Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96316
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊志忠zh_TW
dc.contributor.advisorChih-Chung Yangen
dc.contributor.author劉軒宇zh_TW
dc.contributor.authorHsuan-Yu Liuen
dc.date.accessioned2024-12-24T16:19:08Z-
dc.date.available2024-12-25-
dc.date.copyright2024-12-24-
dc.date.issued2024-
dc.date.submitted2024-12-03-
dc.identifier.citation1. D. Chen, H. Xiao, and J. Han, “Nanopores in GaN by electrochemical anodization in hydrofluoric acid formation and mechanism,” J. Appl. Phys. 112, 064303 (2012).
2. P. H. Griffin and R. A. Oliver, “Porous nitride semiconductors reviewed,” J. Phys. D: Appl. Phys. 53, 383002 (2020).
3. M. J. Schwab, D. Chen, J. Han, and L. D. Pfefferle, “Aligned mesopore arrays in GaN by anodic etching and photoelectrochemical surface etching,” J. Phys. Chem. C 117, 16890-16895 (2013).
4. M. J. Schwab, J. Han, and L. D. Pfefferle, “Neutral anodic etching of GaN for vertical or crystallographic alignment,” Appl. Phys. Lett. 106, 241603 (2015).
5. W. J. Tseng, D. H. van Dorp, R. R. Lieten, P. M. Vereecken, and G. Borghs, “Anodic etching of n-GaN epilayer into porous GaN and its photoelectrochemical properties,” J. Phys. Chem. C 118, 29492-29498 (2014).
6. R. Radzali, N. Zainal, F. K. Yam, and Z. Hassan, “Characteristics of porous GaN prepared by KOH photoelectrochemical etching,” Mater. Res. Innovations 18, S6-412-416 (2014).
7. W. J. Hsu, K. T. Chen, W. C. Huang, C. J. Wu, J. J. Dai, S. H. Chen, and C. F. Lin, “InGaN light emitting diodes with a nanopipe layer formed from the GaN epitaxial layer,” Opt. Express 24, 11601-11610 (2016).
8. Y. Li, C. Wang, Y. Zhang, P. Hu, S. Zhang, M. Du, X. Su, Q. Li, and F. Yun, “Analysis of TM/TE mode enhancement and droop reduction by a nanoporous n-AlGaN underlayer in a 290 nm UV-LED,” Photon. Res. 8, 806-811 (2020).
9. C. B. Soh, C. B. Tay, R. J. N. Tan, A. P. Vajpeyi, I. P. Seetoh, K. K. Ansah-Antwi, and S. J. Chua, “Nanopore morphology in porous GaN template and its effect on the LEDs emission,” J. Phys. D: Appl. Phys. 46, 365102 (2013).
10. S. Huang, Y. Zhang, B. Leung, G. Yuan, G. Wang, H. Jiang, Y. Fan, Q. Sun, J. Wang, K. Xu, and J. Han, “Mechanical properties of nanoporous GaN and its application for separation and transfer of GaN thin films,” ACS Appl. Mater. Interfaces 5, 11074-11079 (2013).
11. Y. Zhang, Q. Sun, B. Leung, J. Simon, M. L. Lee, and J. Han, “The fabrication of large-area, free-standing GaN by a novel nanoetching process,” Nanotechnology 22, 045603 (2011).
12. J. H. Kang, M. Ebaid, J. K. Lee, T. Jeong, and S. W. Ryu, “Fabrication of vertical light emitting diode based on thermal deformation of nanoporous GaN and removable mechanical supporter,” ACS Appl. Mater. Interfaces 6, 8683-8687 (2014).
13. H. Yang, X. Xi, Z. Yu, H. Cao, J. Li, S. Lin, Z. Ma, and L. Zhao, “Light modulation and water splitting enhancement using a composite porous GaN structure,” ACS Appl. Mater. Interfaces 10, 5492-5497 (2018).
14. K. Maeda and K. Domen, “Photocatalytic water splitting: Recent progress and future challenges,” J. Phys. Chem. Lett. 1, 2655-2661 (2010).
15. C. Zhang, S. H. Park, D. Chen, D. W. Lin, W. Xiong, H. C. Kuo, C. F. Lin, H. Cao, and J. Han, “Mesoporous GaN for photonic engineering highly reflective GaN mirrors as an example,” ACS Photon. 2, 980-986 (2015).
16. M. Zhang, Y. Liu, J. Wang, and J. Tang, “Photodeposition of palladium nanoparticles on a porous gallium nitride electrode for nonenzymatic electrochemical sensing of glucose,” Microchimica Acta 186, DOI: 10.1007/s00604-018-3172-0 (2019).
17. A. Najar, M. Gerland, and M. Jouiad, “Porosity-induced relaxation of strains in GaN layers studied by means of microindentation and optical spectroscopy,” J. Appl. Phys. 111, 093513 (2012).
18. J. H. Kang, B. Li, T. Zhao, M. Ali Johar, C. C. Lin, Y. H. Fang, W. H. Kuo, K. L. Liang, S. Hu, S. W. Ryu, and J. Han, “RGB arrays for micro-light-emitting diode applications using nanoporous GaN embedded with quantum dots,” ACS Appl. Mater. Interfaces 12, 30890-30895 (2020).
19. T. Zhu, Y. Liu, T. Ding, W. Y. Fu, J. Jarman, C. X. Ren, R. V. Kumar, R. A. Oliver, “Wafer-scale Fabrication of Non-Polar Mesoporous GaN Distributed Bragg Reflectors via Electrochemical Porosification,” Sci Rep 7, 45344 (2017).
20. J. R. Pugh, E. G. H. Harbord, A. Sarua, P. S. Fletcher, Y. Tian, T. Wang and M. J. Cryan, “A Tamm plasmon-porous GaN distributed Bragg reflector cavity, “J. Opt. 23 035003 (2021).
21. D. Chen, J. Han, “High reflectance membrane-based distributed Bragg reflectors for GaN photonics,” Appl. Phys. Lett. 101 221104 (2022).
22. P. H. Griffin, M. Frentrup, T. Zhu, M. E. Vickers, R. A. Oliver, “Structural characterization of porous GaN distributed Bragg reflectors using x-ray diffraction,” J. Appl. Phys. 126 213109 (2021).
23. P. Fletcher, G. Martínez de Arriba, Y. Tian, N. Poyiatzis, C. Zhu, P. Feng, J. Bai and T. Wang, “Optical characterisation of InGaN-based microdisk arrays with nanoporous GaN/GaN DBRs” J. Phys. D: Appl. Phys. 55 464001 (2022)
24. S. Mishkat-Ul-Masabih, T. S. Luk, A. Rishinaramangalam, M. Monavarian, M. Nami, D. Feezell, “Nanoporous distributed Bragg reflectors on free-standing nonpolar m-plane GaN,” Appl. Phys. Lett. 112 (4) 041109 (2018).
25. G. Y. Shiu, K. T. Chen, F. H. Fan, K. P. Huang, W. J. Hsu, J. J. Dai, C. F. Lai, C. F. Lin, “InGaN Light-Emitting Diodes with an Embedded Nanoporous GaN Distributed Bragg Reflectors,” Sci Rep 6, 29138 (2016).
26. C. Zhao, X. Yang, B. Wei, J. Liu, R. Chen, C. Luan, H. Xiao,” Enhancement in light-emission efficiency of InGaN/GaN multiple quantum well layer by a porous-GaN mirror,” Vacuum 182 109669 (2020).
27. R. T. Elafandy, J. H. Kang, C. Mi, T. K. Kim, J. S. Kwak, J. Han, “Study and Application of Birefringent Nanoporous GaN in the Polarization Control of Blue Vertical-Cavity Surface-Emitting Lasers,” ACS Photonics, 8, 4, 1041–1047 (2021).
28. C. Zhang, R. ElAfandy and J. Han, “Distributed Bragg Reflectors for GaN-Based Vertical-Cavity Surface-Emitting Lasers,” Appl. Sci. 9(8) (2019)
29. A. S. Barker Jr, and M. Ilegems. "Infrared lattice vibrations and free-electron dispersion in GaN." Physical Review B 7.2 743 (1973).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96316-
dc.description.abstract我們設計並製造四組基於氮化鎵多孔結構的分佈式布拉格反射器樣品,用於比較其鏡面反射、直線穿透和散射行為,其反射帶中心波長範圍從450至1500奈米不等。在每組樣品中,採用了四種不同的電化學蝕刻電壓以研究不同蝕刻條件的影響。為了實現更長的分散式布拉格反射器工作波長,使用具有較厚的高矽摻雜氮化鎵層的分散式布拉格反射器結構,使孔洞的數量或尺寸變大,導致更強的散射。因此,較長工作波長的分散式布拉格反射器並不一定會帶來更低的散射損耗。此外,我們還比較了有檯面及無檯面製作的分散式布拉格反射器結構及其性能。未進行檯面製作時,薄多孔層的孔隙率較低,導致較低的反射率以及更強的散射,反之,厚多孔層的孔隙率較高,導致較高的反射率以及更的散射。zh_TW
dc.description.abstractFour series of GaN porous-structure based distributed Bragg reflector (DBR) samples with different central wavelengths of reflection bands for comparing their specular reflection, line-of-sight transmission, and scattering behaviors are designed and fabricated with the central wavelengths of reflection bands ranged from 450 to 1500 nm. In each series of sample, four electrochemical etching voltages are used for comparing the results of different etching conditions. With a thicker highly Si-doped GaN layer for achieving a longer DBR operating wavelength, the pore number is higher and/or the pore size is larger in such a DBR structure, leading to strong scattering. Therefore, a DBR of a longer operating wavelength does not necessarily lead to a smaller scattering loss. The structures and performances of the DBRs with and without mesa fabrication are also compared. Without mesa fabrication, the porosity is lower (higher) in a thin (thick) porous layer leading to lower (higher) reflectivity and stronger (weaker) scattering.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-12-24T16:19:08Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-12-24T16:19:08Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 I
中文摘要 II
英文摘要 III
Contents IV
List of Figure VI
List of Table XXIII
Chapter 1 Introduction 1
1.1 Subsurface GaN nano-porous structures 1
1.2 Periodic GaN nano-porous structures as a distributed Bragg reflector 1
1.3 Research motivations 2
1.4 Thesis structure 3
Chapter 2 Sample Structures and Designations, Fabrication Procedures, and Measurement Methods 4
2.1 Sample structures and designations 4
2.2 Sample fabrication 4
2.3 Small-area transmission and reflection measurement setup 5
Chapter 3 Distributed Bragg Reflectors with Mesa Fabrication 17
3.1 Morphologies of the porous structures 17
3.2 Results of reflection and transmission spectra 19
Chapter 4 Distributed Bragg Reflectors without Mesa Fabrication 84
4.1 Morphologies of the porous structures 84
4.2 Results of reflection and transmission spectra 85
Chapter 5 Discussions 110
5.1 Large- and small-area reflection/transmission measurements 110
5.2 Comparison of surface morphology and porosity between the DBR samples with and without mesa fabrication 111
Chapter 6 Conclusions 128
References 129
-
dc.language.isoen-
dc.title以週期性之氮化鎵奈米孔洞層形成分散式布拉格反射器的反射與散射行為zh_TW
dc.titleReflection and Scattering Behaviors of Distributed Bragg Reflectors Formed with Periodical GaN Nano-porous Layersen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃建璋;林建中;廖哲浩zh_TW
dc.contributor.oralexamcommitteeJian-Jang Huang;Chien-Chung Lin;Che-Hao Liaoen
dc.subject.keyword氮化鎵多孔結構,分散式布拉格反射器,電化學蝕刻,檯面製造,鏡面反射,直線穿透,散射,zh_TW
dc.subject.keywordGaN porous structure,distributed Bragg reflector,electrochemical etching,mesa fabrication,specular reflection,line-of-sight transmission,scattering,en
dc.relation.page131-
dc.identifier.doi10.6342/NTU202404658-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-12-03-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf6.33 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved