請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96297完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳景然 | zh_TW |
| dc.contributor.advisor | Ching-Jan Chen | en |
| dc.contributor.author | 余昇翰 | zh_TW |
| dc.contributor.author | Sheng-Han Yu | en |
| dc.date.accessioned | 2024-12-24T16:13:30Z | - |
| dc.date.available | 2024-12-25 | - |
| dc.date.copyright | 2024-12-24 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-12-16 | - |
| dc.identifier.citation | [1] Paul. C. Chao et al, “A new single inductor bipolar multi-output (SIBMO) DC-DC converter driven by constant on-time with improved performance”, in ACM Microsystem Technologies, vol. 22, No. 6, pp. 1405-1418, Jun. 2016.
[2] C. Chae, H. Le, K. Lee, G. Cho and G. Cho, "A Single-Inductor Step-Up DC-DC Switching Converter With Bipolar Outputs for Active Matrix OLED Mobile Display Panels," in IEEE Journal of Solid-State Circuits, vol. 44, no. 2, pp. 509-524, Feb. 2009. [3] S. Wang, Y. Woo, Y. Yuk, G. Cho and G. Cho, "High efficiency Single-Inductor Boost/Buck Inverting Flyback converter with hybrid energy transfer media and multi level gate driving for AM OLED panel," Symposium on VLSI Circuits, 2010. [4] W. Xu, Y. Li, Z. Hong, D. Killat and H. Schleifer, "A single-inductor multiple-bipolar-output (SIMBO) converter with fully-adaptive feedback matrix and improved light-load ripple," ESSCIRC, 2011, pp. 435-438. [5] Y. -H. Lee et al., "A near-zero cross-regulation single-inductor bipolar-output (SIBO) converter with an active-energy-correlation control for driving cholesteric-LCD," IEEE Custom Integrated Circuits Conference (CICC), 2011. [6] S. Hong, S. Park, T. Kong and G. Cho, "Inverting Buck-Boost DC-DC Converter for Mobile AMOLED Display Using Real-Time Self-Tuned Minimum Power-Loss Tracking (MPLT) Scheme With Lossless Soft-Switching for Discontinuous Conduction Mode," in IEEE Journal of Solid-State Circuits, vol. 50, no. 10, pp. 2380-2393, Oct. 2015 [7] B. Kwak, S. Hong and O. Kwon, "A Highly Power-Efficient Single-Inductor Bipolar-Output DC–DC Converter Using Hysteretic Skipping Control for OLED-on-Silicon Microdisplays," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 12, pp. 2017-2021, Dec. 2018. [8] S. Hong, "11.6 A 1.46mm2 Simultaneous Energy-Transferring Single-Inductor Bipolar-Output Converter with a Flying Capacitor for Highly Efficient AMOLED Display in 0.5µm CMOS," IEEE International Solid- State Circuits Conference - (ISSCC), 2020. [9] F. Mao et al., "A Hybrid Single-Inductor Bipolar-Output DC-DC Converter With Floating Negative Output for AMOLED Displays," in IEEE Journal of Solid-State Circuits, Early access. [10] Chris Schaef, “Potential of Hybrid Converters in Compute Platform Power Delivery”, International Power Supply-on-Chip (PwrSoC), 2018. [11] K. I. Hwu and Y. T. Yau, "KY Converter and Its Derivatives," in IEEE Transactions on Power Electronics, vol. 24, no. 1, pp. 128-137, Jan. 2009, doi: 10.1109/TPEL.2008.2009178. [12] Choi, Byungcho. Pulsewidth Modulated DC-to-DC Power Conversion: Circuits, Dynamics, Control, and DC Power Distribution Systems. John Wiley & Sons, 2021. [13] Y. -S. Hwang, Y. -T. Ku, A. Liu, C. -H. Chen and J. -J. Chen, "A New Efficiency-Improvement Low-Ripple Charge-Pump Boost Converter Using Adaptive Slope Generator With Hysteresis Voltage Comparison Techniques," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 5, pp. 935-943, May 2015, doi: 10.1109/TVLSI.2014.2331315 [14] J. Baek et al., "11.7 A Voltage-Tolerant Three-Level Buck-Boost DC-DC Converter with Continuous Transfer Current and Flying Capacitor Soft Charger Achieving 96.8% Power Efficiency and 0.87μs/V DVS Rate," 2020 IEEE International Solid- State Circuits Conference - (ISSCC), 2020, pp. 202-204, doi: 10.1109/ISSCC19947.2020.9063105. [15] Chen-Hsuan Hsu “Implementation of a Monolithic All-Thin-Gate-NMOS KY-Boost Converter With Reused Flying-Capacitor Gate Driver” M.S Thesis [16] Y. -A. Lin et al., "A Right-Half-Plane Zero-Free Buck-Boost DC-DC Converter with 97.46% High Efficiency and Low Output Voltage Ripple," 2019 Symposium on VLSI Circuits, 2019, pp. C174-C175, doi: 10.23919/VLSIC.2019.8778075. [17] W. -L. Zeng et al., "Design of KY Converter With Constant On-Time Control Under DCM Operation," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 10, pp. 1753-1757, Oct. 2019, doi: 10.1109/TCSII.2019.2925617. [18] Y. Zhang et al., "Analysis and Implementation of a High-Performance-Integrated KY Converter," in IEEE Transactions on Power Electronics, vol. 32, no. 12, pp. 9051-9064, Dec. 2017, doi: 10.1109/TPEL.2017.2656466. [19] W. Zeng, C. Lam, S. Sin, F. Maloberti, M. Wong and R. P. Martins, "A 220-MHz Bondwire-Based Fully-Integrated KY Converter With Fast Transient Response Under DCM Operation," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 11, Nov. 2018, doi: 10.1109/TCSI.2018.2854370. [20] Y. Xie, S. Fan, C. Yuan and L. Geng, "Design of Improved KY Converter with Low Power ZCD Circuit for Wide Load Current Application," 2020 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), 2020, pp. 45-46, doi: 10.1109/ICTA50426.2020.9332054 [21] W. -L. Zeng, C. Pan, C. -S. Lam, S. -W. Sin, C. Zhan and R. P. Martins, "A 95% Peak Efficiency Modified KY (Boost) Converter for IoT with Continuous Flying Capacitor Charging in DCM," 2021 IEEE Asian Solid-State Circuits Conference (A SSCC), 2021, pp. 1-3, doi: 10.1109/A-SSCC53895.2021.9634724. [22] B. Lee and D. B. Ma, "A 20 MHz On-Chip All-NMOS 3-Level DC–DC Converter With Interception Coupling Dead-Time Control and 3-Switch Bootstrap Gate Driver," in IEEE Transactions on Industrial Electronics, vol. 68, no. 7, pp. 6339 6347, July 2021, doi: 10.1109/TIE.2020.2996148. [23] P. Bau, M. Cousineau, B. Cougo, F. Richardeau, D. Colin and N. Rouger, "A CMOS gate driver with ultra-fast dV/dt embedded control dedicated to optimum EMI and turn-on losses management for GaN power transistors," 2018 14th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), 2018, pp. 105-108, doi: 10.1109/PRIME.2018.8430331. [24] P. Favrat, P. Deval and M. J. Declercq, "A high-efficiency CMOS voltage doubler," in IEEE Journal of Solid-State Circuits, vol. 33, no. 3, pp. 410-416, March 1998, doi: 10.1109/4.661206. [25] Y. Nakagome et al., "An experimental 1.5-V 64-Mb DRAM," in IEEE Journal of Solid-State Circuits, vol. 26, no. 4, pp. 465-472, April 1991, doi: 10.1109/4.75040. [26] Christoph Sandner, “Advanced DC-DC Converter Techniques”, European Solid-State Circuits Conference(ESSCIRC), 2018. [27] C. -H. Huang et al., "Improving SIMO-Regulated Digital SoC Energy Efficiencies Through Adaptive Clocking and Concurrent Domain Control," in IEEE Journal of Solid-State Circuits, vol. 57, no. 1, pp. 90-102, Jan. 2022. [28] Kim S, Krlshnarnurthy H K, Sofer S, et al. A 1.8W High-Frequency SIMO Converter Featuring Digital Sensor-Less Computational Zero Current Operation and Non-Linear Duty-Boost[M]. 2023: 10-2. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96297 | - |
| dc.description.abstract | 在傳統AMOLED的電源管理積體電路中,它由兩個升壓轉換器和一個反向降壓-升壓轉換器組成。近年來,大多數研究集中於利用傳統的單電感雙輸出轉換器架構,試圖將三組大電感減少為兩組,並強調控制暫態響應以減少電感和電容的值。本論文提出了可應用於AMOLED電源供應之KY單電感雙極性輸出轉換器。傳統的升壓轉換器功率開關需要承受較大的跨壓且需要大的輸出電容來抑制輸出電壓漣波。為了改善以上所述缺點,本文提出使用了全NMOS的功率開關之積體化KY轉換器,並且使用了其功率級電路上的飛電容提供驅動電路電源,透過電荷流量分析可以得知,在特定比率之轉壓比之下,能夠獲得比傳統升壓轉換器更好的效率。
此外,本論文中使用切換式電容轉換器作為提供負輸出電壓之轉換器,透過切換是電容轉換器中的飛電容之隔離,使得兩輸出電壓之交叉調整率有顯著之改善。而使用交錯架構之切換式電容轉換器改善了切換式電容轉換器輸出電流不連續的問題,使得正輸出電壓不因後端切換器之負載而影響。 另外,本文透過電導調變控制的方式控制切換式電容轉換器之輸出電壓,使其能夠操作在快速切換極限模式並保證輸出電壓為所設計之電壓值。透過偵測切換器之負輸出電壓,調整功率開關之導通電阻大小,進而控制輸出電壓。 本論文之所提出之KY單電感雙極性輸出轉換器使用T18HVG2製程技術實現,量測結果雖不盡人意,但已對晶片內部所遇到的問題得到結論。從模擬結果上來看,負載電流從30 mA到350 mA的效率皆大於85%,在負載電流為160 mA時達到峰值效率為90.9%,正輸出電壓之交叉調節率為0.184 mV/mA ,負輸出電壓之交叉調節率為0.04 mV/mA。 | zh_TW |
| dc.description.abstract | In traditional AMOLED power management integrated circuits, the system typically consists of two boost converters and one buck-boost converter. In recent years, most research has focused on utilizing traditional single-inductor bipolar-output (SIBO) converter architectures, aiming to reduce the number of large inductors from three sets to two sets and decrease inductor and capacitor values. This thesis proposes a KY-SIBO converter applied in AMOLED power supply. Traditional boost converter power switches endure significant voltage stress and require large output capacitors to suppress output voltage ripple. To address these issues, this thesis proposes an integrated KY converter employing all-NMOS power switches and utilizing flying capacitors in its power stage to provide power to the driving circuit. Through charge flow analysis of the KY boost converter, the efficiency when utilizing the KY boost converter is better than that of the traditional boost converter at specific conversion ratios.
Additionally, this thesis employs a switching capacitor converter as the negative output voltage provider, achieving significant improvements in the cross-regulation rate through flying capacitor isolation between two output voltages compared to traditional single-inductor bipolar-output converters. The interleaved switching capacitor converter addresses the issue of discontinuous input currents in the switching capacitor converter, ensuring that the positive output voltage of the single-inductor bipolar-output converter remains unaffected by the load of the SC converter. Furthermore, this thesis proposes a controller that uses conductance modulation of the switching capacitor converter's negative output voltage to ensure the converter operates in Fast Switching Limit (FSL) mode and stabilizes the negative output voltage with a reference voltage. By detecting the negative output voltage of the proposed converter, the controller adjusts the Rds,on of power switches to ensure the desired output voltage. The KY-SIBO converter proposed in this thesis is fabricated in the T18HVG2 process. Although the measurement results are not ideal, conclusions have been drawn regarding the issues encountered within the chip. The efficiency for loading currents ranging from 30 mA to 350 mA is greater than 85%, with a peak efficiency of 90.9%. The cross-regulation in the positive output voltage is 0.184 mV/mA, while the cross-regulation in the negative output voltage is 0.04 mV/mA. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-12-24T16:13:30Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-12-24T16:13:30Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 ii
中文摘要 iii Abstract iv Table of Content vi List of Figures viii List of Tables xi Chapter 1. Introduction 1 1.1 Background 1 1.2 Research Motivation 2 1.3 Thesis Outline 7 1.4 Thesis Contribution 8 Chapter 2. Circuit Analysis of KY Converter and SC Converter 9 2.1 Circuit Review of Boost Converter and KY-Boost Converter 9 2.1.1 Steady-State Analysis of Boost Converter and KY Converter 11 2.1.2 Charge Flow Analysis of Boost Converter and KY Converter 15 2.2 Circuit Analysis of Buck-Boost Converter and SC Converter 21 2.2.1 Steady-State Analysis of Buck-Boost Converter and SC Converter 21 2.2.2 Charge Flow Analysis of Buck-Boost Converter and SC Converter 24 Chapter 3. Circuit Architecture of Proposed KY-SIBO Converter 28 3.1 Proposed Architecture of KY-SIBO Converter 28 3.2 KY Converter 29 3.3 Interleaved Switching Capacitor Converter 31 Chapter 4. The KY Converter Architecture 36 4.1 Driver Design and Architecture of KY Converter 36 4.1.1 Driver Design and Simulation 37 Chapter 5. The SC Converter Architecture and Circuit Operation 44 5.1 Driver Design and Architecture of the SC Converter 44 5.1.1 Power Stage Design 45 5.1.2 Driver Design and Simulation 45 5.2 System Design of SC Converter with Conductance Modulation 48 5.2.1 Control Loop Design of the SC Converter 49 Chapter 6. Circuit Implement in Transistor Level 53 6.1 Subcircuit of KY Converter 53 6.1.1 Operational Transconductance Amplifier 53 6.1.2 Ramp and CLK Generator 55 6.2 Subcircuit of Interleaved SC Converter 56 6.2.1 Negative Voltage to Positive Voltage Converter 56 6.2.2 BITs Counter 57 6.2.3 BITs Decoder 59 Chapter 7. Experiment Results 61 7.1 Chip Overview 61 7.2 Chip Printed Circuit Board Design 64 7.3 Measurement Results 67 Chapter 8. Conclusions and Future Results 76 8.1 Conclusions 76 8.2 Future Works 78 Reference 79 | - |
| dc.language.iso | en | - |
| dc.subject | 切換式電容轉換器 | zh_TW |
| dc.subject | 電導調變 | zh_TW |
| dc.subject | 驅動電路 | zh_TW |
| dc.subject | KY 轉換器 | zh_TW |
| dc.subject | 單電感雙極性輸出轉換器 | zh_TW |
| dc.subject | Conductance Modulation | en |
| dc.subject | Single Inductor Bipolar Output Converter | en |
| dc.subject | KY Converter | en |
| dc.subject | Driver Circuit | en |
| dc.subject | Switching Capacitor Converter | en |
| dc.title | 應用於主動矩陣有機發光二極體電源供應之單電感雙極性輸出轉換器 | zh_TW |
| dc.title | A Single-Inductor Bipolar-Output Converter Applied to Power Supply for Active-Matrix Organic Light-Emitting Diodes | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳耀銘;陳信樹 | zh_TW |
| dc.contributor.oralexamcommittee | Yaow-Ming Chen;Hsin-Shu Chen | en |
| dc.subject.keyword | 單電感雙極性輸出轉換器,KY 轉換器,驅動電路,切換式電容轉換器,電導調變, | zh_TW |
| dc.subject.keyword | Single Inductor Bipolar Output Converter,KY Converter,Driver Circuit,Switching Capacitor Converter,Conductance Modulation, | en |
| dc.relation.page | 81 | - |
| dc.identifier.doi | 10.6342/NTU202404735 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-12-17 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 5.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
