請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96302完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉雅瑄 | zh_TW |
| dc.contributor.advisor | Ya-Hsuan Liou | en |
| dc.contributor.author | 陳姵妏 | zh_TW |
| dc.contributor.author | Pei-Wen Chen | en |
| dc.date.accessioned | 2024-12-24T16:14:58Z | - |
| dc.date.available | 2024-12-25 | - |
| dc.date.copyright | 2024-12-24 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-12-16 | - |
| dc.identifier.citation | Alorda-Kleinglass, A., Rodellas, V., Diego-Feliu, M., Marbà, N., Morell, C., & Garcia-Orellana, J. (2024). The connection between Submarine Groundwater Discharge and seawater quality: The threat of treated wastewater injected into coastal aquifers. Science of The Total Environment, 922, 170940. https://doi.org/https://doi.org/10.1016/j.scitotenv.2024.170940
Barthel, F., & Tulsidas, H. (2019). Thorium: Geology, Occurrence, Deposits and Resources. 195-200. Basterretxea, G., Font-Muñoz, J. S., Kane, M., Regaudie-de-Gioux, A., Satta, C. T., & Tuval, I. (2024). Pulsed wind-driven control of phytoplankton biomass at a groundwater-enriched nearshore environment. Science of The Total Environment, 955, 177123. https://doi.org/https://doi.org/10.1016/j.scitotenv.2024.177123 Bea, F. (1996). Residence of REE, Y, Th and U in granites and crustal protoliths; implications for the chemistry of crustal melts [Article]. Journal of Petrology, 37(3), 521-552. https://doi.org/10.1093/petrology/37.3.521 Bennetts, D. A., Webb, J. A., Stone, D. J. M., & Hill, D. M. (2006). Understanding the salinisation process for groundwater in an area of south-eastern Australia, using hydrochemical and isotopic evidence. Journal of Hydrology, 323(1), 178-192. https://doi.org/https://doi.org/10.1016/j.jhydrol.2005.08.023 Bingen, B., Demaiffe, D., & Hertogen, J. (1996). Redistribution of rare earth elements, thorium, and uranium over accessory minerals in the course of amphibolite to granulite facies metamorphism: The role of apatite and monazite in orthogneisses from southwestern Norway [Article]. Geochimica et Cosmochimica Acta, 60(8), 1341-1354. https://doi.org/10.1016/0016-7037(96)00006-3 Burnett, H., & O'Donnell, S. (1996). Linear ordering of the chromatic aggregate in classical symphonic music [Review]. Music Theory Spectrum, 18(1), 22-50. https://doi.org/10.2307/745844 Burnett, W. C. (1996). Tracing groundwater flow into surface waters using natural super (222) RN. LOICZ Reports Studies(8), 22-36. Burnett, W. C., Aggarwal, P. K., Aureli, A., Bokuniewicz, H., Cable, J. E., Charette, M. A., Kontar, E., Krupa, S., Kulkarni, K. M., Loveless, A., Moore, W. S., Oberdorfer, J. A., Oliveira, J., Ozyurt, N., Povinec, P., Privitera, A. M. G., Rajar, R., Ramessur, R. T., Scholten, J., . . . Turner, J. V. (2006). Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Science of The Total Environment, 367(2), 498-543. https://doi.org/https://doi.org/10.1016/j.scitotenv.2006.05.009 Burnett, W. C., Bokuniewicz, H., Huettel, M., Moore, W. S., & Taniguchi, M. (2003). Groundwater and pore water inputs to the coastal zone [Review]. Biogeochemistry, 66(1-2), 3-33. https://doi.org/10.1023/B:BIOG.0000006066.21240.53 Burnett, W. C., Taniguchi, M., & Oberdorfer, J. (2001). Measurement and significance of the direct discharge of groundwater into the coastal zone. Journal of Sea Research, Burnett, W. C., Taniguchi, M., & Oberdorfer, J. (2001). Measurement and significance of the direct discharge of groundwater into the coastal zone. Journal of Sea Research, 46(2), 109-116. https://doi.org/https://doi.org/10.1016/S1385-1101(01)00075-2 Charette, M. A., Henderson, P. B., Breier, C. F., & Liu, Q. (2013). Submarine groundwater discharge in a river-dominated Florida estuary. Marine Chemistry, 156, 3-17. https://doi.org/https://doi.org/10.1016/j.marchem.2013.04.001 Chen, G., Jiang, Y., Wang, Y., Zhao, J., Qiu, Y., Zheng, M., Chen, M., Pan, J., & Chen, M. (2024). Changes in glacial meltwater system around Amundsen sea Polynya illustrated by radium and oxygen isotopes. Progress in Oceanography, 229, 103367. https://doi.org/https://doi.org/10.1016/j.pocean.2024.103367 Chen, N.-C., O'Regan, M., Hong, W.-L., Andrén, T., Rodellas, V., Roth, F., Mörth, C.-M., Regnéll, C., Marxen, H. S., ten Hietbrink, S., Huang, T.-H., Gyllencreautz, R., Stranne, C., Linderholm, A., Garcia-Orellana, J., Humborg, C., & Jakobsson, M. (2024). Investigation of submarine groundwater discharge into the Baltic Sea through varved glacial clays. Continental Shelf Research, 282, 105337. https://doi.org/https://doi.org/10.1016/j.csr.2024.105337 Chen, X., Jiang, S., Zhu, P., Zhang, Y., Ren, Y., & Li, L. (2024). Saltmarshes as selective nutrient filters: Insights from groundwater-derived nutrient exchange. Journal of Hydrology, 633, 130945. https://doi.org/https://doi.org/10.1016/j.jhydrol.2024.130945 Ching-Ying, L., Typhoon, L., & Chihming Wang, L. (1990). The Rb-Sr isotopic record in Taiwan gneisses and its tectonic implication. Tectonophysics, 183(1), 129-143. https://doi.org/https://doi.org/10.1016/0040-1951(90)90412-2 Cornett, R. J., Risto, B. A., & Lee, D. R. (1989). Measuring groundwater transport through lake sediments by advection and diffusion [Article]. Water Resources Research, 25(8), 1815-1823. https://doi.org/10.1029/WR025i008p01815 Dang, M.-Q., Hsu, F.-H., Su, C.-C., Wang, S.-J., Fu, C.-C., & Lin, I.-T. (2025). Investigation of seasonal variations in submarine groundwater discharge using radium isotopes under drought conditions in northwestern coastal Taiwan. Journal of Hydrology, 649, 132450. https://doi.org/https://doi.org/10.1016/j.jhydrol.2024.132450 Danish, M., Tripathy, G. R., & Rahaman, W. (2020). Submarine groundwater discharge to a tropical coastal lagoon (Chilika lagoon, India): An estimation using Sr isotopes. Marine Chemistry, 224, 103816. https://doi.org/https://doi.org/10.1016/j.marchem.2020.103816 Das, K., Mishra, A. K., Singh, A., Agrahari, S., Chakrabarti, R., & Mukherjee, A. (2021). Solute exchanges between multi-depth groundwater and surface water of climatically vulnerable Gangetic delta front aquifers of Sundarbans. Journal of Environmental Management, 284, 112026. https://doi.org/https://doi.org/10.1016/j.jenvman.2021.112026 Domenico, & Schwartz. (1990). Physical and Chemical Hydrology. Du, M., Jin, S., Wu, S., Liao, Y., & Wang, G. (2024). Hydrographic proxies for submarine groundwater discharge in the Jiulong River estuary and global perspectives. Water Research, 260, 121854. https://doi.org/https://doi.org/10.1016/j.watres.2024.121854 Garcia-Orellana, J., Rodellas, V., Tamborski, J., Diego-Feliu, M., van Beek, P., Weinstein, Y., Charette, M., Alorda-Kleinglass, A., Michael, H. A., Stieglitz, T., & Scholten, J. (2021). Radium isotopes as submarine groundwater discharge (SGD) tracers: Review and recommendations. Earth-Science Reviews, 220, 103681. https://doi.org/https://doi.org/10.1016/j.earscirev.2021.103681 Gu, H., Moore, W. S., Zhang, L., Du, J., & Zhang, J. (2012). Using radium isotopes to estimate the residence time and the contribution of submarine groundwater discharge (SGD) in the Changjiang effluent plume, East China Sea. Continental Shelf Research, 35, 95-107. https://doi.org/https://doi.org/10.1016/j.csr.2012.01.002 Guo, X., Lian, E., Yuan, H., Burnett, W. C., Zhang, H., Zhang, M., Xiao, K., Wei, Q., Yu, Z., & Xu, B. (2024). Proxies of hypoxia and submarine groundwater discharge in the coastal ocean: Foraminiferal shell chemical perspectives. Marine Chemistry, 265-266, 104434. https://doi.org/https://doi.org/10.1016/j.marchem.2024.104434 Hagedorn, B., Becker, M. W., Silbiger, N. J., Maine, B., Justis, E., Barnas, D. M., & Zeff, M. (2024). Refining submarine groundwater discharge analysis through nonlinear quantile regression of geochemical time series. Journal of Hydrology, 645, 132145. https://doi.org/https://doi.org/10.1016/j.jhydrol.2024.132145 Hsu, F.-H., Su, C.-C., Wang, P.-L., & Lin, I.-T. (2020a). Temporal Variations of Submarine Groundwater Discharge into a Tide-Dominated Coastal Wetland (Gaomei Wetland, Western Taiwan) Indicated by Radon and Radium Isotopes. Water, 12(6). Hsu, F.-H., Su, C.-C., Wang, P.-L., & Lin, I.-T. (2020b). Temporal Variations of Submarine Groundwater Discharge into a Tide-Dominated Coastal Wetland (Gaomei Wetland, Western Taiwan) Indicated by Radon and Radium Isotopes. Water, 12(6), 1806. https://www.mdpi.com/2073-4441/12/6/1806 Hwang, D. W., Kim, G., Lee, Y. W., & Yang, H. S. (2005). Estimating submarine inputs of groundwater and nutrients to a coastal bay using radium isotopes [Article]. Marine Chemistry, 96(1-2), 61-71. https://doi.org/10.1016/j.marchem.2004.11.002 Ikonen, J., Hendriksson, N., Luoma, S., Lahaye, Y., & Virtasalo, J. J. (2022). Behavior of Li, S and Sr isotopes in the subterranean estuary and seafloor pockmarks of the Hanko submarine groundwater discharge site in Finland, northern Baltic Sea. Applied Geochemistry, 147, 105471. https://doi.org/https://doi.org/10.1016/j.apgeochem.2022.105471 Ivanovich, M., & Harmon, R. S. (1992). Uranium-series disequilibrium: applications to earth, marine, and environmental sciences. 2. Jakeman, A. J., Barreteau, O., Hunt, R., Rinaudo, J.-D., & Ross, A. (2016). Integrated Groundwater Management - Concepts, Approaches and Challenges. https://doi.org/10.1007/978-3-319-23576-9 Kim, G., & Hwang, D.-W. (2002). Tidal pumping of groundwater into the coastal ocean revealed from submarine 222Rn and CH4 monitoring. Geophysical Research Letters, 29(14), 23-21-23-24. https://doi.org/https://doi.org/10.1029/2002GL015093 Krall, L., Trezzi, G., Garcia-Orellana, J., Rodellas, V., Mörth, C.-M., & Andersson, P. (2017). Submarine groundwater discharge at Forsmark, Gulf of Bothnia, provided by Ra isotopes. Marine Chemistry, 196, 162-172. https://doi.org/https://doi.org/10.1016/j.marchem.2017.09.003 Lee, D. R. (1977). A device for measuring seepage flux in lakes and estuaries [Note]. Limnology and Oceanography, 22(1), 140-147. https://doi.org/10.4319/lo.1977.22.1.0140 Luo, M., Ge, M., Wang, X., Wang, W., Li, G., Xiao, K., Liu, Z., Yao, M., & Li, H. (2024). Optimizing groundwater radium end-members in submarine groundwater discharge estimation by incorporating groundwater flow information. Journal of Hydrology, 630, 130786. https://doi.org/https://doi.org/10.1016/j.jhydrol.2024.130786 McCoy, C. A., Corbett, D. R., Cable, J. E., & Spruill, R. K. (2007). Hydrogeological characterization and quantification of submarine groundwater discharge in the southeast Coastal Plain of North Carolina. J. Hydrol, 339, 159-171. Moody, A., Moore, W. S., Pierce, T., & Shiller, A. M. (2024). The effects of submarine groundwater discharge and the Bonnet Carré Spillway on nutrient dynamics in the western Mississippi Sound. Science of The Total Environment, 953, 176080. https://doi.org/https://doi.org/10.1016/j.scitotenv.2024.176080 Moore, W. S. (1996). Large groundwater inputs to coastal waters revealed by 226Ra enrichments [Article]. Nature, 380(6575), 612-614. https://doi.org/10.1038/380612a0 Moore, W. S. (1999). The subterranean estuary: a reaction zone of ground water and sea water. Marine Chemistry, 65(1), 111-125. https://doi.org/https://doi.org/10.1016/S0304-4203(99)00014-6 Moore, W. S. (2009). The Effect of Submarine Groundwater Discharge on the Ocean. Annual Review of Marine Science, 2(1), 59-88. https://doi.org/10.1146/annurev-marine-120308-081019 Moore, W. S. (2010). The effect of submarine groundwater discharge on the ocean. Annual Review of Marine Science, 2(1), 59-88. Moore, W. S. (2010). The effect of submarine groundwater discharge on the ocean. Ann Rev Mar Sci, 2, 59-88. https://doi.org/10.1146/annurev-marine-120308-081019 Moore, W. S., & Arnold, R. (1996). Measurement of223Ra and224Ra in coastal waters using a delayed coincidence counter [Article]. Journal of Geophysical Research: Oceans, 101(C1), 1321-1329, Article 95jc03139. https://doi.org/10.1029/95JC03139 Murgulet, D., Lopez, C. V., Douglas, A. R., Eissa, M., & Das, K. (2024). Nitrogen and carbon cycling and relationships to radium behavior in porewater and surface water: Insight from a dry year sampling in a hypersaline estuary. Marine Chemistry, 258, 104351. https://doi.org/https://doi.org/10.1016/j.marchem.2024.104351 Naily, W., & Sudaryanto. (2018). Cl/Br Ratio to Determine Groundwater Quality. IOP Conference Series: Earth and Environmental Science, 118(1), 012020. https://doi.org/10.1088/1755-1315/118/1/012020 Oberdorfer, J. A., Valentino, M. A., & Smith, S. V. (1990). Groundwater contribution to the nutrient budget of Tomales Bay, California [Article]. Biogeochemistry, 10(3), 199-216. https://doi.org/10.1007/BF00003144 Pandey, A., Padhya, V., Chakra, S., & Deshpande, R. D. (2023). Seasonality in groundwater recharge in Coastal Southwestern India and its hydrological implications based on stable isotopes (δ18O, δD). Physics and Chemistry of the Earth, Parts A/B/C, 130, 103396. https://doi.org/https://doi.org/10.1016/j.pce.2023.103396 Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analyses. Eos, Transactions American Geophysical Union, 25(6), 914-928. https://doi.org/https://doi.org/10.1029/TR025i006p00914 Porubsky, W. P., Weston, N. B., Moore, W. S., Ruppel, C., & Joye, S. B. (2014). Dynamics of submarine groundwater discharge and associated fluxes of dissolved nutrients, carbon, and trace gases to the coastal zone (Okatee River estuary, South Carolina). Geochimica et Cosmochimica Acta, 131, 81-97. https://doi.org/https://doi.org/10.1016/j.gca.2013.12.030 Povinec, P. P., Burnett, W. C., Beck, A., Bokuniewicz, H., Charette, M., Gonneea, M. E., Groening, M., Ishitobi, T., Kontar, E., Liong Wee Kwong, L., Marie, D. E. P., Moore, W. S., Oberdorfer, J. A., Peterson, R., Ramessur, R., Rapaglia, J., Stieglitz, T., & Top, Z. (2012). Isotopic, geophysical and biogeochemical investigation of submarine groundwater discharge: IAEA-UNESCO intercomparison exercise at Mauritius Island. Journal of Environmental Radioactivity, 104, 24-45. https://doi.org/https://doi.org/10.1016/j.jenvrad.2011.09.009 Rahaman, W., & Singh, S. K. (2012). Sr and 87Sr/86Sr in estuaries of western India: Impact of submarine groundwater discharge. Geochimica et Cosmochimica Acta, 85, 275-288. https://doi.org/https://doi.org/10.1016/j.gca.2012.02.025 Ruben, Z., Murgulet, D., Lopez, C. V., Marino-Tapia, I., Valle-Levinson, A., & Matthews, K. E. (2024). Influence of submarine groundwater discharge on the nutrient dynamics of a fringing-reef lagoon. Journal of Hydrology: Regional Studies, 56, 101956. https://doi.org/https://doi.org/10.1016/j.ejrh.2024.101956 Savatier, M., & Rocha, C. (2021). Rethinking tracer-based (Ra, Rn, salinity) approaches to estimate point-source submarine groundwater discharge (SGD) into coastal systems. Journal of Hydrology, 598, 126247. https://doi.org/https://doi.org/10.1016/j.jhydrol.2021.126247 Schubert, M., Lin, M., Clark, J. F., Kralik, M., Damatto, S., Copia, L., Terzer-Wassmuth, S., & Harjung, A. (2024). Short-lived natural radionuclides as tracers in hydrogeological studies – A review. Science of The Total Environment, 920, 170800. https://doi.org/https://doi.org/10.1016/j.scitotenv.2024.170800 Slomp, C. P., & Van Cappellen, P. (2004). Nutrient inputs to the coastal ocean through submarine groundwater discharge: Controls and potential impact [Article]. Journal of Hydrology, 295(1-4), 64-86. https://doi.org/10.1016/j.jhydrol.2004.02.018 Smoak, J. M., Sanders, C. J., Patchineelam, S. R., & Moore, W. S. (2012). Radium mass balance and submarine groundwater discharge in Sepetiba Bay, Rio de Janeiro State, Brazil. Journal of South American Earth Sciences, 39, 44-51. https://doi.org/https://doi.org/10.1016/j.jsames.2012.07.004 Taniguchi, M. (1995). Change in Groundwater Seepage Rate into Lake Biwa, Japan [Article]. Japanese Journal of Limnology, 56(4), 261-267. https://doi.org/10.3739/rikusui.56.261 Taniguchi, M., Burnett, W. C., Cable, J. E., & Turner, J. V. (2002). Investigation of submarine groundwater discharge [Article]. Hydrological Processes, 16(11), 2115-2129. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036055594&doi=10.1002%2fhyp.1145&partnerID=40&md5=69b4189962adff8e68bd20abd73a21d3 Taniguchi, M., Burnett, W. C., Dulaiova, H., Kontar, E. A., Povinec, P. P., & Moore, W. S. (2006). Submarine groundwater discharge measured by seepage meters in sicilian coastal waters. Continental Shelf Research, 26(7), 835-842. https://doi.org/https://doi.org/10.1016/j.csr.2005.12.002 Taniguchi, M., & Fukuo, Y. (1993). Continuous Measurements of Ground‐Water Seepage Using an Automatic Seepage Meter [Article]. Groundwater, 31(4), 675-679. https://doi.org/10.1111/j.1745-6584.1993.tb00601.x Tiwari, S. K., Rai, S. K., Bartarya, S. K., Gupta, A. K., & Negi, M. (2016). Stable isotopes (δ13CDIC, δD, δ18O) and geochemical characteristics of geothermal springs of Ladakh and Himachal (India): Evidence for CO2 discharge in northwest Himalaya. Geothermics, 64, 314-330. https://doi.org/https://doi.org/10.1016/j.geothermics.2016.06.012 Wang, W., Wang, Q., Liu, Z., Wang, Z., & Li, H. (2024). Carbon export from submarine groundwater discharge in a semi-enclosed bay: Impact for the buffering capacity against coastal ocean acidification. Water Research, 260, 121920. https://doi.org/https://doi.org/10.1016/j.watres.2024.121920 Williams, M. A., Kelsey, D. E., Baggs, T., Hand, M., & Alessio, K. L. (2018). Thorium distribution in the crust: Outcrop and grain-scale perspectives. Lithos, 320-321, 222-235. https://doi.org/https://doi.org/10.1016/j.lithos.2018.09.016 行政院環境保護署環境檢驗 (2004) 環境檢驗方法偵測極限測定指引 (NIEA-PA107)。環署檢字第0930072069G 號公告。 行政院環境保護署環境檢驗 (2004) 環境檢驗品管分析執行指引 (NIEA-PA104)。環署檢字第0930072069D 號公告。 行政院環境保護署環境檢驗 (2004) 環境檢驗品質管制指引通則 (NIEA-PA101)。環署檢字第0930072069A 號公告。 行政院環境保護署環境檢驗 (2004) 環境檢驗檢量線製備及查核指引 (NIEA-PA103)。環署檢字第0930072069C 號公告。 行政院環境保護署環境檢驗 (2024) 感應耦合電漿原子發射光譜法 (NIEA M104.02C)。環署檢字第1020104884 號公告。 行政院環境保護署環境檢驗 (2024) 感應耦合電漿質譜法(NIEA M105.01B)。環署檢字第1020105470 號公告。 行政院環境保護署環境檢驗 (2018) 水中陰離子檢測方法—離子層析法 (NIEA W415.54B)。環署檢字第1070006755 號公告。 何春蓀 (1987)。中央山脈東翼的地質。地工技術雜誌第18 期。 邱文昱(2023)。桃園海岸帶地下水流特徵研究。﹝碩士論文。國立中央大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/wsy4eq。 林毅杰 (2007)。台灣地區地下水入海之化學性質初探。﹝碩士論文。國立中山大學﹞臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/sj59x9。 財團法人中興工程顧問社 (2022)。地下水與地表水體成分與特性111 年度報告。 財團法人中興工程顧問社 (2023)。地下水與地表水體成分與特性112 年度報告。 財團法人中興工程顧問社 (2024)。地下水與地表水體成分與特性113 年度報告。 張堯禮(2015)。利用水氡及鐳同位素建立高屏沿岸海底湧泉輸出及通量。﹝碩士論文。國立臺灣大學﹞臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/c7se6s。 國史館臺灣文獻館採集組。(2005)。臺灣地名辭書(卷二)花蓮縣。國家圖書館臺灣記憶系統, 取自 https://tm.ncl.edu.tw/article?u=022_004_00003151 陳文山、黃奕彰、洪嘉佳、林虹志、馮翰亭、劉承浩 (2020) 「大南澳片岩」太魯閣帶的變質事件與中生代大地構造演化。經濟部中央地質調查所特刊,35 113-127。 黃俊凱(2015)。利用水氡與鐳同位素評估宜蘭地區海底湧泉輸出與通量。﹝碩士論文。國立臺灣大學﹞臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/dm4g6h。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96302 | - |
| dc.description.abstract | 本研究聚焦於探討台灣東部海底地下水滲流(Submarine Groundwater Discharge, SGD)的動態及其機制,分析其與區域地質和氣候條件之間的關聯,並估算淡水海底地下水滲流(Submarine Fresh Groundwater Discharge, SFGD)的通量。研究區域的地質背景以花崗岩、片麻岩及大理岩為主,具有高透水性及發達裂隙系統,有助於地下水快速流動,通過文獻回顧與數據分析,結合多種測量和計算方法,系統探討變質岩區域地下水滲流的特徵。為了更深入了解這些變化,將2024年第二季的數據作為地震後的樣本進行單獨分析,並將其他季節之數據比較乾季和濕季之間的滲流通量和流速變化。
研究數據顯示,台灣東岸地質導致滲流通量高於其他地區,破裂帶的存在進一步促進了地下水滲流,尤其是B-02井的鐳同位素(如ex224Ra)數據顯示該地區淡水滲流活動旺盛。乾季期間,鐳同位素活性顯著升高,反映出乾季地下水補注的增加。其SFGD之估算滲流通量範圍為3.93×10-1 - 8.23×10-1 m·d-1,平均值為 0.90 m·d-1,並藉由達西定律後可計算出水力傳導係數約為5.55×10-5 - 1.16×10-4 m·s-1符合現地調查及前人文獻。滲流活動在乾濕季節及地震前後均呈現顯著差異。地震前乾季的滲流通量與流速普遍高於濕季2022(Q4)與2023(Q1)的乾季滲流通量分別達454和489 dpm·m⁻²·day⁻¹,顯著高於2022(Q3)濕季之53.8 dpm·m⁻²·day⁻¹;兩個地下水井(Site-#1、Site-#2)亦呈現類似趨勢,乾季滲流通量明顯高於濕季,這反映了乾季水力條件對地下水滲流的增強作用;流速方面,SFGD之乾季流速(2022(Q4))的0.789 m·day⁻¹亦高於濕季(2022(Q3))的0.393 m·day⁻¹,說明降水減少及水力梯度變化可能加強了地下水的滲流速度。然而,地震後2024(Q2)之滲流活動達到歷史高峰,SFGD和Site-#1的滲流通量顯著增加,分別達804和923 dpm·m⁻²·day⁻¹,超越地震前乾濕季之數據;流速亦提升至0.823 m·day⁻¹;相較之下,Site-#2的滲流通量卻略有下降,維持濕季之變化趨勢,研究指出地質條件是影響滲流的重要因素。 這些地質與水文特徵強調了地震可能加劇地下結構破裂及水力梯度調整,進一步影響滲流模式。結合分析,本研究展示了季節性變化和地震對地下水滲流動態的顯著影響,為進一步理解台灣東部變質岩區域淡水海底地下水動態的特徵,也顯示出天然示蹤劑法和多方法綜合應用在滲流研究中的潛力,對未來的環境監測和資源管理具有重要意義。 | zh_TW |
| dc.description.abstract | This study focuses on exploring the dynamics and mechanisms of submarine groundwater discharge (SGD) in eastern Taiwan, analyzing its relationship with regional geological and climatic conditions, and estimating the flux of submarine fresh groundwater discharge (SFGD). The geological background of the study area is dominated by granite, gneiss, and marble, characterized by high permeability and well-developed fracture systems that facilitate rapid groundwater flow. Through literature review and data analysis, combined with various measurement and calculation methods, the characteristics of groundwater discharge in the metamorphic rock regions were systematically investigated. To gain deeper insights into these variations, data from 2024 (Q2) were analyzed separately as post-earthquake samples, and seasonal data were compared to examine the differences in discharge flux and flow rates between the dry and wet seasons.
Research data reveal that the geology of Taiwan's east coast results in higher discharge flux compared to other regions, with fault zones further enhancing groundwater discharge. Radium isotope measurements, particularly from well B-02 (e.g., ex224Ra), indicate active freshwater discharge in the area. The estimated SFGD flow rates ranges from 3.93×10⁻¹ to 8.23×10⁻¹ m·d⁻¹, averaging 0.90 m·d⁻¹, and the hydraulic conductivity calculated via Darcy's Law is approximately 5.55×10⁻⁵ to 1.16×10⁻⁴ m·s⁻¹, consistent with field observations and previous studies. Prior to the earthquake, dry season discharge flux and velocity were generally higher than in the wet season, with dry season discharge flux reaching 454 and 489 dpm·m⁻²·day⁻¹ in 2022(Q4) and 2023(Q1), significantly exceeding the 53.8 dpm·m⁻²·day⁻¹ recorded in the wet season. A similar trend was observed in the two groundwater wells (Site-#1 and Site-#2), where dry season discharge flux was markedly higher than in the wet season. Post-earthquake discharge activity in 2024(Q2) reached a peak, with SFGD and Site-#1 discharge flux increasing to 804 and 923 dpm·m⁻²·day⁻¹, surpassing all pre-earthquake seasonal data. These geological and hydrological characteristics highlight the potential for earthquakes to exacerbate subsurface structural fractures and adjust hydraulic gradients, further impacting discharge patterns. By integrating these analyses, this study demonstrates the significant influence of seasonal variations and earthquakes on groundwater discharge. It provides a deeper understanding of the characteristics of SFGD in the metamorphic rock regions of eastern Taiwan and showcases the potential of natural tracer methods and multi-method approaches in discharge studies. The findings are of critical importance for future environmental monitoring and resource management. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-12-24T16:14:58Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-12-24T16:14:58Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目次 iv 圖次 viii 表次 xi 第一章 緒論 1 1.1 研究架構 2 第二章 文獻回顧 3 2.1 研究區域背景 3 2.1.1 地理位置與地形 3 2.1.2 地質背景 5 2.1.3 氣候型態 7 2.2 海底地下水滲流 9 2.2.1 直接測量 11 2.2.2 水文地質模型法 13 2.2.3 天然示蹤劑法 14 2.3 鐳同位素化學示蹤劑法 15 第三章 採樣及分析方法 18 3.1 現地採樣方法 18 3.2 水質分析方法 21 3.2.1 碳酸氫根分析 22 3.2.2 感耦合電漿體原子發射光譜儀 24 3.2.3 感應耦合電漿質譜儀分析 25 3.2.4 離子層析儀 26 3.2.5 穩定氫氧同位素 28 3.2.6 同步延遲計數器 29 3.3 數據分析方法 33 3.3.1 採樣數據篩選 33 3.3.2 水質數據分析 33 3.3.3 鐳同位素數據分析 36 3.4 海底地下水滲流計算 37 第四章 結果與討論 39 4.1 基本水質採樣數據分析 39 4.2 主要陰陽離子數據分析 46 4.3 微量元素數據分析 54 4.4 鐳同位素水質數據分析結果 61 4.5 海底地下水滲流通量 63 4.5.1 估算變因篩選 63 4.5.2 淡水海底地下水通量計算 68 4.6 淡水海底地下水滲流通量季節性評估 75 第五章 結論與建議 78 5.1 結論 78 5.2 建議 80 參考文獻 81 附錄 一 2022(Q2)濕季之水質採樣基本數據及離子分析數據 92 附錄 二 2022(Q3)濕季之水質採樣基本數據及離子分析數據 93 附錄 三2022(Q3)濕季之水質採樣基本數據及離子分析數據–續 94 附錄 四 2022(Q4)乾季之水質採樣基本數據及離子分析數據 95 附錄 五2022(Q4)乾季之水質採樣基本數據及離子分析數據-續 96 附錄 六 2023(Q1)乾季之水質採樣基本數據及離子分析數據 97 附錄 七 2023(Q1)乾季之水質採樣基本數據及離子分析數據-續 98 附錄 八 2023(Q2)濕季之水質採樣基本數據及離子分析數據 99 附錄 九 2024(Q1)乾季之水質採樣基本數據及離子分析數據 100 附錄 十 2024(Q1)乾季之水質採樣基本數據及離子分析數據-續 101 附錄 十一 2024(Q2)濕季之水質採樣基本數據及離子分析數據 102 附錄 十二 2024(Q2)濕季之水質採樣基本數據及離子分析數據-續 103 附錄 十三 2022(Q2)濕季之微量元素分析數據 104 附錄 十四 2022(Q3)濕季之微量元素分析數據 105 附錄 十五 2022(Q3)濕季之微量元素分析數據-續 106 附錄 十六 2022(Q4)乾季之微量元素分析數據 107 附錄 十七 2022(Q4)乾季之微量元素分析數據-續 108 附錄 十八 2023(Q1)乾季之微量元素分析數據 109 附錄 十九 2023(Q1)乾季之微量元素分析數據-續 110 附錄 二十 2023(Q2)濕季之微量元素分析數據 111 附錄 二十一 2023(Q2)濕季之微量元素分析數據-續 112 附錄 二十二 2024(Q1)乾季之微量元素分析數據 113 附錄 二十三 2024(Q1)乾季之微量元素分析數據-續 114 附錄 二十四 2024(Q2)濕季之微量元素分析數據 115 附錄 二十五 2024(Q2)濕季之微量元素分析數據-續 116 附錄 二十六 2022(Q2)濕季之鐳同位素採樣數據 117 附錄 二十七 2022(Q3)濕季之鐳同位素採樣數據 118 附錄 二十八 2022(Q4)乾季之鐳同位素採樣數據 119 附錄 二十九 2022(Q4)乾季之鐳同位素採樣數據-續 120 附錄 三十 2023(Q1)乾季之鐳同位素採樣數據 121 附錄 三十一 2023(Q2)濕季之鐳同位素採樣數據 122 附錄 三十二 2024(Q1)乾季之鐳同位素採樣數據 123 附錄 三十三 2024(Q2)濕季之鐳同位素採樣數據 124 附錄 三十四 2022至2024各季氫氧同位素採樣數據 125 附錄 三十五 2022至2024各季氫氧同位素採樣數據-續 126 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 鐳同位素 | zh_TW |
| dc.subject | 海底地下水 | zh_TW |
| dc.subject | 放射性同位素示蹤法 | zh_TW |
| dc.subject | submarine fresh groundwater discharge | en |
| dc.subject | radium | en |
| dc.subject | radioisotope tracer method | en |
| dc.title | 以天然放射性同位素探討台灣東部海底地下水滲流之研究 | zh_TW |
| dc.title | Using natural radioactive isotopes to explore coastal submarine groundwater discharge | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 邱永嘉;楊汶達 | zh_TW |
| dc.contributor.oralexamcommittee | Yung-Chia Chiu;Wen-Ta Yang | en |
| dc.subject.keyword | 海底地下水,鐳同位素,放射性同位素示蹤法, | zh_TW |
| dc.subject.keyword | submarine fresh groundwater discharge,radium,radioisotope tracer method, | en |
| dc.relation.page | 126 | - |
| dc.identifier.doi | 10.6342/NTU202404703 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-12-16 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 地質科學系 | - |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf | 7 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
