請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96293完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳景然 | zh_TW |
| dc.contributor.advisor | Ching-Jan Chen | en |
| dc.contributor.author | 黃顗融 | zh_TW |
| dc.contributor.author | Yi-Rong Huang | en |
| dc.date.accessioned | 2024-12-24T16:12:21Z | - |
| dc.date.available | 2024-12-25 | - |
| dc.date.copyright | 2024-12-24 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-12-12 | - |
| dc.identifier.citation | [1] Y. Yan, P. H. Liu, F. Lee, Q. Li, and S. Tian, “V2 control with capacitor current ramp compensation using lossless capacitor current sensing,” in 2013 IEEE Energy Conversion Congress and Exposition, 2013, pp. 117-124.
[2] R. Redl, and J. Sun, “Ripple-Based Control of Switching Regulators—An Overview,” IEEE Transactions on Power Electronics, vol. 24, no. 12, pp. 2669-2680, 2009. [3] J. Li, and F. C. Lee, “Modeling of V2 Current-Mode Control,” in 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, 2009, pp. 298-304. [4] S. Tian, K. Y. Cheng, F. C. Lee, and P. Mattavelli, “Small-signal model analysis and design of constant-on-time V2 control for low-ESR caps with external ramp compensation,” in 2011 IEEE Energy Conversion Congress and Exposition, 2011, pp. 2944-2951. [5] S. Tian, F. C. Lee, P. Mattavelli, K. Y. Cheng, and Y. Yan, “Small-Signal Analysis and Optimal Design of External Ramp for Constant On-Time V2 Control With Multilayer Ceramic Caps,” IEEE Transactions on Power Electronics, vol. 29, no. 8, pp. 4450-4460, 2014. [6] K. Y. Hu, S. M. Lin, and C. H. Tsai, “A Fixed-Frequency Quasi-V2 Hysteretic Buck Converter With PLL-Based Two-Stage Adaptive Window Control,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 10, pp. 2565-2573, 2015. [7] C. S. Huang, C. Y. Wang, J. H. Wang, and C. H. Tsai, “A Fast-Transient Quasi-V2 Switching Buck Regulator Using AOT Control,” in IEEE Asian Solid-State Circuits Conference, 2011, pp. 53-56. [8] D. H. Jung, K. Kim, S. Joo, and S. O. Jung, “0.293-mm2 Fast Transient Response Hysteretic Quasi-V2 DC–DC Converter With Area-Efficient Time-Domain-Based Controller in 0.35-μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 53, no. 6, pp. 1844-1855, 2018. [9] C. Y. Ting, J. Y. Lin, and C. C. P. Chen, “A Quasi-V2 Hysteretic Buck Converter With Adaptive COT Control for Fast DVS and Load-Transient Response in RF Applications,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 3, pp. 531-535, 2020. [10] C. H. Tsai, S. M. Lin, and C. S. Huang, “A Fast-Transient Quasi-V2 Switching Buck Regulator Using AOT Control With a Load Current Correction (LCC) Technique,” IEEE Transactions on Power Electronics, vol. 28, no. 8, pp. 3949-3957, 2013. [11] Y. L. Huang, C. J. Chen, C. C. Hsu, and T. W. Huang, “Peak Passive Ripple Mode Control for Boost Converter with Fast Transient Response,” in 2022 IEEE 7th Southern Power Electronics Conference (SPEC), 2022, pp. 1-6. [12] Y. R. Huang, C. J. Chen, J. C. Wu, and T. W. Huang, “A Fast-Transient Boost Converter With Peak Passive Ripple Mode Control and AC Couple,” IEEE Transactions on Power Electronics, vol. 38, no. 10, pp. 12975-12987, 2023. [13] W. Huang, L. Liu, X. Liao, C. Xu, and Y. Li, “A 240-nA Quiescent Current, 95.8% Efficiency AOT-Controlled Buck Converter With A2-Comparator and Sleep-Time Detector for IoT Application,” IEEE Transactions on Power Electronics, vol. 36, no. 11, pp. 12898-12909, 2021. [14] S. H. Pakala, P. R. Surkanti, and P. M. Furth, “A Spread-Spectrum Mode Enabled Ripple-Based Buck Converter Using a Clockless Frequency Control,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 3, pp. 382-386, 2019. [15] F. Su, and W. H. Ki, “Digitally Assisted Quasi-V2 Hysteretic Buck Converter with Fixed Frequency and without Using Large-ESR Capacitor,” in IEEE International Solid-State Circuits Conference - Digest of Technical Papers, 2009, pp. 446-447,447a. [16] J. Li, and F. C. Lee, “New Modeling Approach and Equivalent Circuit Representation for Current-Mode Control,” IEEE Transactions on Power Electronics, vol. 25, no. 5, pp. 1218-1230, 2010. [17] Y. C. Lin, C. J. Chen, D. Chen, and B. Wang, “A Ripple-Based Constant On-Time Control With Virtual Inductor Current and Offset Cancellation for DC Power Converters,” IEEE Transactions on Power Electronics, vol. 27, no. 10, pp. 4301-4310, 2012. [18] C. F. Nien, D. Chen, S. F. Hsiao, L. Kong, C. J. Chen, W. H. Chan, and Y. L. Lin, “A Novel Adaptive Quasi-Constant On-Time Current-Mode Buck Converter,” IEEE Transactions on Power Electronics, vol. 32, no. 10, pp. 8124-8133, 2017. [19] L. Kong, D. Chen, S. F. Hsiao, C. F. Nien, C. J. Chen, and K. F. Li, “A Novel Adaptive-Ramp Ripple-Based Constant On-Time Buck Converter for Stability and Transient Optimization in Wide Operation Range,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 3, pp. 1314-1324, 2018. [20] S. Bari, Q. Li, and F. C. Lee, “High Frequency Small Signal Model for Inverse Charge Constant On-Time (IQCOT) Control,” in IEEE Energy Conversion Congress and Exposition (ECCE), 2018, pp. 6000-6007. [21] C. H. Cheng, C. J. Chen, and S. S. Wang, “Small-Signal Model of Flyback Converter in Continuous-Conduction Mode With Peak-Current Control at Variable Switching Frequency,” IEEE Transactions on Power Electronics, vol. 33, no. 5, pp. 4145-4156, 2018. [22] W. C. Liu, C. J. Chen, C. H. Cheng, and H. J. Chen, “A Novel Accurate Adaptive Constant On-Time Buck Converter for a Wide-Range Operation,” IEEE Transactions on Power Electronics, vol. 35, no. 4, pp. 3729-3739, 2020. [23] S. F. Hsiao, C. F. Nien, D. Chen, and C. J. Chen, “Four-Frequency Small-Signal Model for High-Bandwidth Voltage Regulator With Current-Mode Control,” IEEE Access, vol. 10, pp. 25633-25644, 2022. [24] X. Cheng, J. Liu, Y. Shao, and Z. Liu, “High-Frequency Modelling of Constant On-Time Current Mode Buck Converter and Controller Design by Combining Genetic Algorithm,” IEEE Transactions on Power Electronics, vol. 37, no. 12, pp. 15099-15110, 2022. [25] D. Lu, X. Zeng, and Z. Hong, “Accurate Loop Gain Model of Ripple-Based Constant on-time Controlled Buck Converters,” IEEE Transactions on Power Electronics, vol. 38, no. 6, pp. 7034-7048, 2023. [26] Y. Huang, and C. Cheung, “Small Signal Modeling of the Hysteretic Modulator with a Current Ripple Synthesizer,” in IEEE Applied Power Electronics Conference and Exposition (APEC), 2016, pp. 1616-1623. [27] Y. C. Hsu, D. Chen, S. F. Hsiao, H. Y. Cheng, and C. S. Huang, “Modeling of the Control Behavior of Current-Mode Constant On-Time Boost Converters,” IEEE Transactions on Industry Applications, vol. 52, no. 6, pp. 4919-4927, 2016. [28] R. W. E. a. D. Maksimovic, Fundamentals Power Electron (Second Edition): USA Kluwer, 2001. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96293 | - |
| dc.description.abstract | 被動漣波恆定導通時間(Passive Ripple Constant On-Time, PRCOT)控制的轉換器被廣泛地使用在行動裝置上,以提高輕載效率和瞬態響應。為了能夠設計PRCOT控制的迴路穩定度以及頻寬,需要一精準的小訊號模型用於控制器設計。在先前的研究,描述函數(Describing Function, DF)法被廣泛的使用來推導恆定導通控制的小訊號模型。然而先前的小訊號模型,皆假設被動漣波斜率為一固定斜率,這造成模型在小RC時間常數的情況下不能精準地預測頻率響應,因為被動漣波斜率在小RC時間常數下呈現指數型斜率。此篇論文提出一種改進的描述函數方法,此新方法可以用來處理指數型斜率。提出的方法利用微分方程去描述被動漣波,以此在小訊號建模上達到較高的精準度。此篇論文以被動漣波恆定導通控制的升壓轉換器當作小訊號模型推導的範例。驗證用的電路參數分別是輸入電壓3.3V,輸出電壓5V,切換頻率100kHz到300kHz以及輸出電流1A。不管是在固定斜率或者指數型斜率的條件下,模擬與實驗結果皆驗證提出的模型精準度超過切換頻率。 | zh_TW |
| dc.description.abstract | Passive ripple constant on-time (PRCOT) controlled converters have been widely used for mobile applications to improve light-load efficiency and transient response. An accurate small-signal model is inevitable for PRCOT control to estimate stability and design high loop gain bandwidth. The describing function (DF) method has been used to model the constant on-time control. However, previous research assumes a constant passive ripple slope, which is different at small RC time-constant conditions and causes inaccurate modeling results. In this dissertation, an improved describing function modeling approach is proposed to handle exponentially varying slope. The proposed method employs differential equations to characterize passive ripple, which achieves high accuracy in small signal modeling. This paper takes a PRCOT controlled boost converter as an example to demonstrate the modeling approach. The specifications for verification are input voltage 3.3V, output voltage 5V, switching frequency 100kHz to 300kHz and output current 1A. Simulation and experiment results verified the accuracy of the proposed model even beyond the switching frequency for both constant slope or exponentially varying slope passive ramp cases. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-12-24T16:12:21Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-12-24T16:12:21Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 ii
中文摘要 iv Abstract v Table of Content vi List of Figures viii List of Tables xii Chapter 1. Introduction 1 1.1 Research Background 1 1.2 Review of V2 Constant On-Time Control 2 1.3 Introduction of Passive Ripple Constant On-Time Control 4 1.3.1 Exponentially-Varying Slope of Passive Ripple 6 1.3.2 Different Types of Passive Ripple Circuits 6 1.4 Review of Describing Function Modeling Approach 8 1.5 Dissertation Organization 9 Chapter 2. Previous and Proposed Modeling Methods for PRCOT Controlled Boost Converter 11 2.1 Describing Function Modeling Approach for Vc to Vout Transfer Function 12 2.2 Constant slope model 14 2.2.1 Step1: Model Assumptions 14 2.2.2 Step2: Equations of Modulation Principle 15 2.2.3 Step3: Fourier Analysis 16 2.3 Constant intersection slope model 17 2.4 Proposed Modeling Method 18 2.4.1 Step1: Model Assumptions 19 2.4.2 Step2: Equations of Modulation Principle 19 2.4.3 Step3: Equations of Passive Ripple 21 2.4.4 Step4: Fourier Analysis 23 2.4.5 Step5: Pole-Zero Decomposition of Gdvc(s) 26 2.4.6 Step6: Derivation of Gvc(s) 27 2.5 Simulation Verification of Small Signal Model 28 2.5.1 Verification of Constant Slope Model and Constant Intersection Slope Model 30 2.5.2 Verification of Proposed Models 32 2.6 Analysis of High-Frequency Gain Peaks of Gdvc(s) 36 2.6.1 Physical Meaning of Gain Peaks 37 Chapter 3. Experimental Verification of Small Signal Model 39 3.1 Experimental Setup 40 3.2 Verification of Proposed Gvc(s) Model 41 Chapter 4. Feedback Loop Design for PRCOT Controlled Boost Converter 45 4.1 Stability of Inner Passive Ripple Loop 45 4.2 Outer Voltage Loop Design 46 4.2.1 Pole-Zero Analysis of Gvc_pz(s) 46 4.2.2 Compensation Strategy 48 4.2.3 Design Procedure 50 Chapter 5. Extension of Proposed Modeling Method 52 5.1 Modeling Vout-sourcing PRCOT controlled boost converter with ac coupling 52 5.1.1 Equation of Vout-Sourcing Passive Ripple 53 5.1.2 Equation of AC Coupling Ripple 57 5.1.3 Equation of Output Voltage 63 5.1.4 Equation of Inductor Current 65 5.1.5 Fourier Analysis 68 5.1.6 Derivation of Gvc(s) 70 5.2 Simulation Verification of Small Signal Model 71 Chapter 6. Conclusion and Future Work 73 Reference 74 Appendix A. Derivation of Proposed Modeling Method 77 A1. Derivation for Fourier coefficient of duty cm(d) 77 A2. Derivation for equation (2 17) 79 Appendix B. Approximation Procedure for wPR and wPR_HF 82 Appendix C. Definition of Parameters 84 Publication List 90 | - |
| dc.language.iso | en | - |
| dc.subject | 描述函數(DF) | zh_TW |
| dc.subject | 指數型斜率 | zh_TW |
| dc.subject | 被動漣波恆定導通時間(PRCOT) | zh_TW |
| dc.subject | 小訊號模型 | zh_TW |
| dc.subject | 固定斜率 | zh_TW |
| dc.subject | Exponentially varying slope | en |
| dc.subject | Passive ripple constant on-time (PRCOT) | en |
| dc.subject | Describing function (DF) | en |
| dc.subject | Small signal model | en |
| dc.subject | Constant slope | en |
| dc.title | 應用於被動漣波定導通控制電源轉換器之精準小訊號建模方法 | zh_TW |
| dc.title | A Precise Small-Signal Modeling Method for Passive Ripple Constant On-Time Controlled Power Converters | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 陳德玉;邱煌仁;陳耀銘;金藝璘;唐丞譽 | zh_TW |
| dc.contributor.oralexamcommittee | Dan Chen;Huang-Jen Chiu;Yaow-Ming Chen;Katherine A. Kim;Cheng-Yu Tang | en |
| dc.subject.keyword | 被動漣波恆定導通時間(PRCOT),小訊號模型,描述函數(DF),固定斜率,指數型斜率, | zh_TW |
| dc.subject.keyword | Passive ripple constant on-time (PRCOT),Describing function (DF),Small signal model,Constant slope,Exponentially varying slope, | en |
| dc.relation.page | 90 | - |
| dc.identifier.doi | 10.6342/NTU202404713 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-12-13 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電機工程學系 | - |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 5.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
