Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96317
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳哲夫zh_TW
dc.contributor.advisorJeffrey D. Warden
dc.contributor.author方銘君zh_TW
dc.contributor.authorMing-Chun Fangen
dc.date.accessioned2024-12-24T16:19:26Z-
dc.date.available2024-12-25-
dc.date.copyright2024-12-24-
dc.date.issued2024-
dc.date.submitted2024-12-02-
dc.identifier.citation1. Conejo, A.N., J.-P. Birat, and A. Dutta, A review of the current environmental challenges of the steel industry and its value chain. Journal of environmental management, 2020. 259: p. 109782.
2. Sun, W., Q. Wang, Y. Zhou, and J. Wu, Material and energy flows of the iron and steel industry: Status quo, challenges and perspectives. Applied Energy, 2020. 268: p. 114946.
3. Wilson, L., D. McCutcheon, and M. Buchanan, Industrial safety and risk management. 2003: University of Alberta.
4. Jazdi, N. Cyber physical systems in the context of Industry 4.0. in 2014 IEEE International Conference on Automation, Quality and Testing, Robotics. 2014.
5. Gubbi, J., R. Buyya, S. Marusic, and M. Palaniswami, Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 2013. 29(7): p. 1645-1660.
6. Khaitan, S.K. and J.D. McCalley, Design Techniques and Applications of Cyberphysical Systems: A Survey. IEEE Systems Journal, 2015. 9(2): p. 350-365.
7. Hehenberger, P., B. Vogel-Heuser, D. Bradley, B. Eynard, T. Tomiyama, and S. Achiche, Design, modelling, simulation and integration of cyber physical systems: Methods and applications. Computers in Industry, 2016. 82: p. 273-289.
8. Gamer, T., M. Hoernicke, B. Kloepper, R. Bauer, and A.J. Isaksson, The autonomous industrial plant – future of process engineering, operations and maintenance. Journal of Process Control, 2020. 88: p. 101-110.
9. Schaller, R.R., Moore's law: past, present and future. IEEE spectrum, 1997. 34(6): p. 52-59.
10. Nawa, K., N.P. Chandrasiri, T. Yanagihara, and K. Oguchi, Cyber physical system for vehicle application. Transactions of the Institute of Measurement and Control, 2014. 36(7): p. 898-905.
11. Haque, S.A., S.M. Aziz, and M. Rahman, Review of cyber-physical system in healthcare. international journal of distributed sensor networks, 2014. 10(4): p. 217415.
12. Do, Q., B. Martini, and K.-K.R. Choo, Cyber-physical systems information gathering: A smart home case study. Computer Networks, 2018. 138: p. 1-12.
13. Su, Z., L. Xu, S. Xin, W. Li, Z. Shi, and Q. Guo. A future outlook for cyber-physical power system. in 2017 IEEE conference on energy internet and energy system integration (EI2). 2017. IEEE.
14. Sampigethaya, K. and R. Poovendran. Cyber-physical system framework for future aircraft and air traffic control. in 2012 IEEE Aerospace Conference. 2012.
15. Adedeji, K.B. and Y. Hamam, Cyber-physical systems for water supply network management: Basics, challenges, and roadmap. Sustainability, 2020. 12(22): p. 9555.
16. Akanmu, A. and C.J. Anumba, Cyber-physical systems integration of building information models and the physical construction. Engineering, Construction and Architectural Management, 2015. 22(5): p. 516-535.
17. Correa, F.R. Cyber-physical systems for construction industry. in 2018 IEEE Industrial Cyber-Physical Systems (ICPS). 2018.
18. Squire, R. and H. Song, Cyber‐physical systems opportunities in the chemical industry: A security and emergency management example. Process Safety Progress, 2014. 33(4): p. 329-332.
19. Zheng, Z., K. Zhang, and X. Gao, Human-cyber-physical system for production and operation decision optimization in smart steel plants. Science China Technological Sciences, 2022. 65(2): p. 247-260.
20. Oliveira, L.M., R. Dias, C.M. Rebello, M.A. Martins, A.E. Rodrigues, A.M. Ribeiro, and I.B. Nogueira, Artificial intelligence and cyber-physical systems: A review and perspectives for the future in the chemical industry. AI, 2021. 2(3): p. 27.
21. Klumpers, B., T. Luijten, S. Gerritse, E. Hensen, and I. Filot, Direct coupling of microkinetic and reactor models using neural networks. Chemical Engineering Journal, 2023. 475: p. 145538.
22. Pan, S.-J., K.-C. Lee, M.-L. Tsai, C.-L. Chen, H.-S. Kao, J.D. Ward, I.-L. Chien, and H.-Y. Lee, Improved yellowness index (YI) control in ABS compounding process through virtual control using an RNN-based neural network soft-sensor model. Computers & Chemical Engineering, 2023. 179: p. 108443.
23. Pan, S.-J., M.-L. Tsai, C.-L. Chen, P.T. Lin, and H.-Y. Lee, Investigation of Machine Learning Methods for Predictive Maintenance of the Ultra-High-Pressure Reactor in a Polyethylene-Vinyl Acetate Production Process. Electronics, 2023. 12(3): p. 580.
24. Venkatasubramanian, V., The promise of artificial intelligence in chemical engineering: Is it here, finally? AIChE Journal, 2019. 65(2): p. 466-478.
25. Bansal, M.A., D.R. Sharma, and D.M. Kathuria, A systematic review on data scarcity problem in deep learning: solution and applications. ACM Computing Surveys (CSUR), 2022. 54(10s): p. 1-29.
26. Hyontai, S. Performance of machine learning algorithms and diversity in data. in MATEC Web of Conferences. 2018. EDP Sciences.
27. Hawkins, D.M., The problem of overfitting. Journal of chemical information and computer sciences, 2004. 44(1): p. 1-12.
28. Haydary, J., Chemical process design and simulation: Aspen Plus and Aspen Hysys applications. 2019: John Wiley & Sons.
29. Taylor, R., R. Krishna, and H. Kooijman, Real-world modeling of distillation. transfer, 2003. 1000: p. 1.
30. Yang, S., P. Navarathna, S. Ghosh, and B.W. Bequette, Hybrid Modeling in the Era of Smart Manufacturing. Computers & Chemical Engineering, 2020. 140: p. 106874.
31. Budiawan, I., H.R. Pranoto, E.M. Hidayat, and S.R. Arief. Design and implementation of cyber-physical system-based automation on plant chemical process: Study case mini batch distillation column. in 2018 6th International Conference on Information and Communication Technology (ICoICT). 2018. IEEE.
32. Ji, X., G. He, J. Xu, and Y. Guo, Study on the mode of intelligent chemical industry based on cyber-physical system and its implementation. Advances in Engineering Software, 2016. 99: p. 18-26.
33. Mayer, J., R. Schneider, E. Kenig, A. Górak, and G. Wozny, Dynamic and steady state simulation of coke oven gas purification. Computers & Chemical Engineering, 1999. 23: p. S843-S846.
34. Lee, D., J.M. Lee, S.Y. Lee, and I.B. Lee, Dynamic Simulation of the Sour Water Stripping Process and Modified Structure for Effective Pressure Control. Chemical Engineering Research and Design, 2002. 80(2): p. 167-177.
35. de Oliveira Carneiro, L., S.F. de Vasconcelos, G.W. de Farias Neto, R.P. Brito, and K.D. Brito, Improving H2S removal in the coke oven gas purification process. Separation and Purification Technology, 2021. 257: p. 117862.
36. Rado-Foty, N., A. Egedy, L. Nagy, and I. Hegedus, Comparison of Equilibrium-Stage and Rate-Based Models of a H2S Scrubber for Purification of Coke Oven Gas. Chemical Engineering Transactions, 2021. 88: p. 217-222.
37. Babich, A. and D. Senk, 13 - Coke in the iron and steel industry, in New Trends in Coal Conversion, I. Suárez-Ruiz, M.A. Diez, and F. Rubiera, Editors. 2019, Woodhead Publishing. p. 367-404.
38. Crelling, J.C., Chapter 7 - Coal Carbonization, in Applied Coal Petrology, I. Suárez-Ruiz and J.C. Crelling, Editors. 2008, Elsevier: Burlington. p. 173-192.
39. Liu, X. and Z. Yuan, Life cycle environmental performance of by-product coke production in China. Journal of Cleaner Production, 2016. 112: p. 1292-1301.
40. Razzaq, R., C. Li, and S. Zhang, Coke oven gas: Availability, properties, purification, and utilization in China. Fuel, 2013. 113: p. 287-299.
41. Moral, G., R. Ortiz-Imedio, A. Ortiz, D. Gorri, and I. Ortiz, Hydrogen Recovery from Coke Oven Gas. Comparative Analysis of Technical Alternatives. Industrial & Engineering Chemistry Research, 2022. 61(18): p. 6106-6124.
42. Ren, K., T. Zhang, Y. Bai, Y. Zhai, Y. Jia, X. Zhou, Z. Cheng, and J. Hong, Environmental and economical assessment of high-value utilization routes for coke oven gas in China. Journal of Cleaner Production, 2022. 353: p. 131668.
43. Li, J., Z. Zhang, S. Zhang, F. Shi, Y. Nie, L. Xu, and X. Ma, Life cycle assessment of liquefied natural gas production from coke oven gas in China. Journal of Cleaner Production, 2021. 329: p. 129609.
44. Zhang, Y., Z. Tian, X. Chen, and X. Xu, Technology-environment-economy assessment of high-quality utilization routes for coke oven gas. International Journal of Hydrogen Energy, 2022. 47(1): p. 666-685.
45. Li, J., L. Ma, P. Qu, B. Tian, Y. Nie, L. Liu, L. Xu, and X. Ma, Comparative life cycle assessment of ammonia production by coke oven gas via single and coproduction processes. Science of The Total Environment, 2023. 882: p. 163638.
46. Wu, X., L. Zhao, Y. Zhang, C. Zheng, X. Gao, and K. Cen, Primary air pollutant emissions and future prediction of iron and steel industry in China. Aerosol and Air Quality Research, 2015. 15(4): p. 1422-1432.
47. Sun, W., Y. Zhou, J. Lv, and J. Wu, Assessment of multi-air emissions: Case of particulate matter (dust), SO2, NOx and CO2 from iron and steel industry of China. Journal of Cleaner Production, 2019. 232: p. 350-358.
48. Tregrossi, A., A. Ciajolo, and R. Barbella, The combustion of benzene in rich premixed flames at atmospheric pressure. Combustion and Flame, 1999. 117(3): p. 553-561.
49. Hoyos, L.J., H. Praliaud, and M. Primet, Catalytic combustion of methane over palladium supported on alumina and silica in presence of hydrogen sulfide. Applied Catalysis A: General, 1993. 98(2): p. 125-138.
50. Jacques, P., J. Ihonen, and P. Koski, Review on the impact of impurities on PEMFC and analytical methods for hydrogen QA. HyCoRA–Hydrogen Contaminant Risk Assessment Grant agreement, 2014(621223).
51. Li, J., S. Zhang, Y. Nie, X. Ma, L. Xu, and L. Wu, A holistic life cycle evaluation of coking production covering coke oven gas purification process based on the subdivision method. Journal of Cleaner Production, 2020. 248: p. 119183.
52. Kohl, A.L. and R. Nielsen, Gas purification. 1997: Elsevier.
53. Kazak, L.A., A.F. Yarmoshik, and V.M. Li, Methods of Desulfurizing Coke-Oven Gas: A Comparison. Coke and Chemistry, 2018. 61(10): p. 376-383.
54. Park, J., S.Y. Lee, S. Lee, H. Oh, J. Kim, Y.-S. Yoon, I.-B. Lee, and W. Um, The comprehensive evaluation of available pilot-scale H2S abatement process in a coke-oven gas: Efficiency, economic, energy, and environmental safety (4ES). Journal of Environmental Chemical Engineering, 2021. 9(6): p. 106903.
55. Chan, Y.H., S.S.M. Lock, M.K. Wong, C.L. Yiin, A.C.M. Loy, K.W. Cheah, S.Y.W. Chai, C. Li, B.S. How, B.L.F. Chin, Z.P. Chan, and S.S. Lam, A state-of-the-art review on capture and separation of hazardous hydrogen sulfide (H2S): Recent advances, challenges and outlook. Environmental Pollution, 2022. 314: p. 120219.
56. Lee, S.-Y., J.-M. Lee, D. Lee, and I.-B. Lee, Improvement in steam stripping of sour water through an industrial-scale simulation. Korean Journal of Chemical Engineering, 2004. 21(3): p. 549-555.
57. Gai, H., S. Chen, K. Lin, X. Zhang, C. Wang, M. Xiao, T. Huang, and H. Song, Conceptual design of energy-saving stripping process for industrial sour water. Chinese Journal of Chemical Engineering, 2020. 28(5): p. 1277-1284.
58. de Farias Soares, A., E. Dellosso Penteado, A.A. Ramalho Diniz, and A. Komesu, Influence of operational parameters in sour water stripping process in effluents treatment. Journal of Water Process Engineering, 2021. 41: p. 102012.
59. Schneider, R., F. Sander, and A. Górak, Dynamic simulation of industrial reactive absorption processes. Chemical Engineering and Processing: Process Intensification, 2003. 42(12): p. 955-964.
60. Brettschneider, O., R. Thiele, R. Faber, H. Thielert, and G. Wozny, Experimental investigation and simulation of the chemical absorption in a packed column for the system NH3–CO2–H2S–NaOH–H2O. Separation and Purification Technology, 2004. 39(3): p. 139-159.
61. Faber, R., P. Li, and G. Wozny, Sequential Parameter Estimation for Large-Scale Systems with Multiple Data Sets. 2. Application to an Industrial Coke-Oven-Gas Purification Process. Industrial & Engineering Chemistry Research, 2004. 43(15): p. 4350-4362.
62. Faber, R., B. Li, P. Li, and G. Wozny, Data reconciliation for real-time optimization of an industrial coke-oven-gas purification process. Simulation Modelling Practice and Theory, 2006. 14(8): p. 1121-1134.
63. Thiele, R., R. Faber, J.U. Repke, H. Thielert, and G. Wozny, Design of Industrial Reactive Absorption Processes in Sour Gas Treatment Using Rigorous Modelling and Accurate Experimentation. Chemical Engineering Research and Design, 2007. 85(1): p. 74-87.
64. Radó-Fóty, N., A. Egedy, L. Nagy, and I. Hegedűs Investigation and Optimisation of the Steady-State Model of a Coke Oven Gas Purification Process. Energies, 2022. 15.
65. Rado-Foty, N., A. Egedy, L. Nagy, and I. Hegedus, Dynamic Modelling and Process Control System Development of a H2S Scrubber Used in a Coke Oven Gas Purification Technology. Chemical Engineering Transactions, 2023. 99: p. 649-654.
66. Segovia-Hernández, J.G. and A. Bonilla-Petriciolet, Process intensification in chemical engineering. McGraw-Hill, New York, 2016.
67. Chen, C.-C. and Y. Song, Generalized electrolyte-NRTL model for mixed-solvent electrolyte systems. AIChE Journal, 2004. 50(8): p. 1928-1941.
68. Pan, H.-J., M.-C. Fang, J.D. Ward, H.-Y. Lee, H.-Y. Lin, C.-T. Hsieh, C.-L. Lee, T.-H. Huang, Y.-C. Hsieh, S.-C. Lin, and W.-T. Chou, Modeling of an integrated H2S/NH3 scrubber and regeneration columns for coke oven gas purification. Journal of Cleaner Production, 2023. 389: p. 136065.
69. McCabe, W.L., J.C. Smith, and P. Harriott, Unit operations of chemical engineering. Vol. 5. 1993: McGraw-hill New York.
70. Yue, J., E.V. Rebrov, and J.C. Schouten, Enhancement Factor for Gas Absorption in a Finite Liquid Layer. Part 2: First- and Second-Order Reactions in a Liquid in Plug Flow. Chemical Engineering & Technology, 2012. 35(5): p. 859-869.
71. Sandler, S.I., Chemical, biochemical, and engineering thermodynamics. 2017: John Wiley & Sons.
72. Chen, Y.-M. and C.-Y. Sun, Experimental study of the performance characteristics of a steam-ejector refrigeration system. Experimental Thermal and Fluid Science, 1997. 15(4): p. 384-394.
73. Pal, P. and R. Kumar, Treatment of coke wastewater: a critical review for developing sustainable management strategies. Separation & Purification Reviews, 2014. 43(2): p. 89-123.
74. Felföldi, T., Z. Nagymáté, A.J. Székely, L. Jurecska, and K. Márialigeti, Biological treatment of coke plant effluents: from a microbiological perspective. Biologia Futura, 2020. 71: p. 359-370.
75. Mock, B., L. Evans, and C. Chen. Phase equilibria in multiple-solvent electrolyte systems: a new thermodynamic model. in Proc. Summer Comput. Simul. Conf. 1984.
76. Fang, M.-C., J.D. Ward, H.-Y. Lee, C.-T. Hsieh, Y.-C. Hsieh, C.-L. Lee, S.-C. Lin, T.-H. Huang, and W.-T. Chou, Modeling and improving the scrubbing efficiency of an intensified ammonia process for coke oven gas purification. Chemical Engineering and Processing - Process Intensification, 2024. 197: p. 109713.
77. Tsebe, A., Business Cycles and Growth of South African Steel Manufacturing Industry. Journal of Economics and Behavioral Studies, 2022. 14(1 (J)): p. 6-22.
78. 韩冰, 浅析影响洗苯及脱苯的因素 [Factors that influence benzene absorption and desorption using washing oil]. 科技资讯, 2012(28): p. 80.
79. Večeř, M., L. Simkova, and I. Koutnik, The Effect of Washing Oil Quality and Durability on the Benzol Absorption Efficiency from Coke Oven Gas. Chemical Engineering Transactions, 2018. 70: p. 2107-2112.
80. Večeř, M., I. Koutník, and K. Wichterle, Life Cycle of Wash Oil for Benzol Absorption from Coke Oven Gas. Chemical Engineering & Technology, 2019. 42(4): p. 728-734.
81. Banerjee, C., S. Agarwal, P.S. Dash, and A. Roy, Effect of wash oil inlet temperature in naphthalene scrubber on the absorptivity of naphthalene in coke oven by product plant. Thermal Science and Engineering Progress, 2021. 25: p. 101025.
82. Ulyev, L., P. Kapustenko, M. Vasilyev, and S. Boldyryev, Total Site Integration for Coke Oven Plant. Chemical Engineering Transactions, 2013. 35: p. 235-240.
83. Klemeš, J.J. and Z. Kravanja, Forty years of Heat Integration: Pinch Analysis (PA) and Mathematical Programming (MP). Current Opinion in Chemical Engineering, 2013. 2(4): p. 461-474.
84. Manish, K. and H.P. Tiwari, Assessment of Naphthalene Absorption Efficiency from Coke Oven Gas. Coke and Chemistry, 2020. 63(10): p. 500-512.
85. Santos, R.N.G., E.R.A. Lima, and M.L.L. Paredes, ASTM D86 distillation curve: Experimental analysis and premises for literature modeling. Fuel, 2021. 284: p. 118958.
86. Lockett, M. and S. Banik, Weeping from sieve trays. Industrial & Engineering Chemistry Process Design and Development, 1986. 25(2): p. 561-569.
87. Hallberg, S. and H. Arnfelt, Distillation analysis of road tars. 1949: Statens Väginstitut.
88. Liu, Y.A., A.-F. Chang, and K. Pashikanti, Petroleum Refinery Process Modeling: Integrated Optimization Tools and Applications. 2018: Wiley-VCH Verlag.
89. Tu, M., G. Lai, and D. Fei, Vapor-liquid phase equilibrium of binary system of benzene-water and m-Xylene-Water. JOURNAL OF CHEMICAL INDUSTRY AND ENGINEERING-CHINA-, 1994. 45: p. 225-225.
90. 于淑宏, 回收系统富油预热装置的改进和经济效益. 中国新技术新产品, 2014(19): p. 80-80.
91. Richter, D. and H. Thielert, Method for removing aromatic hydrocarbons from coke oven gas having biodiesel as washing liquid and device for carrying out said method. U.S. Patent Application Publication Pub. No US 2015/0209719 A1 Appl.No 14/420,588, 2015.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96317-
dc.description.abstract近年來,虛實整合系統(Cyber Physical System, CPS)及智慧製造的概念被廣泛應用於各類工業製程改善,透過建立製程模型(虛擬系統),並對製程模型進行操作變數之分析,可提供改善操作效率之可能策略,為實際製程(實際系統)創造價值。本研究以煉鋼業中之焦爐氣淨化製程為例,展示虛實整合系統及智慧製造如何具體應用於煉鋼業。焦爐氣作為煉焦廠之副產品,含有豐富之氫氣及甲烷,可做為廠內燃料以增加能源使用效率,其分離製程主要包含除Tar、除硫氨及除芳香烴三個子製程,本研究以商用軟體Aspen Plus建立後兩個子製程之製程模型,並以此為基礎建立操作指引系統,該系統可根據入口焦爐氣之條件,提供操作變數之建議。相較於傳統操作策略,使用操作指引系統可在不違反環保法規之前提下,減少洗滌液流率和蒸汽用量,增進製程之能源使用效率。根據模型分析,使用該系統可降低除硫氨製程中氨蒸餾塔之26%低壓蒸汽用量,以及除芳香烴製程中預熱器之26%中壓蒸汽用量。此外,本研究亦根據模型分析提出操作改善建議,其中一個建議可在不違反廢水品質之前提下,將出口焦爐氣硫化氫濃度降低至現有水準之30%,另一個建議則可在不影響出口焦爐氣芳香烴濃度前提下,將除芳香烴製程中預熱器之中壓蒸汽用量下降10%。zh_TW
dc.description.abstractRecently, the concepts of cyber-physical systems (CPS) and smart manufacturing have been applied in various industrial scenarios to improve process efficiency. By establishing a process model (cyber system), operating variables can be analyzed to identify potential process improvements, enhancing the design and op eration of the physical system. This work focuses on a commerical-scale coke oven gas (COG) purification process to demonstrate the implementation of CPS and smart manufacturing in the steel industry. COG, a byproduct of coke oven plants, contains abundant hydrogen and methane and is typically used as fuel in the plant to reduce coal consumption and increase energy efficiency. To minimize SOx, NOx, and soot formation during combustion, impurities in COG, such as tar, H2S/NH3, and aromatic compounds, must be removed beforehand. Using Aspen Plus, commercial-scale H2S/NH3 removal and aromatic removal processes were modeled, and an operation guidance system was developed. This system provides operational suggestions based on the inlet COG condition, reducing scrubbing liquid and steam usage while complying with environmental regulations. Scenario analysis showed that the system could reduce LP steam consumption in the ammonia stripper by 26% and MP steam consumption in the preheater by 26%. Additionally, two process improvement strategies were proposed. One strategy reduces outlet COG H2S concentration by 70% without violating wastewater composition regulations. The other reduces MP steam consumption in the aromatic removal process by 10% without affecting outlet COG aromatic composition.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-12-24T16:19:26Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-12-24T16:19:26Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 ii
摘要 iii
Abstract iv
Table of Contents v
List of Figures vii
List of Tables ix
Chapter 1. Introduction 1
1.1 Cyber Physical System 1
1.2 Coke Oven Gas Purification Process 6
1.3 Dissertation Organization 8
Chapter 2. Integrated H2S/NH3 Scrubber 10
2.1 Gas Desulfurization 10
2.2 Process Description 13
2.3 Model Development 17
2.3.1 Aspen Plus Flowsheet 17
2.3.2 Thermodyanmic Model 18
2.3.3 Model Validation 23
2.4 Underlying Principal of Scrubber Operation 26
2.4.1 Composition Profile Analysis 26
2.4.2 Scrubbing Liquid Analysis 29
Chapter 3. H2S/NH3 Removal Process 34
3.1 Process Description 34
3.2 Model Development 39
3.2.1 Aspen Plus Flowsheet 39
3.2.2 Thermodyanmic Model 41
3.2.3 Model Validation 43
3.3 Operation Guidance System 47
3.3.1 Current Operating Strategy 47
3.3.2 Design of Operation Guidance System 48
3.3.3 Application of Operation Guidance System 51
3.4 Process Improvement of NaOH Layer 55
Chapter 4. BTX Removal Process 64
4.1 Process Description 65
4.2 Model Development 68
4.2.1 Aspen Plus Flowsheet 68
4.2.2 Thermodynamic Model 70
4.2.3 Model Validation 75
4.3 Operation Guidance System 77
4.3.1 Current Operation Strategy 77
4.3.2 Design of Operation Guidance System 77
4.3.3 Application of Operation Guidance System 86
4.4 Energy Saving Strategy 89
Chapter 5. Dissertation Summary 99
References 101
-
dc.language.isoen-
dc.subject智慧製造zh_TW
dc.subject工業4.0zh_TW
dc.subject煉鋼業zh_TW
dc.subject焦爐氣zh_TW
dc.subject淨化zh_TW
dc.subject模擬zh_TW
dc.subject虛實整合系統zh_TW
dc.subjectSimulationen
dc.subjectCyber Physical Systemen
dc.subjectSmart Manufacturingen
dc.subjectIndustry 4.0en
dc.subjectSteel Industryen
dc.subjectCoke Oven Gasen
dc.subjectPurificationen
dc.title建立工業級焦爐氣淨化製程之操作指引系統zh_TW
dc.titleDeveloping an operation guidance system for a commercial-scale coke oven gas purification processen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee陳誠亮;余柏毅 ;李豪業;錢義隆;李瑞元zh_TW
dc.contributor.oralexamcommitteeCheng-Liang Chen;Bor-Yih Yu;Hao-Yeh Lee;I-Lung Chien;Jui-Yuan Leeen
dc.subject.keyword虛實整合系統,智慧製造,工業4.0,煉鋼業,焦爐氣,淨化,模擬,zh_TW
dc.subject.keywordCyber Physical System,Smart Manufacturing,Industry 4.0,Steel Industry,Coke Oven Gas,Purification,Simulation,en
dc.relation.page107-
dc.identifier.doi10.6342/NTU202404662-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-12-02-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf4.5 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved