Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9628
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林祥泰(Shiang-Tai Lin)
dc.contributor.authorMin-Kang Hsiehen
dc.contributor.author謝旻剛zh_TW
dc.date.accessioned2021-05-20T20:32:18Z-
dc.date.available2008-08-06
dc.date.available2021-05-20T20:32:18Z-
dc.date.copyright2008-08-06
dc.date.issued2008
dc.date.submitted2008-07-29
dc.identifier.citation1. Yamamoto, T. (2005), 'Molecular dynamics modeling of the crystal-melt interfaces and the growth of chain folded lamellae,' in Interphases and Mesophases in Polymer Crystallization III, pp. 37, G. Allegra, ed. New York, Springer.
2. Sperling, L. H., 'Intorduction to Physical Polymer Science,' 2nd eds. John Wiley & Sons, Inc., New York, Pages (1992).
3. Keller, A., 'A Note on Single Crystals in Polymers - Evidence for a Folded Chain Configuration,' Philosophical Magazine, 2, 1171 (1957).
4. Avrami, M., 'Kinetics of phase change I - General theory,' Journal of Chemical Physics, 7, 1103 (1939).
5. Keith, H. D. and F. J. Padden, 'Spherulitic Crystallization from Melt .I. Fractionation + Impurity Segregation + Their Influence on Crystalline Morphology,' Journal of Applied Physics, 35, 1270 (1964).
6. Imai, M., K. Kaji, T. Kanaya, et al., 'Ordering Process in the Induction Period of Crystallization of Poly(Ethylene-Terephthalate),' Physical Review B, 52, 12696 (1995).
7. Imai, M., K. Mori, T. Mizukami, et al., 'Structural Formation of Poly(Ethylene-Terephthalate) During the Induction Period of Crystallization .2. Kinetic-Analysis Based on the Theories of Phase-Separation,' Polymer, 33, 4457 (1992).
8. Heeley, E. L., A. V. Maidens, P. D. Olmsted, et al., 'Early stages of crystallization in isotactic polypropylene,' Macromolecules, 36, 3656 (2003).
9. Fukao, K. and Y. Miyamoto, 'Dynamical transition and crystallization of polymers,' Physical Review Letters, 79, 4613 (1997).
10. Soccio, M., A. Nogales, N. Lotti, et al., 'Evidence of early stage precursors of polymer crystals by dielectric spectroscopy,' Physical Review Letters, 98, (2007).
11. Wang, Z. G., B. S. Hsiao, E. B. Sirota, et al., 'Probing the early stages of melt crystallization in polypropylene by simultaneous small- and wide-angle X-ray scattering and laser light scattering,' Macromolecules, 33, 978 (2000).
12. Liu, C. and M. Muthukumar, 'Langevin dynamics simulations of early-stage polymer nucleation and crystallization,' Journal of Chemical Physics, 109, 2536 (1998).
13. Muthukumar, M. and P. Welch, 'Modeling polymer crystallization from solutions,' Polymer, 41, 8833 (2000).
14. Gee, R. H., N. Lacevic and L. E. Fried, 'Atomistic simulations of spinodal phase separation preceding polymer crystallization,' Nature Materials, 5, 39 (2006).
15. Miura, T. and M. Mikami, 'Molecular dynamics study of crystallization of polymer systems confined in small nanodomains,' Physical Review E, 75, (2007).
16. Kim, K. J., J. H. Bae and Y. H. Kim, 'Infrared spectroscopic analysis of poly(trimethylene terephthalate),' Polymer, 42, 1023 (2001).
17. Park, S. C., Y. R. Liang, H. S. Lee, et al., 'Three-dimensional orientation change during thermally induced structural change of oriented poly(trimethylene terephthalate) films using polarized FTIR-ATR spectroscopy,' Polymer, 45, 8981 (2004).
18. Lee, H. S., S. C. Park and Y. H. Kim, 'Structural changes of poly(trimethylene terephthalate) film upon uniaxial and biaxial drawing,' Macromolecules, 33, 7994 (2000).
19. Jeong, Y. G., W. J. Bae and W. H. Jo, 'Effect of uniaxial drawing on surface chain structure and surface tension of poly(trimethylene terephthalate) film,' Polymer, 46, 8297 (2005).
20. Wu, J., J. M. Schultz, J. M. Samon, et al., 'In situ study of structure development in poly(trimethylene terephthalate) fibers during stretching by simultaneous synchrotron small- and wide-angle X-ray scattering,' Polymer, 42, 7141 (2001).
21. Koyama, A., T. Yamamoto, K. Fukao, et al., 'Molecular dynamics simulation of polymer crystallization from an oriented amorphous state,' Physical Review E, 65, (2002).
22. Lavine, M. S., N. Waheed and G. C. Rutledge, 'Molecular dynamics simulation of orientation and crystallization of polyethylene during uniaxial extension,' Polymer, 44, 1771 (2003).
23. Dukovski, I. and M. Muthukumar, 'Langevin dynamics simulations of early stage shish-kebab crystallization of polymers in extensional flow,' Journal of Chemical Physics, 118, 6648 (2003).
24. Saitta, A. M. and M. L. Klein, 'Influence of a knot on the stretching-induced crystallization of a polymer,' Journal of Chemical Physics, 116, 5333 (2002).
25. Poulindandurand, S., S. Perez, J. F. Revol, et al., 'Crystal-Structure of Poly(Trimethylene Terephthalate) by X-Ray and Electron-Diffraction,' Polymer, 20, 419 (1979).
26. Desborough, I. J., I. H. Hall and J. Z. Neisser, 'Structure of Poly(Trimethylene Terephthalate),' Polymer, 20, 545 (1979).
27. Bulkin, B. J., M. Lewin and J. Kim, 'Crystallization Kinetics of Poly(Propylene Terephthalate) Studied by Rapid-Scanning Raman-Spectroscopy and Ft-Ir Spectroscopy,' Macromolecules, 20, 830 (1987).
28. Chuah, H. H., 'Orientation and structure development in poly(trimethylene terephthalate) tensile drawing,' Macromolecules, 34, 6985 (2001).
29. Jang, S. S. and W. H. Jo, 'Analysis of the mechanical behavior of poly(trimethylene terephthalate) in an amorphous state under uniaxial extension-compression condition through atomistic modeling,' Journal of Chemical Physics, 110, 7524 (1999).
30. Zhang, J. L., 'Study of poly(trimethylene terephthalate) as an engineering thermoplastics material,' Journal of Applied Polymer Science, 91, 1657 (2004).
31. Ward, I. M., M. A. Wilding and H. Brody, 'Mechanical-Properties and Structure of Poly(Meta-Methylene Terephthalate) Fibers,' Journal of Polymer Science Part B-Polymer Physics, 14, 263 (1976).
32. Jakeways, R., I. M. Ward, M. A. Wilding, et al., 'Crystal Deformation in Aromatic Polyesters,' Journal of Polymer Science Part B-Polymer Physics, 13, 799 (1975).
33. Yang, J. S. and W. H. Jo, 'Analysis of the elastic deformation of semicrystalline poly(trimethylene terephthalate) by the atomistic-continuum model,' Journal of Chemical Physics, 114, 8159 (2001).
34. Huang, J. M. and F. C. Chang, 'Crystallization kinetics of poly(trimethylene terephthalate),' Journal of Polymer Science Part B-Polymer Physics, 38, 934 (2000).
35. Hong, P. D., W. T. Chuang, W. J. Yeh, et al., 'Effect of rigid amorphous phase on glass transition behavior of poly(trimethylene terephthalate),' Polymer, 43, 6879 (2002).
36. Hong, P. D., W. T. Chung and C. F. Hsu, 'Crystallization kinetics and morphology of poly(trimethylene terephthalate),' Polymer, 43, 3335 (2002).
37. Wu, P. L. and E. M. Woo, 'Linear versus nonlinear determinations of equilibrium melting temperatures of poly(trimethylene terephthalate) and miscible blend with poly(ether imide) exhibiting multiple melting peaks,' Journal of Polymer Science Part B-Polymer Physics, 40, 1571 (2002).
38. Srimoaon, P., N. Dangseeyun and P. Supaphol, 'Multiple melting behavior in isothermally crystallized poly(trimethylene terephthalate),' European Polymer Journal, 40, 599 (2004).
39. Xu, Y., S. R. Ye, J. Bian, et al., 'Crystallization kinetics analysis of poly(trimethylene terephthalate) including the secondary crystallization process,' Journal of Materials Science, 39, 5551 (2004).
40. Wang, X. S., D. Y. Yan, G. H. Tian, et al., 'Effect of molecular weight on crystallization and melting of poly(trimethylene terephthalate). 1: Isothermal and dynamic crystallization,' Polymer Engineering and Science, 41, 1655 (2001).
41. Xue, M. L., J. Sheng, Y. L. Yu, et al., 'Nonisothermal crystallization kinetics and spherulite morphology of poly(trimethylene terephthalate),' European Polymer Journal, 40, 811 (2004).
42. Apiwanthanakorn, N., P. Supaphol and M. Nithitanakul, 'Non-isothermal melt-crystallization kinetics of poly(trimethylene terephthalate),' Polymer Testing, 23, 817 (2004).
43. Supaphol, P., N. Dangseeyun, P. Srimoaon, et al., 'Nonisothermal melt-crystallization kinetics for three linear aromatic polyesters,' Thermochimica Acta, 406, 207 (2003).
44. Liang, H., F. Xie, F. Q. Guo, et al., 'Non-isothermal crystallization behavior of poly(ethylene terephthalate)/Poly(trimethylene terephthalate) blends,' Polymer Bulletin, 60, 115 (2008).
45. Chuah, H. H., 'Crystallization kinetics of poly(trimethylene terephthalate),' Polymer Engineering and Science, 41, 308 (2001).
46. Ohtaki, M., T. Kameda, T. Asakura, et al., 'Structural characterization of drawn and annealed poly(trimethylene terephthalate) fibers,' Polymer Journal, 37, 214 (2005).
47. Wu, J., J. M. Schultz, J. M. Samon, et al., 'In situ study of structure development during continuous hot-drawing of poly(trimethylene terephthalate) fibers by simultaneous synchrotron small- and wide-angle X-ray scattering,' Polymer, 42, 7161 (2001).
48. Kameda, T., M. Miyazawa and S. Murase, 'Conformation of drawn poly(trimethylene terephthalate) studied by solid-state C-13 NMR,' Magnetic Resonance in Chemistry, 43, 21 (2005).
49. Ward, I. M. and M. A. Wilding, 'Ir and Raman-Spectra of Poly(M-Methylene Terephthalate) Polymers,' Polymer, 18, 327 (1977).
50. Wu, T., Y. Li, Q. Wu, et al., 'Thermal analysis of the melting process of poly(trimethylene terephthalate) using FTIR micro-spectroscopy,' European Polymer Journal, 41, 2216 (2005).
51. Malvaldi, M., G. Allegra, F. Ciardelli, et al., 'Structure of an associating polymer melt in a narrow slit by molecular dynamics simulation,' Journal of Physical Chemistry B, 109, 18117 (2005).
52. Mayo, S. L., B. D. Olafson and W. A. Goddard, 'Dreiding - a Generic Force-Field for Molecular Simulations,' Journal of Physical Chemistry, 94, 8897 (1990).
53. Becke, A. D., 'Density-Functional Thermochemistry .3. the Role of Exact Exchange,' Journal of Chemical Physics, 98, 5648 (1993).
54. Lee, C. T., W. T. Yang and R. G. Parr, 'Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron-Density,' Physical Review B, 37, 785 (1988).
55. Miehlich, B., A. Savin, H. Stoll, et al., 'Results Obtained with the Correlation-Energy Density Functionals of Becke and Lee, Yang and Parr,' Chemical Physics Letters, 157, 200 (1989).
56. Johnson, B. G., P. M. W. Gill and J. A. Pople, 'The Performance of a Family of Density Functional Methods,' Journal of Chemical Physics, 98, 5612 (1993).
57. Gaussian 98 (2001), Revision A.11, Gaussian, Inc., Pittsburgh, PA.
58. Darden, T., D. York and L. Pedersen, 'Particle Mesh Ewald - an N.Log(N) Method for Ewald Sums in Large Systems,' Journal of Chemical Physics, 98, 10089 (1993).
59.
60. Theodorou, D. N. and U. W. Suter, 'Atomistic Modeling of Mechanical-Properties of Polymeric Glasses,' Macromolecules, 19, 139 (1986).
61. Brown, D. and J. H. R. Clarke, 'Molecular-Dynamics Simulation of an Amorphous Polymer under Tension .1. Phenomenology,' Macromolecules, 24, 2075 (1991).
62. Yashiro, K., T. Ito and Y. Tomita, 'Molecular dynamics simulation of deformation behavior in amorphous polymer: nucleation of chain entanglements and network structure under uniaxial tension,' International Journal of Mechanical Sciences, 45, 1863 (2003).
63. Capaldi, F. M., M. C. Boyce and G. C. Rutledge, 'Molecular response of a glassy polymer to active deformation,' Polymer, 45, 1391 (2004).
64. Lyulin, A. V., N. K. Balabaev, M. A. Mazo, et al., 'Molecular dynamics simulation of uniaxial deformation of glassy amorphous atactic polystyrene,' Macromolecules, 37, 8785 (2004).
65. Plimpton, S., 'Fast Parallel Algorithms for Short-Range Molecular-Dynamics,' Journal of Computational Physics, 117, 1 (1995).
66. Hentschke, R., 'Simulation Methods for Polymer,' eds. Dekker M., New York, Pages (2004).
67. Cerius2 (2003), Accelrys Inc., San Diego.
68. Mark, J. E., 'Physical properties of polymers handbook,' eds. AIP Press, N.Y., Pages (1996).
69. Nose, S., 'A Molecular-Dynamics Method for Simulations in the Canonical Ensemble,' Molecular Physics, 52, 255 (1984).
70. Hoover, W. G., 'Canonical Dynamics - Equilibrium Phase-Space Distributions,' Physical Review A, 31, 1695 (1985).
71. Ho, R. M., K. Z. Ke and M. Chen, 'Crystal structure and banded spherulite of poly(trimethylene terephthalate),' Macromolecules, 33, 7529 (2000).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9628-
dc.description.abstract以分子動態模擬研究聚對苯二甲酸丙二脂(PTT)結晶初期行為。藉由模擬恆溫結晶及拉伸程序,我們證實結晶核前驅物(precursor of nuclei)的存在,並發現其成長主要受到高分子主鏈的旋轉能量(torsional energy)及分子間凡得瓦爾作用力(van der Waals interaction)的影響。我們成功預測聚對苯二甲酸丙二脂的玻璃轉移溫度(Tg)及熔點(Tm),並發現在恆溫結晶程序中,結晶核前驅物的總量在這兩溫度區間快速增加,接著維持週期性波動。此外;高分子主鏈藉由旋轉的分式重新排列,趨向結晶的結構。在拉伸程序中,有向性的晶核前驅物(oriented precursor)的總量大大的提升。系統中,高分子主鏈的旋轉角度分佈快速變成直鏈狀(trans-trans-trans-trans)構形。並在個別的有向性的晶核前驅物中,發現兩組旋轉角趨向結晶結構的轉變速率不同。其內部結構成長的三個因素:高分子鏈段的個數、旋轉角度(torsional angle)及排列緊密程度相互競爭或妥協,使結晶前趨物結構趨向結晶結構。由結果支持結晶前趨物在結晶初期扮演重要的角色。zh_TW
dc.description.abstractAtomistic molecular dynamics simulations are performed to study the initial crystallization process of poly(trimethylene terephthalate) (PTT). The structure development of ordering structures (nuclei precursors) in the isothermal and stress-induced crystallization process has been observed in our simulations. The formation of nucleus precursors is found to be driven mainly by the torsional and van der Waals forces. The thermal properties, such as the glass transition temperature (Tg) and the melting temperature (Tm), determined from our simulation are in good agreement with experimental values. In isothermal processes, it is found that, between these two temperatures, the amount of precursors quickly arises during thermal relaxation period soon after the system is quenched and starts to fluctuate afterwards. The variation of precursor fraction with temperature exhibits a maximum between Tg and Tm, resembling temperature dependence of crystallization rate for most polymers. In addition, the backbone torsion distribution for segments within the precursor preferentially reorganizes to the trans-gauche-gauche-trans (t-g-g-t) conformation, the same as that in the crystalline state. On the other hand, during stress-induced crystallization, the amount of stress-induced precursor increases in all regions of temperature. The torsional distribution of the polymer backbone for segments rapidly rearrange to the t-t-t-t conformation in bulk phase. Within oriented precursors, the response of the torsional angle induced by stress is faster than that only induced by thermal stimulation, especially trans inen
dc.description.provenanceMade available in DSpace on 2021-05-20T20:32:18Z (GMT). No. of bitstreams: 1
ntu-97-R95524014-1.pdf: 3593865 bytes, checksum: caddfa9faf07816794cf5eca7bcb2f10 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
Catalog v
Catalog of Table ix
Catalog of figure xi
1 Introduction 1
1.1 Kinetics of polymer crystallization 1
1.2 Existence of Precursors 3
1.3 Stress-induced crystallization 5
1.4 Polymer of PTT 8
1.5 The transition of conformation during crystallization 15
1.6 Motivation 17
2 Theory 19
2.1 Molecular dynamic simulation 19
2.2 Algorithm 19
2.3 Force field 20
2.3.1 Bond energy 21
2.3.2 Angle energy 21
2.3.3 Torsion energy 22
2.3.4 Inversion energy 22
2.3.5 Coulomb interaction 22
2.3.6 Van der Waals interaction 23
2.4 Thermal behavior 25
2.4.1 Glass transition temperature 25
2.4.2 Melting temperature 25
2.5 Mechanical properties 28
2.6 Definition of the segment packing structure (precursor structure) 29
2.7 Definition of the torsion angle state 30
2.8 Other properties 31
2.8.1 Radial distribution function 31
2.8.2 Persistence length 32
2.8.3 Orientation factor 32
3 Computation method and detail 34
3.1 Method 34
3.2 Model building 35
3.2.1 Amorphous sample 35
3.2.2 Crystal sample 36
3.2.3 Semi-crystal sample 36
3.3 Ensemble and control detail 41
3.4 Force field validation 42
3.4.1 Crystal structure properties and torsional angles 42
3.4.2 Thermal properties 42
3.4.3 Mechanical property 43
3.5 Simulation process 48
3.5.1 Iso-thermal crystallization process 48
3.5.2 Stress-induced crystallization process 49
4 Isothermal Crystallization 51
4.1 Bulk properties 51
4.1.1 Density 51
4.1.2 Energy 51
4.1.3 Discussion 56
4.2 Structure development in PTT upon quenching 57
4.2.1 Precursor fraction 57
4.2.2 Degree of order of the system 60
4.2.3 Discussion 62
4.3 Structure development within Nucleus precursor 63
4.3.1 Structure identification 63
4.3.2 Radial distribution function 65
4.3.3 The average size of precursor 70
4.3.4 Torsion angle distribution 70
4.3.5 Discussion 73
5 Stress-Induced Crystallization 75
5.1 Bulk properties 75
5.1.1 Density 75
5.1.2 Energy 75
5.1.3 Discussion 76
5.2 Structure development of the PTT upon drawing 84
5.2.1 Precursor fraction 84
5.2.2 Degree of Order 89
5.2.3 Torsional angle transition 89
5.2.4 Discussion 101
5.3 Structure development within oriented precursor. 103
5.3.1 Structure identification 103
5.3.2 The RDF, average size, and tosional angle of precursors 105
5.3.3 Discussion 116
6 Conclusion 118
Appendix A 120
Appendix B 124
Appendix C 128
Reference 139
dc.language.isoen
dc.title以分子動態模擬研究PTT(聚對苯二甲酸丙二脂)結晶初期行為zh_TW
dc.titleEarly State Crystallization Process of Poly (Trimethylene Terephthalate) (PTT) Polymer from Atomistic Molecular Dynamics Simulationsen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭錦龍,諶玉真(Yu-Jane Sheng),黃慶怡(Ching-I Huang)
dc.subject.keyword聚對苯二甲酸丙二脂,分子動態模擬,結晶,zh_TW
dc.subject.keywordPoly(Trimethylene Terephthalate),Molecular Dynamics Simulations,Crystallization,en
dc.relation.page145
dc.rights.note同意授權(全球公開)
dc.date.accepted2008-07-31
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf3.51 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved