請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96303完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊永裕 | zh_TW |
| dc.contributor.advisor | Yung-Yu Chuang | en |
| dc.contributor.author | 張力仁 | zh_TW |
| dc.contributor.author | Li-Jen Chang | en |
| dc.date.accessioned | 2024-12-24T16:15:15Z | - |
| dc.date.available | 2024-12-25 | - |
| dc.date.copyright | 2024-12-24 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-11-28 | - |
| dc.identifier.citation | [1] A. Abuolaim and M. S. Brown. Defocus deblurring using dual-pixel data. In European Conference on Computer Vision (ECCV), 2020.
[2] A. Abuolaim, M. Delbracio, D. Kelly, M. S. Brown, and P. Milanfar. Learning to reduce defocus blur by realistically modeling dual-pixel data. In IEEE/CVF International Conference on Computer Vision (ICCV), 2021. [3] H. Alzayer, A. Abuolaim, L. C. Chan, Y. Yang, Y. C. Lou, J.-B. Huang, and A. Kar. DC2: dual-camera defocus control by learning to refocus. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023. [4] J. Chen, Y. Huang, T. Lv, L. Cui, Q. Chen, and F. Wei. TextDiffuser: diffusion models as text painters. In Annual Conference on Neural Information Processing Systems (NeurIPS), 2023. [5] K. Chen and Y. Liu. Efficient image deblurring networks based on diffusion models. arXiv preprint arXiv:2401.05907, 2024. [6] Z. Chen, Y. Zhang, D. Liu, B. Xia, J. Gu, L. Kong, and X. Yuan. Hierarchical integration diffusion model for realistic image deblurring. In Annual Conference on Neural Information Processing Systems (NeurIPS), 2023. [7] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In Annual Conference on Neural Information Processing Systems (NeurIPS), 2014. [8] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equilibrium. In Annual Conference on Neural Information Processing Systems (NeurIPS), 2017. [9] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. In Annual Conference on Neural Information Processing Systems (NeurIPS), 2020. [10] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu. Spatial transformer networks. In Annual Conference on Neural Information Processing Systems (NeurIPS), 2015. [11] Y. Jiang, Z. Zhang, T. Xue, and J. Gu. AutoDIR: automatic all-in-one image restoration with latent diffusion. In European Conference on Computer Vision (ECCV), 2024. [12] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International Conference on Learning Representations (ICLR), 2015. [13] J. Lee, H. Son, J. Rim, S. Cho, and S. Lee. Iterative filter adaptive network for single image defocus deblurring. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021. [14] H. Li, Y. Yang, M. Chang, S. Chen, H. Feng, Z. Xu, Q. Li, and Y. Chen. SRDiff: single image super-resolution with diffusion probabilistic models. Neurocomputing, 2022. [15] Y. Li, Y. Fan, X. Xiang, D. Demandolx, R. Ranjan, R. Timofte, and L. V. Gool. Efficient and explicit modelling of image hierarchies for image restoration. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023. [16] P. Liang, J. Jiang, X. Liu, and J. Ma. BaMBNet: A blur-aware multi-branch network for dual-pixel defocus deblurring. IEEE/CAA Journal of Automatica Sinica, 2022. [17] J. Lin, Z. Zhang, Y. Wei, D. Ren, D. Jiang, and W. Zuo. Improving image restoration through removing degradations in textual representations. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024. [18] Y. Liu, F. Liu, Z. Ke, N. Zhao, and R. W. H. Lau. Diff-Plugin: revitalizing details for diffusion-based low-level tasks. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024. [19] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In International Conference on Learning Representations (ICLR), 2019. [20] F. Mentzer, G. D. Toderici, M. Tschannen, and E. Agustsson. High-fidelity generative image compression. In Annual Conference on Neural Information Processing Systems (NeurIPS), 2020. [21] A. Mittal, R. Soundararajan, and A. C. Bovik. Making a "completely blind" image quality analyzer. IEEE Signal Processing Letters, 2012. [22] A. Niu, K. Zhang, T. X. Pham, J. Sun, Y. Zhu, I. S. Kweon, and Y. Zhang. CDPMSR: conditional diffusion probabilistic models for single image super-resolution. In IEEE International Conference on Image Processing (ICIP), 2023. [23] L. Pan, S. Chowdhury, R. Hartley, M. Liu, H. Zhang, and H. Li. Dual pixel exploration: Simultaneous depth estimation and image restoration. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021. [24] A. Punnappurath, A. Abuolaim, M. Afifi, and M. S. Brown. Modeling defocus-disparity in dual-pixel sensors. In IEEE International Conference on Computational Photography (ICCP), 2020. [25] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever. Learning transferable visual models from natural language supervision. In International Conference on Machine Learning (ICML), 2021. [26] M. Ren, M. Delbracio, H. Talebi, G. Gerig, and P. Milanfar. Multiscale structure guided diffusion for image deblurring. In IEEE/CVF International Conference on Computer Vision (ICCV), 2023. [27] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis with latent diffusion models. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022. [28] C. Saharia, J. Ho, W. Chan, T. Salimans, D. J. Fleet, and M. Norouzi. Image super-resolution via iterative refinement. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022. [29] S. Shang, Z. Shan, G. Liu, L. Wang, X. Wang, Z. Zhang, and J. Zhang. ResDiff: combining CNN and diffusion model for image super-resolution. In Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI), 2024. [30] H. Son, J. Lee, S. Cho, and S. Lee. Single image defocus deblurring using kernel-sharing parallel atrous convolutions. In IEEE/CVF International Conference on Computer Vision (ICCV), 2021. [31] N. Wadhwa, R. Garg, D. E. Jacobs, B. E. Feldman, N. Kanazawa, R. Carroll, Y. Movshovitz-Attias, J. T. Barron, Y. Pritch, and M. Levoy. Synthetic depth-of-field with a single-camera mobile phone. ACM Transactions on Graphics, 2018. [32] Z. Wang, X. Cun, J. Bao, W. Zhou, J. Liu, and H. Li. Uformer: A general u-shaped transformer for image restoration. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022. [33] J. Whang, M. Delbracio, H. Talebi, C. Saharia, A. G. Dimakis, and P. Milanfar. Deblurring via stochastic refinement. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022. [34] B. Xia, Y. Zhang, S. Wang, Y. Wang, X. Wu, Y. Tian, W. Yang, and L. V. Gool. DiffIR: efficient diffusion model for image restoration. In IEEE/CVF International Conference on Computer Vision (ICCV), 2023. [35] S. Xin, N. Wadhwa, T. Xue, J. T. Barron, P. P. Srinivasan, J. Chen, I. Gkioulekas, and R. Garg. Defocus map estimation and deblurring from a single dual-pixel image. In IEEE/CVF International Conference on Computer Vision (ICCV), 2021. [36] X. Xu, S. Kong, T. Hu, Z. Liu, and H. Bao. Boosting image restoration via priors from pre-trained models. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024. [37] H. Yang, L. Pan, Y. Yang, and M. Liu. LDP: language-driven dual-pixel image defocus deblurring network. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024. [38] Y. Yang, L. Pan, L. Liu, and M. Liu. K3DN: disparity-aware kernel estimation for dual-pixel defocus deblurring. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023. [39] T. Ye, S. Chen, W. Chai, Z. Xing, J. Qin, G. Lin, and L. Zhu. Learning diffusion texture priors for image restoration. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024. [40] S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, and M. Yang. Restormer: Efficient transformer for high-resolution image restoration. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022. [41] L. Zhang, X. Chen, Y. Wang, Y. Lu, and Y. Qiao. Brush your text: Synthesize any scene text on images via diffusion model. In Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI), 2024. [42] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. The unreasonable effectiveness of deep features as a perceptual metric. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2018. [43] Y. Zhang, P. Zheng, W. Yan, C. Fang, and S. S. Cheng. A unified framework for microscopy defocus deblur with multi-pyramid transformer and contrastive learning. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96303 | - |
| dc.description.abstract | 大光圈常用於需要保持固定快門速度的應用或在低光環境下提高曝光量。然而,大光圈可能因較淺的景深而導致散焦模糊,需進行去模糊以恢復清晰的影像。散焦去模糊在處理嚴重模糊的區域時較具有挑戰性,現有的回歸方法通常難以有效還原細節。雖然生成式模型能改善部分結果,但有時會產生偏離目標影像分布的輸出,從而在衡量失真程度的指標上存在局限性。為解決這些問題,我們提出了一個新的散焦去模糊架構,結合生成式模型和確定性模型的優勢。該方法利用潛在擴散模型的生成能力來修復嚴重失焦的區域。同時,我們結合了雙像素成像的物理原理,以自監督學習的方式估計散焦圖,並透過其引導來融合生成式模型和確定性模型的影像復原結果。這種融合方法使我們能夠在修復顯著模糊區域的同時,保持了失真準確度。實驗結果顯示,我們的方法在視覺品質上表現優於既有的方法,並且在處理具有挑戰性的散焦場景時有較穩定的去模糊效果。 | zh_TW |
| dc.description.abstract | Wide apertures are crucial in computer vision applications that require enhanced exposure in low-light conditions or a fast shutter speed. However, they can introduce defocus blur due to shallow depth of field, necessitating defocus deblurring to restore all-in-focus images. Defocus deblurring is particularly challenging in image regions with significant blur, where existing regression-based methods often struggle to recover fine details. While generative approaches can improve results, they sometimes produce outputs misaligned with the target image distribution, causing limitations in distortion-based metrics. To address these issues, we present a novel defocus deblurring framework that integrates the strengths of both generative and deterministic models. Our method leverages the generative capabilities of latent diffusion to restore highly defocused areas. By incorporating the physical model of dual-pixel imaging, we estimate defocus maps in a self-supervised manner, guiding a fusion process that combines generative and deterministic restoration outputs. This fusion allows us to preserve distortion accuracy while recovering heavily blurred regions. Experimental results demonstrate that our approach outperforms state-of-the-art methods in visual quality, delivering robust performance in challenging defocus scenarios. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-12-24T16:15:15Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-12-24T16:15:15Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements iii 摘要 v Abstract vii Contents ix List of Figures xi List of Tables xiii Chapter 1 Introduction 1 1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Chapter 2 Related Work 5 2.1 Dual-Pixel Camera Model . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Defocus Deblurring . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Diffusion-based Image Restoration . . . . . . . . . . . . . . . . . . 8 Chapter 3 Methodology 11 3.1 Initial Predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Latent Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2.1 Generative Formulation . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2.2 Conditioning Mechanism . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.3 High-Resolution Inference . . . . . . . . . . . . . . . . . . . . . . 14 3.3 Self-Supervised Defocus Map Estimation . . . . . . . . . . . . . . . 15 3.4 Defocus-Map-Guided Fusion . . . . . . . . . . . . . . . . . . . . . . 18 3.5 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . 18 Chapter 4 Experiments 21 4.1 Datasets and Evaluation Settings . . . . . . . . . . . . . . . . . . . . 21 4.2 Quantitative Comparisons . . . . . . . . . . . . . . . . . . . . . . . 22 4.3 Qualitative Comparisons . . . . . . . . . . . . . . . . . . . . . . . . 23 4.4 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Chapter 5 Conclusion 29 References 31 | - |
| dc.language.iso | en | - |
| dc.subject | 散焦圖估計 | zh_TW |
| dc.subject | 擴散模型 | zh_TW |
| dc.subject | 雙像素影像 | zh_TW |
| dc.subject | 散焦去模糊 | zh_TW |
| dc.subject | Defocus Map Estimation | en |
| dc.subject | Defocus Deblurring | en |
| dc.subject | Dual-Pixel Image | en |
| dc.subject | Diffusion Model | en |
| dc.title | 基於擴散模型與散焦圖估計之雙像素散焦影像去模糊 | zh_TW |
| dc.title | Dual-Pixel Defocus Deblurring with Diffusion Model and Defocus Map Estimation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳賦哲;葉正聖 | zh_TW |
| dc.contributor.oralexamcommittee | Fu-Che Wu;Jeng-Sheng Yeh | en |
| dc.subject.keyword | 散焦去模糊,雙像素影像,擴散模型,散焦圖估計, | zh_TW |
| dc.subject.keyword | Defocus Deblurring,Dual-Pixel Image,Diffusion Model,Defocus Map Estimation, | en |
| dc.relation.page | 36 | - |
| dc.identifier.doi | 10.6342/NTU202404628 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-11-29 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊工程學系 | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 5.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
