Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96324
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor蘇國棟zh_TW
dc.contributor.advisorGuo-Dung J. Suen
dc.contributor.author彭寬程zh_TW
dc.contributor.authorKuan-Cheng Pengen
dc.date.accessioned2024-12-24T16:21:26Z-
dc.date.available2024-12-25-
dc.date.copyright2024-12-24-
dc.date.issued2024-
dc.date.submitted2024-11-24-
dc.identifier.citationR.-C. Tyan et al., "Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter," Journal of the Optical Society of America A, vol. 14, no. 7, 1997,14.
W. Pei-Kuen and W. Way-Seen, "A TE-TM mode splitter on lithium niobate using Ti, Ni, and MgO diffusions," IEEE Photonics Technology Letters, vol. 6, no. 2, pp. 245-248, 1994,6.
P. Lalanne, J. Hazart, P. Chavel, E. Cambril, and H. Launois, "A transmission polarizing beam splitter grating," Journal of Optics A: Pure and Applied Optics, vol. 1, no. 2, pp. 215-219, 1999,1.
L. Zhou and W. Liu, "Broadband polarizing beam splitter with an embedded metal-wire nanograting," Opt Lett, vol. 30, no. 12, pp. 1434-6, Jun 15 2005,30.
R. Schnabel, A. Bunkowski, O. Burmeister, and K. Danzmann, "Three-port beam splitters-combiners for interferometer applications," Opt Lett, vol. 31, no. 5, pp. 658-60, Mar 1 2006,31.
Z. Wu, P. E. Powers, A. M. Sarangan, and Q. Zhan, "Optical characterization of wiregrid micropolarizers designed for infrared imaging polarimetry," Opt Lett, vol. 33, no. 15, pp. 1653-5, Aug 1 2008,33.
M. Okuno, A. Sugita, K. Jinguji, and M. Kawachi, "Birefringence control of silica waveguides on Si and its application to a polarization-beam splitter/switch," Journal of Lightwave Technology, vol. 12, no. 4, pp. 625-633, 1994,12.
Y. Zhang, Y. Jiang, W. Xue, and S. He, "A broad-angle polarization beam splitter based on a simple dielectric periodic structure," Opt Express, vol. 15, no. 22, pp. 14363-8, Oct 29 2007,15.
L. Tao, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, "Design of a compact photonic-crystal-based polarizing beam splitter," IEEE Photonics Technology Letters, vol. 17, no. 7, pp. 1435-1437, 2005,17.
H. T. Chen, A. J. Taylor, and N. Yu, "A review of metasurfaces: physics and applications," Rep Prog Phys, vol. 79, no. 7, p. 076401, Jul 2016,79.
S. Chen, Z. Li, Y. Zhang, H. Cheng, and J. Tian, "Phase Manipulation of Electromagnetic Waves with Metasurfaces and Its Applications in Nanophotonics," Advanced Optical Materials, vol. 6, no. 13, 2018,6.
N. Yu et al., "Light propagation with phase discontinuities: generalized laws of reflection and refraction," Science, vol. 334, no. 6054, pp. 333-7, Oct 21 2011,334.
S. Sun et al., "High-efficiency broadband anomalous reflection by gradient meta-surfaces," Nano Lett, vol. 12, no. 12, pp. 6223-9, Dec 12 2012,12.
H. H. Hsiao, C. H. Chu, and D. P. Tsai, "Fundamentals and Applications of Metasurfaces," Small Methods, vol. 1, no. 4, 2017,1.
W. Mo, X. Wei, K. Wang, Y. Li, and J. Liu, "Ultrathin flexible terahertz polarization converter based on metasurfaces," Opt Express, vol. 24, no. 12, pp. 13621-7, Jun 13 2016,24.
D. Wen et al., "Metasurface for characterization of the polarization state of light," Opt Express, vol. 23, no. 8, pp. 10272-81, Apr 20 2015,23.
M. Chen, M. Kim, A. M. H. Wong, and G. V. Eleftheriades, "Huygens’ metasurfaces from microwaves to optics: a review," Nanophotonics, vol. 7, no. 6, pp. 1207-1231, 2018,7.
J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, "Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization," Phys Rev Lett, vol. 118, no. 11, p. 113901, Mar 17 2017,118.
H. Zhang et al., "High‐Efficiency Dielectric Metasurfaces for Polarization‐Dependent Terahertz Wavefront Manipulation," Advanced Optical Materials, vol. 6, no. 1, 2017,6.
N. Li et al., "Spectral imaging and spectral LIDAR systems: moving toward compact nanophotonics-based sensing," Nanophotonics, vol. 10, no. 5, pp. 1437-1467, 2021,10.
S. M. Kamali, E. Arbabi, A. Arbabi, and A. Faraon, "A review of dielectric optical metasurfaces for wavefront control," Nanophotonics, vol. 7, no. 6, pp. 1041-1068, 2018,7.
M. L. Tseng et al., "Metalenses: Advances and Applications," Advanced Optical Materials, vol. 6, no. 18, 2018,6.
D. Zhang et al., "Nanoscale beam splitters based on gradient metasurfaces," Opt Lett, vol. 43, no. 2, pp. 267-270, Jan 15 2018,43.
Q. Zhang, M. Li, T. Liao, and X. Cui, "Design of beam deflector, splitters, wave plates and metalens using photonic elements with dielectric metasurface," Optics Communications, vol. 411, pp. 93-100, 2018,411.
X. Chen et al., "All-Dielectric Metasurface-Based Beam Splitter with Arbitrary Splitting Ratio," Nanomaterials (Basel), vol. 11, no. 5, Apr 28 2021,11.
E. Hecht, M. Borthakur, Ed. Optics 5th. 2017, pp. 105-110.
F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, "Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities," Nano Lett, vol. 12, no. 3, pp. 1702-6, Mar 14 2012,12.
B. Max and W. Emil, Principles of Optics, 7th ed. Cambridge University Press, 1999.
A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, "Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission," Nat Nanotechnol, vol. 10, no. 11, pp. 937-43, Nov 2015,10.
A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, "Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays," Nat Commun, vol. 6, p. 7069, May 7 2015,6.
S. M. Kamali, A. Arbabi, E. Arbabi, Y. Horie, and A. Faraon, "Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces," Nat Commun, vol. 7, p. 11618, May 19 2016,7.
M. Khorasaninejad and F. Capasso, "Broadband Multifunctional Efficient Meta-Gratings Based on Dielectric Waveguide Phase Shifters," Nano Lett, vol. 15, no. 10, pp. 6709-15, Oct 14 2015,15.
M. Khorasaninejad et al., "Polarization-Insensitive Metalenses at Visible Wavelengths," Nano Lett, vol. 16, no. 11, pp. 7229-7234, Nov 9 2016,16.
S. Fan, W. Suh, and J. D. Joannopoulos, "Temporal coupled-mode theory for the Fano resonance in optical resonators," J Opt Soc Am A Opt Image Sci Vis, vol. 20, no. 3, pp. 569-72, Mar 2003,20.
Z.-L. Deng, J.-W. Dong, H.-Z. Wang, S. H. Cheng, and J. Li, "Power transmission and group delay in gain-assisted plasmon-induced transparency," AIP Advances, vol. 3, no. 3, 2013,3.
Z.-L. Deng and G. Li, "Metasurface optical holography," Materials Today Physics, vol. 3, pp. 16-32, 2017,3.
T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, "Coding metamaterials, digital metamaterials and programmable metamaterials," Light: Science & Applications, vol. 3, no. 10, pp. e218-e218, 2014,3.
S. Liu et al., "Convolution Operations on Coding Metasurface to Reach Flexible and Continuous Controls of Terahertz Beams," Adv Sci (Weinh), vol. 3, no. 10, p. 1600156, Oct 2016,3.
Y. Sun, Y. Liu, T. Wu, J. Li, H. Fan, and X. Wang, "Polarization-dependent metalens with flexible and steerable bifocal spots," Results in Physics, vol. 46, 2023,46.
H. Zuo et al., "High‐Efficiency All‐Dielectric Metalenses for Mid‐Infrared Imaging," Advanced Optical Materials, vol. 5, no. 23, 2017,5.
Y. Zhou, R. Chen, and Y. Ma, "Characteristic Analysis of Compact Spectrometer Based on Off-Axis Meta-Lens," Applied Sciences, vol. 8, no. 3, 2018,8.
B. Lv et al., "All-Dielectric Metasurface-Based Quad-Beam Splitter in the Terahertz Regime," IEEE Photonics Journal, vol. 12, no. 5, pp. 1-10, 2020,12.
A. U. R. Khalid, F. Feng, M. I. Khan, X. Yuan, and M. G. Somekh, "All-dielectric metasurface designs for spin-tunable beam splitting via simultaneous manipulation of propagation and geometric phases," Opt Express, vol. 30, no. 8, pp. 13459-13468, Apr 11 2022,30.
R. Pestourie, C. Perez-Arancibia, Z. Lin, W. Shin, F. Capasso, and S. G. Johnson, "Inverse design of large-area metasurfaces," Opt Express, vol. 26, no. 26, pp. 33732-33747, Dec 24 2018,26.
D. C. O'Shea, Diffractive optics: design, fabrication, and test. SPIE press, 2004.
D. Sullivan, L. Jun, and M. Kuzyk, "Three-dimensional optical pulse simulation using the FDTD method," IEEE Transactions on Microwave Theory and Techniques, vol. 48, no. 7, pp. 1127-1133, 2000,48.
A. Taflove, S. C. Hagness, and M. Piket-May, Computational electromagnetics: the finite-difference time-domain method (The Electrical Engineering Handbook). Elsevier Inc, 2005, p. 42.
S. D. Gedney, Introduction to the finite-difference time-domain (FDTD) method for electromagnetics. Morgan & Claypool Publishers, 2011.
Y. Kane, "Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media," IEEE Transactions on Antennas and Propagation, vol. 14, no. 3, pp. 302-307, 1966,14.
J. B. Schneider, "Understanding the Finite-Difference Time-Domain Method," vol. 28, 2010,28.
D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys Rev E Stat Nonlin Soft Matter Phys, vol. 71, no. 3 Pt 2B, p. 036617, Mar 2005,71.
Z. Szabó, G.-H. Park, R. Hedge, and E.-P. Li, "A Unique Extraction of Metamaterial Parameters Based on Kramers–Kronig Relationship," IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 10, pp. 2646-2653, 2010,58.
Ansys/OPTICS. "Far field projections in FDTD overview." https://optics.ansys.com/hc/en-us/articles/360034914713-Far-field-projections-in-FDTD-overview.
D. Visser, S. B. Basuvalingam, Y. Desieres, and S. Anand, "Optical properties and fabrication of dielectric metasurfaces based on amorphous silicon nanodisk arrays," Opt Express, vol. 27, no. 4, pp. 5353-5367, Feb 18 2019,27.
I. Kim et al., "Dual‐Band Operating Metaholograms with Heterogeneous Meta‐Atoms in the Visible and Near‐Infrared," Advanced Optical Materials, vol. 9, no. 19, 2021,9.
Y. Li et al., "Third harmonic generation from the gold/amorphous silicon hybrid metasurface," Nanophotonics, vol. 11, no. 10, pp. 2245-2251, 2022,11.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96324-
dc.description.abstract在光學應用中,偏振分束器(PBS)起著至關重要的作用,常用於與偏振方向相關的感測、數據存儲、通訊、成像和信號處理任務中。為了克服傳統PBS經常受限於鏡片厚重的問題。因此,我們利用電腦計算能力結合半導體製程技術,製作出一種亞波長尺寸的人造結構,稱之為超穎透鏡。超穎透鏡可以透過不同線寬的奈米柱的排列,輕易的改變入射光的偏振、相位、幅度和色散,進而獲得操縱光的能力。因此,通過設計這些不同尺寸奈米柱的排列方式,來實現超穎透鏡的多樣性應用。
在本篇論文中,我們利用商業軟體 Ansys Inc.的時域有限差分(FDTD)和Zemax OpticStudio 的幾何光學設計軟體,進行超穎透鏡的設計和模擬。首先,使用FDTD建構出奈米柱的資料庫,並且利用Python將資料庫的數據進行擴增。接著,利用Zemax進行超穎透鏡的結構參數優化,進而模擬出超表面PBS的真實情況。最後,依靠製程技術,製作出超穎透鏡的樣品,並且進行量測分析。
根據研究結果顯示,我們所設計的超表面PBS在模擬上,具有最大±45度角的光束偏折能力。另外,經過實際的量測分析後,也將我們的模擬解果進行驗證。因此,這項研究展示了基於超表面 PBS 的設計,能在更加輕薄的體積下進行光束的操縱,具有實現所需偏折角度和功率分佈特性方面的潛力。為未來在相關的感測、數據存儲、通訊、成像和信號處理任務中,提供了另一種解決方案。
zh_TW
dc.description.abstractIn optical applications, the polarization beam splitter (PBS) plays a important role, generally used in tasks related to data storage, polarization-dependent sensing, imaging, communication, and signal processing. To overcome the limitation of conventional PBS often constrained by bulky lenses, we utilized computational capabilities combined with semiconductor manufacturing technology to create a subwavelength-sized artificial structure called a metalens. The metalens can easily alter the polarization, phase, amplitude, and dispersion of incident light by arranging nanorods with different linewidths, thereby achieving the ability to manipulate light. By designing these arrangements of nanorods with varying sizes, diverse applications of the metalens can be realized.
In this paper, we used the commercial software Ansys Inc.'s finite-difference time-domain (FDTD) and Zemax OpticStudio geometric optics design software to design and simulate the metalens. First, we constructed a nanorod database using FDTD and expanded the data using Python. Then, we optimized the structural parameters of the metalens using Zemax and simulated the real situation of the metasurface PBS. Finally, relying on manufacturing technology, we fabricated the metalens sample and conducted measurement analysis.
The research results show that the metasurface PBS we designed in the simulation has a maximum beam deflection capability of ±45 degrees. Furthermore, after conducting actual measurement analysis, we validated our simulation results. Therefore, this study demonstrates that the design of the metasurface PBS can manipulate beams in a more compact volume, showing potential in achieving the required deflection angle and power distribution characteristics. It provides another solution for future applications in related data storage, sensing, imaging, communication, and signal processing tasks.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-12-24T16:21:26Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-12-24T16:21:26Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES xvi
Chapter 1 Introduction 1
1.1 Traditional Polarization Beam Splitter(PBS) 1
1.2 Metalens 2
1.2.1 Background of Metalenses 3
1.2.2 Different Phase Types of Metalenses 6
1.2.3 Polarization-Dependent Metasurfaces 11
1.3 Motivation 14
Chapter 2 Principles of Metalens 16
2.1 Snell's Law and Fermat's Principle 16
2.2 Generalized Snell's Law 18
2.3 Mechanism of Metalens 24
2.3.1 Propagation Phase Metalens 24
2.3.2 Principle of Phase Superposition 28
Chapter 3 Simulation Methods 32
3.1 Simulation Procedure Flow 32
3.2 Designing Metalenses Using Zemax 34
3.3 Python Arrangement of Target Structures 38
3.4 FDTD Structure Simulation 40
3.4.1 Locally Periodic Approximation 40
3.4.2 Finite-Difference Time-Domain (FDTD) 43
3.4.3 S-Parameter Extraction for Materials 48
3.4.4 Near-to-Far-Field Transformation 53
3.5 Fabrication Process and Measurement Setup 56
Chapter 4 Results and Discussion 60
4.1 Unit Nanostructures of the Metasurface 60
4.2 Deflection Phase Profile Comparison 64
4.3 Full Lens Analysis and Comparison 78
4.4 Metalens Measurement 96
Chapter 5 Conclusion 106
REFERENCE 109
-
dc.language.isoen-
dc.title940nm波段之超穎表面極化分光器zh_TW
dc.titleMetasurface polarizing beam splitter for the 940nm wavelengthen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee曾雪峰;巫朝陽zh_TW
dc.contributor.oralexamcommitteeXue-Feng Tseng;Zhao-Yang Wuen
dc.subject.keyword超穎透鏡,時域有限差分,光線追跡,光偏折器,光學量測,zh_TW
dc.subject.keywordMetasurface Lens,Ray Tracing,Finite-Difference Time-Domain (FDTD),Optical Deflector,Optical Measurement,en
dc.relation.page114-
dc.identifier.doi10.6342/NTU202404611-
dc.rights.note未授權-
dc.date.accepted2024-11-25-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
Appears in Collections:光電工程學研究所

Files in This Item:
File SizeFormat 
ntu-113-1.pdf
  Restricted Access
6.4 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved