/sm50-mk24

Kassambara A. (2023). ggpubr: 'ggplot2' based publication ready plots. R package, version 0.6.0. https://CRAN.R-project.org/package=ggpubr

Kleypas, J. A., Mcmanus, J. W., & Meñez, L. A. B. (1999). Environmental limits to coral reef development: Where do we draw the line? American Zoologist, 39(1), 146-159. https://doi.org/10.1093/icb/39.1.146

Lange, I. D., Perry, C. T., Morgan, K. M., Roche, R., Benkwitt, C. E., & Graham, N. A. (2020). Site-level variation in parrotfish grazing and bioerosion as a function of species-specific feeding metrics. Diversity, 12(10), 379. https://doi.org/10.3390/d12100379

Lefcheck, J. S., Innes-Gold, A. A., Brandl, S. J., Steneck, R. S., Torres, R. E., & Rasher, D. B. (2019). Tropical fish diversity enhances coral reef functioning across multiple scales. Science Advances, 5(3), eaav6420. https://doi.org/10.1126/sciadv.aav6420

Liao, Y.-C., Chen, L.-S., Shao, K.-T., & Tu, Y.-Y. (2004). Temporal changes in fish assemblage from the impingement Data at the second nuclear power plant, northern Taiwan. Journal of Marine Science and Technology, 12(5), 7. https://doi.org/10.51400/2709-6998.2262

Lin, Y. V., Chen, Y. L., De Palmas, S., Carballo-Bolaños, R., Guerbet, A., Ribas-Deulofeu, L., Tsai, C. B., Wei, Y., & Denis, V. (2024). Rapid shift in benthic assemblages following coral bleaching at an upper mesophotic habitat in Taiwan. Marine Biodiversity, 54, 53. https://doi.org/10.1007/s12526-024-01445-5

Lin, Y. V., Château, P. A., Nozawa, Y., Wei, C. L., Wunderlich, R. F., & Denis, V. (2024). Drivers of coastal benthic communities in a complex environmental setting. Marine Pollution Bulletin, 203, 116462. https://doi.org/10.1016/j.marpolbul.2024.116462

Lin, Y. V., & Denis, V. (2019). Acknowledging differences: Number, characteristics, and distribution of marine benthic communities along Taiwan coast. Ecosphere, 10(7), e02803. https://doi.org/10.1002/ecs2.2803

Liu, C.-H. (2023). Contrasting energy flow associates with tropical and subtropical reef fish assemblages [Master’s thesis]. National Taiwan University, Taiwan. https://doi.org/10.6342/NTU202302752

Liu, P.-J., Shao, K.-T., Jan, R.-Q., Fan, T.-Y., Wong, S.-L., Hwang, J.-S., Chen, J.-P., Chen, C.-C., & Lin, H.-J. (2009). A trophic model of fringing coral reefs in Nanwan Bay, southern Taiwan suggests overfishing. Marine Environmental Research, 68(3), 106-117. https://doi.org/10.1016/j.marenvres.2009.04.009

Mangiafico, S. S. (2024). rcompanion: Functions to support extension education program evaluation. R package, version 2.4.36. https://CRAN.R-project.org/package=rcompanion/

Martin, S., Castets, M.-D., & Clavier, J. (2006). Primary production, respiration and calcification of the temperate free-living coralline alga Lithothamnion corallioides. Aquatic Botany, 85(2), 121-128. https://doi.org/10.1016/j.aquabot.2006.02.005

Moberg, F., & Folke, C. (1999). Ecological goods and services of coral reef ecosystems. Ecological economics, 29(2), 215-233. https://doi.org/10.1016/S0921-8009(99)00009-9

Morais, J., Morais, R., Tebbett, S. B., & Bellwood, D. R. (2022). On the fate of dead coral colonies. Functional Ecology, 36(12), 3148-3160. https://doi.org/10.1111/1365-2435.14182

Morais, R. A., & Bellwood, D. R. (2018). Global drivers of reef fish growth. Fish and Fisheries, 19(5), 874-889. https://doi.org/10.1111/faf.12297

Morais, R. A., & Bellwood, D. R. (2019). Pelagic subsidies underpin fish productivity on a degraded coral reef. Current Biology, 29(9), 1521-1527.e6. https://doi.org/10.1016/j.cub.2019.03.044

Morais, R. A., & Bellwood, D. R. (2020). Principles for estimating fish productivity on coral reefs. Coral Reefs, 39, 1221-1231. https://doi.org/10.1007/s00338-020-01969-9

Mouillot, D., Villéger, S., Parravicini, V., Kulbicki, M., Arias-González, J. E., Bender, M., Chabanet, P., Floeter, S. R., Friedlander, A., Vigliola, L., & Bellwood, D. R. (2014). Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proceedings of the National Academy of Sciences, 111(38), 13757-13762. https://doi.org/10.1073/pnas.1317625111

Nelson, H. R., & Altieri, A. H. (2019). Oxygen: the universal currency on coral reefs. Coral Reefs, 38, 177-198. https://doi.org/10.1007/s00338-019-01765-0

Niggl, W., Haas, A. F., & Wild, C. (2010). Benthic community composition affects O2 availability and variability in a Northern Red Sea fringing reef. Hydrobiologia, 644, 401-405. https://doi.org/10.1007/s10750-010-0200-4

Odum, H. T., & Odum, E. P. (1955). Trophic structure and productivity of a windward coral reef community on Eniwetok atoll. Ecological Monographs, 25(3), 291-320. https://doi.org/10.2307/1943285

Ogden, J. C., & Lobel, P. S. (1978). The role of herbivorous fishes and urchins in coral reef communities. Environmental Biology of Fishes, 3(1), 49-63. https://doi.org/10.1007/bf00006308

Ogle D. H., Doll, J. C., Wheeler A. P., & Dinno A. (2023). FSA: simple fisheries stock assessment methods. R package, version 0.9.5. https://CRAN.R-project.org/package=FSA

Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’hara, R., Solymos, P., Stevens, M., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker. B., Borcard, D., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., Evangelista, H. B. A., …Weedon, J. (2013). vegan: Community Ecology Package. R package, version 2.6-4. https://CRAN.R-project.org/package=vegan

Pelasula, D. D., Alik, R., Ruli, F., Hukom, F. D., La, P., & Hehuat, J. (2021). A coral reef health study and its problem in Leti, Moa and Wetar Island, Mollucas Province. IOP Conference Series: Earth and Environmental Science, 777, 012003. https://doi.org/10.1088/1755-1315/777/1/012003

Perry C. T., Lange, I., & Januchowski-Hartley F. A. (2018). ReefBudget. University of Exeter. Retrieved March 21 from https://www.exeter.ac.uk/research/projects/geography/reefbudget/

Perry, C. T., Edinger, E. N., Kench, P. S., Murphy, G. N., Smithers, S. G., Steneck, R. S., & Mumby, P. J. (2012). Estimating rates of biologically driven coral reef framework production and erosion: A new census-based carbonate budget methodology and applications to the reefs of Bonaire. Coral Reefs, 31, 853-868. https://doi.org/10.1007/s00338-012-0901-4

Perry, C. T., & Harborne, A. R. (2016). Bioerosion on modern reefs: Impacts and responses under changing ecological and environmental conditions. In: Hubbard, D., Rogers, C., Lipps, J., Stanley, Jr., G. (eds) Coral Reefs at the Crossroads (pp. 69-101). Coral Reefs of the World, 6. Springer Netherlands. https://doi.org/10.1007/978-94-017-7567-0_4

Perry, C. T., Salter, M. A., Lange, I. D., Kochan, D. P., Harborne, A. R., & Graham, N. A. J. (2022). Geo‐ecological functions provided by coral reef fishes vary among regions and impact reef carbonate cycling regimes. Ecosphere, 13(12), e4288. https://doi.org/10.1002/ecs2.4288

Pessarrodona, A., Tebbett, S. B., Bosch, N. E., Bellwood, D. R., & Wernberg, T. (2022). High herbivory despite high sediment loads on a fringing coral reef. Coral Reefs, 41, 161-173. https://doi.org/10.1007/s00338-021-02211-w

Pinheiro, H. T., Eyal, G., Shepherd, B., & Rocha, L. A. (2019). Ecological insights from environmental disturbances in mesophotic coral ecosystems. Ecosphere, 10(4), e02666. https://doi.org/10.1002/ecs2.2666

R Core Team. (2022). R: A language and environment for statistical computing. Version 4.2.1, R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Ribas-Deulofeu, L., Denis, V., De Palmas, S., Kuo, C.-Y., Hsieh, H. J., & Chen, C. A. (2016). Structure of benthic communities along the Taiwan latitudinal gradient. Plos One, 11(8). https://doi.org/10.1371/journal.pone.0160601

Robinson, J. P. W., Benkwitt, C. E., Maire, E., Morais, R., Schiettekatte, N. M. D., Skinner, C., & Brandl, S. J. (2023). Quantifying energy and nutrient fluxes in coral reef food webs. Trends in Ecology & Evolution, 39(5), 467-478. https://doi.org/10.1016/j.tree.2023.11.013

Santano, J., Milton, I. A., Navarro, B., Warren, R. M., Barber, P. H., Fong, P., & Fong, C. R. (2021). Structural complexity shapes the behavior and abundance of a common herbivorous fish, increasing herbivory on a turf-dominated, fringing reef. Journal of Experimental Marine Biology and Ecology, 537, 151515. https://doi.org/10.1016/j.jembe.2021.151515

Schönberg, C. H. L. (2015). Monitoring bioeroding sponges: using rubble, quadrat, or intercept surveys? The Biological Bulletin, 228(2), 137-155. https://doi.org/10.1086/BBLv228n2p137

Schönberg, C. H. L., Fang, J. K.-H., & Carballo, J. L. (2017). Bioeroding sponges and the future of coral reefs. In: Carballo, J., Bell, J. (eds) Climate Change, Ocean Acidification and Sponges (pp. 179-372). Springer, Cham. https://doi.org/10.1007/978-3-319-59008-0_7

Schiettekatte, N. M. D., Brandl, S. J., Casey, J. M., Graham, N. A. J., Barneche, D. R., Burkepile, D. E., Allgeier, J. E., Arias-Gonzaléz, J. E., Edgar, G. J., Ferreira, C. E. L., Floeter, S. R., Friedlander, A. M., Green, A. L., Kulbicki, M., Letourneur, Y., Luiz, O. J., Mercière, A., Morat, F., Munsterman, K. S., …Parravicini, V. (2022). Biological trade-offs underpin coral reef ecosystem functioning. Nature Ecology & Evolution, 6, 701-708. https://doi.org/10.1038/s41559-022-01710-5

Simpson, G., & Oksanen, J. (2023). ggvegan: 'ggplot2' plots for the 'vegan' package. R package, version 0.1.999. https://gavinsimpson.github.io/ggvegan/

Spalding, M. D., Fox, H. E., Allen, G. R., Davidson, N., Ferdaña, Z. A., Finlayson, M., Halpern, B. S., Jorge, M. A., Lombana, A., Lourie, S. A., Martin, K. D., McManus, E., Molnar, J., Recchia, C. A., & Robertson, J. (2007). Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. BioScience, 57(7), 573-583. https://doi.org/10.1641/b570707

Stamoulis, K. A., Delevaux, J. M. S., Williams, I. D., Friedlander, A. M., Reichard, J., Kamikawa, K., & Harvey, E. S. (2020). Incorporating reef fish avoidance behavior improves accuracy of species distribution models. PeerJ, 8, e9246. https://doi.org/10.7717/peerj.9246

Sturaro, N., Hsieh, Y. E., Chen, Q., Wang, P. L., & Denis, V. (2021). Trophic plasticity of mixotrophic corals under contrasting environments. Functional Ecology, 35(12), 2841-2855. https://doi.org/10.1111/1365-2435.13924

Tebbett, S. B., Chase, T. J., & Bellwood, D. R. (2020). Farming damselfishes shape algal turf sediment dynamics on coral reefs. Marine Environmental Research, 160, 104988. https://doi.org/10.1016/j.marenvres.2020.104988

Voerman, S. E., Ruseckas, A., Turnbull, G. A., Samuel, I. D. W., & Burdett, H. L. (2022). Red algae acclimate to low light by modifying phycobilisome composition to maintain efficient light harvesting. BMC Biology, 20, 291. https://doi.org/10.1186/s12915-022-01480-3

Weinstein, D. K., Maher, R. L., & Correa, A. M. S. (2019). Bioerosion. In: Loya, Y., Puglise, K., Bridge, T. (eds) Mesophotic Coral Ecosystems (pp. 829-847). Coral Reefs of the World, 12. Springer, Cham. https://doi.org/10.1007/978-3-319-92735-0_43

Wickham, H. (2016). ggplot2: elegant graphics for data analysis. Springer-Verlag New York. https://ggplot2.tidyverse.org

Woodhead, A. J., Hicks, C. C., Norström, A. V., Williams, G. J., & Graham, N. A. J. (2019). Coral reef ecosystem services in the Anthropocene. Functional Ecology, 33(6), 1023-1034. https://doi.org/10.1111/1365-2435.13331

Yang, R. T., Chi, K. S., Hu, S. C., & Chen, H. T. (1975). Corals, fishes and benthic biota of Hsiao-Liuchiu. Special Publication, 7. National Taiwan University, Taiwan.

Zuur, A. F., Ieno, E. N., & Elphick, C. S. (2010). A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution, 1(1), 3-14. https://doi.org/10.1111/j.2041-210x.2009.00001.x
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96335-
dc.description.abstract生態過程(ecological process)中能量的流動維持著珊瑚礁生態的運作(ecosystem functioning)。能量流動的速率可以代表珊瑚礁的運作以及其健康狀態,並會受到環境和生物因子共同影響。探索生態過程速率隨環境變動的機制,有助於分析珊瑚礁面臨不同環境壓力時的表現,從而理解珊瑚礁面對環境變遷時的耐受性。因此,本研究的主要目標為探討生態過程如何隨環境變動,並根據此結果來評估影響珊瑚礁狀態的因子。研究樣點選定在環境差異大的臺灣珊瑚礁生態系統,分布在臺灣北部、綠島和小琉球三個地區內的淺水區域(5 m水深)和上中光層(25 – 30 m水深)兩個水深深度。我利用野外調查(底棲和魚類組成調查)和文獻資料取得的數值,估算了珊瑚礁中五個重要生態過程的速率,包含碳酸鈣生產、碳酸鈣生物侵蝕、初級生產、植食(以生物量替代)和次級生產,並且測試可能造成速率變化的環境或生物因子。結果顯示這五個生態過程隨著不同的珊瑚礁環境所變動,而這些變動的趨勢顯示和地區及深度的相關因子有所關聯(如:生長繁盛對比退化的珊瑚礁、淺層對比深層水域、熱帶對比亞熱帶地區)。光合作用有效輻射強度是主要驅動生態過程變化的環境因子;至於影響生態過程的生物因子,僅有少數幾個生物類群作為過程的主要貢獻者,但這些類群隨不同地區和深度而轉變。本研究是臺灣首次針對珊瑚礁生態過程進行調查,並打破過去認為一種政策能夠有效保育所有區域的珊瑚礁之迷思。研究結果顯示不同地點的珊瑚礁棲地擁有其獨特的運作系統,因此地區客製化的保育方針才能有效保護不同系統的珊瑚礁。未來的研究應持續探究珊瑚礁生態過程,特別是在生物組成易隨溫度變化而重組的溫度過渡區域,有利於全面性地了解珊瑚礁生態系統運作的機轉。zh_TW
dc.description.abstractEcological processes underpin the functioning of the ecosystem, which is influenced by both the biotic composition and the surrounding environment. In coral reefs, these processes explain the state of the reef at a particular place and time as well as provide insight about their ability to recover from disturbance. Here, I aim to characterize the state of reefs based on selected key ecological processes and to gain insights into how these processes vary in different environmental settings. Rates and/or proxies of ecological processes─calcification, bioerosion, primary production, herbivory, and secondary production─were examined in contrasting reef habitats in Taiwan: shallow (-5 m) and upper mesophotic (-30 m) waters in three regions (North, Green Island and Xiaoliuqiu). I quantified these ecological processes using a combination of empirical data, including benthic and fish surveys, and theoretical models, supplemented by literature-derived data. The results revealed three distinct patterns of ecological processes across habitats, highlighting notable regional and depth-related differences (e.g., thriving versus degraded, shallow versus deep, tropical versus subtropical regions). Among the environmental factors, photosynthetically active radiation (PAR) emerged as a key driver influencing reef functioning. A few taxa made disproportionately high contributions to ecological processes, varying by region and depth. As is currently understood, this is the first comprehensive study to investigate reef ecological processes throughout Taiwan. This approach offers valuable insights for guiding conservation efforts locally, rather than relying on a one-size-fits-all strategy. It also highlights the need for future research to address gaps in the understanding of key processes, particularly in transition zones where ocean warming leads to a reconfiguration of the biotic assemblages.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-12-24T16:24:36Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-12-24T16:24:36Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
謝辭 ii
摘要 iii
Abstract iv
Introduction 1
Materials and Methods 4
a. Study sites 4
b. Abiotic and biotic surveys 8
* Characterization of the environment 8
* Benthic composition 9
* Fish assemblages 11
c. Ecological process estimates 14
* Calcium carbonate production. 15
* Bioerosion 16
* Primary production 17
* Herbivory 18
* Secondary production. 18
d. Comparisons of ecological processes across regions or depths 20
e. Abiotic and biotic drivers of ecological processes 20
* Abiotic drivers of ecosystem processes 20
* Biotic drivers and components of ecosystem processes 21
f. Ecological interactions 22
Results 24
g. Variations in ecological processes among regions and depths 24
h. Abiotic and biotic drivers of ecological processes 26
* Relationships between processes and environmental variables 26
* Biotic drivers and components of ecosystem processes 29
i. Ecological interactions 32
Discussion 34
Conclusions 45
References 46
Supplementary information 58
-
dc.language.isoen-
dc.title珊瑚礁解密:探討不同環境條件下的生態過程zh_TW
dc.titleReef forensics: Ecological processes in contrasting environmental conditionsen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蕭仁杰;鍾明宗;何珮綺;野澤洋耕zh_TW
dc.contributor.oralexamcommitteeJen-Chieh Shiao;Ming-Tsung Chung;Pei-Chi Ho;Yoko Nozawaen
dc.subject.keyword鈣化,生產力,速率,珊瑚礁,生態系統功能,干擾,海洋暖化,zh_TW
dc.subject.keywordcalcification,production,rates,coral reef,ecosystem functioning,disturbance,ocean warming,en
dc.relation.page60-
dc.identifier.doi10.6342/NTU202404693-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-12-11-
dc.contributor.author-college理學院-
dc.contributor.author-dept海洋研究所-
dc.date.embargo-lift2029-12-09-
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  此日期後於網路公開 2029-12-09
2.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved