Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96291
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳虹諺zh_TW
dc.contributor.advisorHungyen Chenen
dc.contributor.author李可雅zh_TW
dc.contributor.authorKO-YA LEEen
dc.date.accessioned2024-12-24T16:11:47Z-
dc.date.available2024-12-25-
dc.date.copyright2024-12-24-
dc.date.issued2024-
dc.date.submitted2024-12-16-
dc.identifier.citation余德發、游之穎 (2014). 活化休耕地-硬質玉米品種介紹. 花蓮區農業專訊, 89:2–5.
游之穎、徐仲禹、余德發、倪禮豐、翁崧夏 (2016). 硬質玉米栽培在原鄉. 農業部花蓮區農業改良場專刊, 134:16–25.
游添榮 (2003). 台灣甜玉米的產銷現況. 臺南區農業專訊, 44:27–30.
游添榮 (2014). 缺水地區作物選擇與節水栽培—節水作物硬質玉米與高粱之栽培技術. 水資源管理會刊, 16(1):9–17.
戴宏宇、謝光照 (2020). 硬質玉米台農 7 號特性簡介. 農業試驗所技術服務季刊, 124:5–7.
謝禮臣、游添榮 (2022). 硬質玉米栽培管理技術. 臺南區農業專訊, 121:10–12.
Aggrey, S. E. (2002). Comparison of three nonlinear and spline regression models for describing chicken growth curves. Poultry Science, 81(12):1782–1788.
Akaike, H. (1974). A new look at the statistical model identification. In Selected Papers of Hirotugu Akaike, pages 215–222. Springer New York, New York, NY.
Ansah, Y. B. and Frimpong, E. A. (2015). Using model-based inference to select a predictive growth curve for farmed tilapia. North American Journal of Aquaculture, 77(3):281–288.
Bonakdari, H. and Zeynoddin, M. (2022). Chapter 5 - Goodness-of-fit & precision criteria. In Stochastic Modeling, pages 187–264. Elsevier.
Bozdogan, H. (1987). Model selection and Akaike’s Information Criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52(3):345–370.
Cao, J., Hesketh, J. D., Zur, B., and Reid, J. F. (1988). Leaf area development in maize and soybean plants. BIOTRONICS, 17:9–15.
Çelik, Ş., Gönülal, E., and Tutar, H. (2024). Investigation of plant height, fresh weight and dry weight of sorghum with growth curve models. Kahramanmaraş Sütçü İmam University Journal of Agriculture and Nature, 27(4):994–1004.
Chou, M. H. (1985). Growth analysis of corn in hualien area. Bulletin of the Hualien district agricultural improvement station, 1:39–64.
Dai, D., Ma, Z., and Song, R. (2021). Maize kernel development. Molecular Breeding, 41(2).
de Mello, F., Oliveira, C. A. L., Ribeiro, R. P., Resende, E. K., Povh, J. A., Fornari, D. C., Barreto, R. V., McManus, C., and Streit Jr., D. (2015). Growth curve by gompertz non-linear regression model in female and males in tambaqui (Colossoma macropomum). Annals of the Brazilian Academy of Sciences, 87(4):2309–2315.
FAO (2022). Agricultural production statistics 2000– 2021. FAOSTAT analytical brief, No. 60. Rome.
FAO (2023). World Food and Agriculture– Statistical Yearbook 2023. Rome.
Fernandes, T. J., Muniz, J. A., Pereira, A. A., Muniz, F. R., and Muianga, C. A. (2015). Pa-rameterization effects in nonlinear models to describe growth curves. Acta Scientiarum. Technology, 37(4):397–402.
Figueiredo Filho, D. B., Silva, J. A., and Rocha, E. (2011). What is R2 all about. Leviathan–Cadernos de Pesquisa Política, 3:60–68.
Franses, P. H. (1994). A method to select between gompertz and logistic trend curves. Technological Forecasting and Social Change, 46:45–49.
Gbangboche, A. B., Glele-Kakai, R., Salifou, S., Albuquerque, L. G., and Leroy, P. L. (2008). Comparison of non-linear growth models to describe the growth curve in west african dwarf sheep. Animal, 2(7):1003–1012.
Goshu, A. T. and Koya, P. R. (2013). Derivation of inflection points of nonlinear regres-sion curves - implications to statistics. American Journal of Theoretical and Applied Statistics, 2(6):268–272.
Grimm, K. J., Ram, N., and Hamagami, F. (2011). Nonlinear growth curves in develop-mental research. Child Development, 82(5):1357–1371.
Gu, G., Zhang, P., Chen, S., Zhang, Y., and Yang, H. (2021). Inflection point: a perspective on photonic nanojets. Photonics Research, 9(7):1157–1171.
Haqani, M. I., Kawamura, K., Takenouchi, A., Kabir, M. H., Nakamura, Y., Ishikawa, A., and Tsudzuki, M. (2021). A growth performance and nonlinear growth curve functions of large- and normal-sized japanese quail (Coturnix japonica). The Journal of Poultry Science, 58(2):88–96.
Hernandez, H. (2023). Replacing the R2 coefficient in model analysis. ForsChem Research Report., 8:1–43.
Hojjati, F. and Hossein-Zadeh, N. G. (2018). Comparison of non-linear growth models to describe the growth curve of mehraban sheep. Journal of Applied Animal Research, 46(1):499–504.
Hsieh, C. Y., Fang, S. L., Wu, Y. F., Chu, Y. C., and Kuo, B. J. (2021). Using sigmoid growth curves to establish growth models of tomato and eggplant stems suitable for grafting in subtropical countries. Horticulturae, 7(12):537.
Huang, S. C. and Hsu, A. N. (1984). Studies on cultivation of corn in paddy field i. effects of sowing date on the yield and agronomic characteristics of corn in spring and fall cropping seasons. Bulletin of Taichung district agricultural improvement station, 9:1–12.
Huang, Y. T., Young, S. K., and Huang, T. Y. (1994). Distribution and disease progress of rice bacterial leaf blight in fengshan and touchien basins. Bulletin of Taoyuan District Agricultural Research and Extension Station, 18:1–9.
Jane, S. A., Fernandes, F. A., Silva, E. M., Muniz, J. A., Fernandes, T. J., and Pimentel, G. V. (2020). Adjusting the growth curve of sugarcane varieties using nonlinear models. Ciência Rural, 50(3):e20190408.
Karkach, A. S. (2006). Trajectories and models of individual growth. Demographic Research, 15(12):347–400.
Kaufmann, K. W. (1981). Fitting and using growth curves. Oecologia, 49:293–299.
Kennedy, P. E. (2003). Highest R2. In A Guide to Econometrics, pages 14–15. The MIT Press, 5th edition.
Kent-Jones, D. W. (2023). Cereal farming. In Encyclopedia Britannica. https://www.britannica.com/topic/cereal-farming.
Korner-Nievergelt, F., Roth, T., von Felten, S., Guélat, J., Almasi, B., and Korner-Nievergelt, P. (2015). Chapter 11 - model selection and multimodel inference. In Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan, pages 175–196. Elsevier.
Kucharavy, D. and Guio, R. D. (2015). Application of logistic growth curve. Procedia Engineering, 131:280–290.
Lee, T. C., Lu, H. S., Liu, K. S., Shieh, G. J., and Ho, C. L. (1989). Development of maize single hybrid tainung no. 1. Journal of Agricultural Research of China, 38(1):1–18.
Liu, S. K. and Shieh, G. J. (2010). Variation and combining ability of the traits for pericarp thickness in inbreds of super-sweet corn. Journal of Taiwan Agricultural Research, 59(2):112–125.
Liu, S. K. and Shieh, G. J. (2012). Relation between genetic distance and yield in different varieties of super sweet corn. Journal of Taiwan Agricultural Research, 61(3):186–195.
Lu, H. S., Ho, C. L., and Shieh, G. J. (1996). Effects of testers and populations on the rela-tionship among grain and forage yield traits in maize. Journal of Agricultural Research of China, 45(2):137–146.
Marchetti, C. and Nakicenovic, N. (1979). The dynamics of energy systems and the logis-tic substitution model. International Institute for Apploed Systems Analysis Research Report. IIASA, Laxenburg, Austria, pages 1–2.
Martins, K. V., Dourado-Neto, D., Reichardt, K., Favarin, J. L., Sartori, F. F., Felisberto, G., and Mello, S. C. (2017). Maize dry matter production and macronutrient extraction model as a new approach for fertilizer rate estimation. Annals of the Brazilian Academy of Sciences, 89(1):705–716.
Panta, S., Zhou, B., Zhu, L., Maness, N., Rohla, C., Costa, L., Ampatzidis, Y., Fontainer, C., Kaur, A., and Zhang, L. (2023). Selecting non-linear mixed effect model for growth and development of pecan nut. Scientia Horticulturae, 309:111614.
Ranum, P., Peña-Rosas, J. P., and Garcia-Casal, M. N. (2014). Global maize production, utilization, and consumption. Annals of the New York Academy of Sciences, 1312:105–112.
Ritchie, S. W., Hanway, J. J., and Benson, G. O. (1986). How a corn plant develops (Special report No.48). Iowa State University of Science and Technology.
Sariyel, V., Aygun, A., and Keskin, I. (2017). Comparison of growth curve models in partridge. Poultry Science, 96(6):1635–1640.
Shah, T. R., Prasad, K., and Kumar, P. (2016). Maize—a potential source of human nu-trition and health: A review. Cogent Food & Agriculture, 2(1):1166995.
Shieh, G. J. (2019). Development of new horneous maize hybrid ’tainung 7’. Journal of Taiwan Agricultural Research, 68(2):177–188.
Shieh, G. J. and Lu, H. S. (1992). Effects of plant density on forage and grain yield of maize with different kernel types. Journal of Agricultural Research of China, 41(3):233–240.
Shieh, G. J. and Lu, H. S. (2006). Breeding of purple-glutinous maize hybrid tainung no. 5. Journal of Taiwan Agricultural Research, 55(3):149–163.
Shieh, G. J. and Thseng, F. S. (1993). Effects of crop seasons on silage yield and quality characters of flint and dent combination in maize ii. crop seasons on combining ability expression of kernel type. Journal of Agricultural Research of China, 42(3):232–244.
Shieh, G. J., Yu, J. R., Tsai, J. N., and Tsai, S. J. (2006). The character of purple-glutinous maize hybrid tainung no. 5. Journal of Taiwan Agricultural Research, 55(3):164–173.
Spiess, A. N. and Neumeyer, N. (2010). An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo ap-proach. BMC pharmacology, 10:1–11.
Tagne, A., Feujio, T. P., and Sonna, C. (2008). Essential oil and plant extracts as poten-tial substitutes to synthetic fungicides in the control of fungi. ENDURE International Conference diversifying crop protection, pages 12–15.
Tanaka, A. and Yamaguchi, J. (1972). Dry matter production, yield components and grain yield of the maize plant. Journal of the Faculty of Agriculture, Hokkaido University, 57(1):71–132.
Tsao, S. H., Wang, C. S., and Liu, D. J. (1986). Studies on the characteristics of kernel-filling in maize. Journal of Agricultural Research of China, 35(1):23–36.
Vieira, S. and Hoffmann, R. (1977). Comparison of the logistic and the gompertz growth functions considering additive and multiplicative error terms. Journal of the Royal Statistical Society. Series C (Applied Statistics), 26(2):143–148.
Vilas Bôas, I. A., Fernandes, F. A., Fernandes, T. J., and Muniz, J. A. (2023). Study of dry matter accumulation in maize hybrids using nonlinear models. Pesquisa Agropecuária Brasileira, 58:e03077.
Wardhani, W. S. and Kusumastuti, P. (2013). Describing the height growth of corn using logistic and gompertz model. Agrivita Journal of Agricultural Science, 35(3):237–241.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96291-
dc.description.abstract玉米 (Zea mays L.) 是重要的糧食,其產量以及進出口量在國際市場佔有重要地位。鑑於玉米本身的重要性,與產量密切相關的籽粒部分,便受到重視。因此了解玉米籽粒與相關的調查性狀,以及隨著時間推進,生長發育的情況,為本篇的研究重點。本研究使用甜玉米(臺農 5 號、華珍)及硬質玉米(臺農 1 號、臺農 7 號、明豐 3 號),收集春作與秋期間的莖桿、葉身、苞葉、穗軸以及籽粒乾物重。針對各品種地上部乾物重、苞葉、穗軸、籽粒乾物重以及果穗百分比,觀察在不同播種後天數時,其數值的變化,並獲得趨勢。並使用生長曲線模型 Logistic model 以及 Gompertz model,在應變數為籽粒乾物重,自變數為播種後天數的情況下,以及在應變數為果穗百分比,自變數為播種後天數的情況下,觀察生長曲線模型擬合的結果並進行模型比較,再運用 R2 觀察在應變數的變異中,可由自變數解釋的部分所占的比例,並運用 Akaike’s information criterion 進一步得到較好的模型。根據籽粒乾物重的模型擬合結果,甜玉米臺農 5 號在春作和秋作中,Logistic model 表現較佳,而硬質玉米品種則以 Gompertz model 較為適合。此外,果穗百分比的結果顯示,硬質玉米明豐 3 號在春作和秋作中,Gompertz model 的預測表現較好。期望本研究有助於了解各期作時各品種玉米時間上的變化,且藉由獲得較好的生長曲線模型,有助於了解玉米生長發育方面,隨著時間推移的情況。與前人玉米研究中關注的不同,本研究則著重於玉米籽粒及其相關數值的生長變化,期望為玉米的生長過程提供參考。由於本研究中僅比較 Logistic model 以及 Gompertz model 兩個生長曲線模型,未來或許能使用其他的生長曲線模型進行評估,並比較更多模型之間的差異。zh_TW
dc.description.abstractCorn (Zea mays L.) is an important staple food of the world. The production, import and export of corn occupy a space in the world. In view of the importance of corn, the part of the kernel that is closely related to yield has received attention. This is the focus of this article in order to understand the corn kernel and related investigations, as well as their growth and development over time. In this study, we applied sweet corn (TNG5, Bright Jean) and flint corn (TNG1, TNG7, and MF3), with data collected on stalk dry weight, leaf blade dry weight, husk dry weight, cob dry weight, and kernel dry weight in spring and fall. We analyzed the aboveground dry weight, husk, cob, and kernel dry weight, and ear percentage of each corn variety through the changes at different days after sowing and obtain the pattern. By using growth curve model, logistic model and gompertz model, where the dependent variable is kernel dry weight, the independent variable is the number of days after sowing, and when the dependent variable is ear percentage, the independent variable is the number of days after sowing. Thus we tested the results in growth curve model for fitting and compare the simulation result among models. Then we used R2 to determine the proportion of the variation in the dependent variable that can be explained by the independent variables, and using Akaike’s information criterion to develop a further better model. The model The model fitting results for kernel dry weight indicated that the Logistic model was more suitable for sweet corn variety TNG5 in both spring and autumn seasons, while the Gompertz model was more appropriate for flint corn varieties. Additionally, for ear percentage, the Gompertz model provided better predictive performance for MF3 in both growing seasons. In this study, we expected it will help to understand the temporal changes of various varieties of corn during each crop season, and by our developing of a better growth curve model, it will help to understand the growth and development of corn over time. Different from previous corn studies that focused on traits such as leaf area, plant height, or total dry matter accumulation, this research emphasizes the growth changes of corn kernel and related traits, providing valuable insights into the corn growth process. Since only the logistic model and gompertz model were used in this study, these two growth curve models were compared. In the future, other growth curve models may be used for evaluation and the differences between more models can be compared.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-12-24T16:11:47Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-12-24T16:11:47Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
摘要 iii
Abstract iv
目次 vi
圖次 ix
表次 xi
縮寫列表 xiii
詞彙列表 xiv
第一章 緒論 1
第二章 材料與方法 4
2.1 資料蒐集 4
2.1.1 田間試驗 4
2.1.2 資料取得 13
2.1.3 資料整理 13
2.2 分析方法 13
2.2.1 地上部乾物重 13
2.2.2 苞葉、穗軸、籽粒乾物重 14
2.2.3 果穗百分比 14
2.2.4 生長曲線模型 15
2.2.5 決定係數 15
2.2.6 AIC 16
第三章 結果 17
3.1 各品種的地上部乾物重 17
3.1.1 春作 17
3.1.2 秋作 20
3.2 各品種的苞葉、穗軸、籽粒乾物重 20
3.2.1 春作 23
3.2.2 秋作 23
3.3 各品種的果穗百分比 (%) 24
3.3.1 春作 27
3.3.2 秋作 27
3.4 籽粒乾物重的生長曲線模型 28
3.4.1 春作 28
3.4.2 秋作 35
3.5 籽粒乾物重的生長曲線模型比較 37
3.6 果穗百分比的生長曲線模型 39
3.6.1 春作 39
3.6.2 秋作 46
3.7 果穗百分比的生長曲線模型比較 48
第四章 討論 51
4.1 各品種的地上部乾物重 51
4.2 苞葉、穗軸、籽粒乾物重 51
4.3 果穗百分比 52
4.4 籽粒乾物重的生長曲線模型比較 52
4.5 果穗百分比的生長曲線模型比較 53
4.6 生長曲線模型的相關研究 53
第五章 結論 55
參考文獻 56
附錄 A — 表附錄 64
A.1 玉米生長期 64
A.2 生長模型 65
-
dc.language.isozh_TW-
dc.subject籽粒zh_TW
dc.subject邏輯斯模型zh_TW
dc.subject生長曲線模型zh_TW
dc.subject果穗百分比zh_TW
dc.subject高柏茲模型zh_TW
dc.subjectGompertz modelen
dc.subjectKernelen
dc.subjectEar percentageen
dc.subjectGrowth curve modelen
dc.subjectLogistic modelen
dc.title玉米生長曲線模型的應用與比較zh_TW
dc.titleApplication and Comparison of Corn Growth Curve Modelsen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蔡育彰;吳以健zh_TW
dc.contributor.oralexamcommitteeYu-Chang Tsai;Yi-Chien Wuen
dc.subject.keyword籽粒,果穗百分比,生長曲線模型,邏輯斯模型,高柏茲模型,zh_TW
dc.subject.keywordKernel,Ear percentage,Growth curve model,Logistic model,Gompertz model,en
dc.relation.page65-
dc.identifier.doi10.6342/NTU202404702-
dc.rights.note未授權-
dc.date.accepted2024-12-17-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept農藝學系-
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
8.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved