請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96286完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉緒宗 | zh_TW |
| dc.contributor.advisor | Shiuh-Tzung Liu | en |
| dc.contributor.author | 王昱閔 | zh_TW |
| dc.contributor.author | Yu-Min Wang | en |
| dc.date.accessioned | 2024-12-24T16:10:17Z | - |
| dc.date.available | 2024-12-25 | - |
| dc.date.copyright | 2024-12-24 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-12-16 | - |
| dc.identifier.citation | 1. Maitland, P.; Mills, W. H. Experimental Demonstration of the Allene Asymmetry. Nature 1935, 135, 994-994.
2. Yu, S.; Ma, S. Allenes in catalytic asymmetric synthesis and natural product syntheses. Angew. Chem., Int. Ed. Engl. 2012, 51, 3074-3112. 3. Yoshida, M.; Shoji, Y.; Shishido, K. Enantioselective formal total synthesis of aplysin utilizing a palladium-catalyzed addition of an arylboronic acid to an allenic alcohol—Eschenmoser/Claisen rearrangement. Tetrahedron 2010, 66, 5053-5058. 4. Liu, Z.; Wasmuth, A. S.; Nelson, S. G. Au(I)-Catalyzed Annulation of Enantioenriched Allenes in the Enantioselective Total Synthesis of (−)-Rhazinilam. J. Am. Chem. Soc. 2006, 128, 10352-10353. 5. Alonso, J. M.; Quirós, M. T.; Muñoz, M. P. Chirality transfer in metal-catalysed intermolecular addition reactions involving allenes. Org. Chem. Front. 2016, 3, 1186-1204. 6. Rivera-Fuentes, P.; Diederich, F. Allenes in molecular materials. Angew. Chem., Int. Ed. Engl. 2012, 51, 2818-2828. 7. Hoffmann-Roder, A.; Krause, N. Synthesis and properties of allenic natural products and pharmaceuticals. Angew. Chem., Int. Ed. Engl. 2004, 43, 1196-1216. 8. Burton, B. S.; von Pechmann, H. Ueber die Einwirkung von Chlorphosphor auf Acetondicarbonsäureäther. Ber. Dtsch. Chem. Ges. 2006, 20, 145-149. 9. Jacobs, T. L.; Akawie, R.; Cooper, R. G. Rearrangements Involving 1-Pentyne, 2-Pentyne and 1,2-Pentadiene1. J. Am. Chem. Soc. 1951, 73, 1273-1276. 10. Fenández, I.; Monterde, M. I.; Plumet, J. On the base-induced isomerization of cyclic propargylamides to cyclic allenamides. Tetrahedron Lett. 2005, 46, 6029-6031. 11. Fu, L.; Greßies, S.; Chen, P.; Liu, G. Recent Advances and Perspectives in Transition Metal‐Catalyzed 1,4‐Functionalizations of Unactivated 1,3‐Enynes for the Synthesis of Allenes. Chin. J. Chem. 2019, 38, 91-100. 12. Li, Y.; Bao, H. Radical transformations for allene synthesis. Chem. Sci. J. 2022, 13, 8491-8506. 13. Zhang, W.; Xu, H.; Xu, H.; Tang, W. DABCO-Catalyzed 1,4-Bromolactonization of Conjugated Enynes: Highly Stereoselective Formation of a Stereogenic Center and an Axially Chiral Allene. J. Am. Chem. Soc. 2009, 131, 3832-3833. 14. Qian, H.; Yu, X.; Zhang, J.; Sun, J. Organocatalytic enantioselective synthesis of 2,3-allenoates by intermolecular addition of nitroalkanes to activated enynes. J. Am. Chem. Soc. 2013, 135, 18020-18023. 15. Nativi, C.; Ricci, A.; Taddei, M. A simple synthesis of 1-trimethylsilyl-2,3-dienes. Tetrahedron Lett. 1987, 28, 2751-2752. 16. Satoh, T.; Hanaki, N.; Kuramochi, Y.; Inoue, Y.; Hosoya, K.; Sakai, K. A new method for synthesis of allenes, including an optically active form, from aldehydes and alkenyl aryl sulfoxides by sulfoxide–metal exchange as the key reaction and an application to a total synthesis of male bean weevil sex attractant. Tetrahedron 2002, 58, 2533-2549. 17. Alexakis, A.; Marek, I.; Mangeney, P.; Normant, J. F. Mechanistic aspects of the formation of chiral allenes from propargylic ethers and organocopper reagents. J. Am. Chem. Soc. 1990, 112, 8042-8047. 18. Deutsch, C.; Lipshutz, B. H.; Krause, N. Small but effective: copper hydride catalyzed synthesis of alpha-hydroxyallenes. Angew. Chem., Int. Ed. Engl. 2007, 46, 1650-1653. 19. Pu, X.; Ready, J. M. Direct and Stereospecific Synthesis of Allenes via Reduction of Propargylic Alcohols with Cp2Zr(H)Cl. J. Am. Chem. Soc. 2008, 130, 10874-10875. 20. Ahmed, M.; Arnauld, T.; Barrett, A. G. M.; Braddock, D. C.; Flack, K.; Procopiou, P. A. Allene Cross-Metathesis: Synthesis of 1,3-Disubstituted Allenes. Org. Lett. 2000, 2, 551-553. 21. Persson, A. K. Å.; Johnston, E. V.; Bäckvall, J.-E. Copper-Catalyzed N-Allenylation of Allylic Sulfonamides. Org. Lett. 2009, 11, 3814-3817. 22. Zhao, J.; Liu, Y.; Ma, S. Highly Regioselective Synthesis of Trisubstituted Allenes via Lithiation of 1-Aryl-3-alkylpropadiene, Subsequent Transmetalation, and Pd-Catalyzed Negishi Coupling Reaction. Org. Lett. 2008, 10, 1521-1523. 23. Rona, P.; Crabbe, P. Novel synthesis of substituted allenes. J. Am. Chem. Soc. 1969, 91, 3289-3292. 24. Kuang, J.; Ma, S. An Efficient Synthesis of Terminal Allenes from Terminal 1-Alkynes. J. Org. Chem. 2009, 74, 1763-1765. 25. Kuang, J.; Ma, S. One-Pot Synthesis of 1,3-Disubstituted Allenes from 1-Alkynes, Aldehydes, and Morpholine. J. Am. Chem. Soc. 2010, 132, 1786-1787. 26. Yang, S. Q.; Wang, Y. F.; Zhao, W. C.; Lin, G. Q.; He, Z. T. Stereodivergent Synthesis of Tertiary Fluoride-Tethered Allenes via Copper and Palladium Dual Catalysis. J. Am. Chem. Soc. 2021, 143, 7285-7291. 27. Tsukamoto, H.; Konno, T.; Ito, K.; Doi, T. Palladium(0)-Lithium Iodide Cocatalyzed Asymmetric Hydroalkylation of Conjugated Enynes with Pronucleophiles Leading to 1,3-Disubstituted Allenes. Org. Lett. 2019, 21, 6811-6814. 28. Ryu, T.; Eom, D.; Shin, S.; Son, J. Y.; Lee, P. H. Synthesis of Multisubstituted Allenes, Furans, and Pyrroles via Tandem Palladium-Catalyzed Substitution and Cycloisomerization. Org. Lett. 2017, 19, 452-455. 29. Ma, S.; He, Q.; Jin, X. Tunable 1,3-Lithium Shift of Propargylic/Allenylic Lithiums Formed by Conjugate Addition of 4-Aryl-3-butyn-1-enes with Organolithiums and the Subsequent Transmetalation/Pd(0)-Catalyzed Coupling Reaction with Aryl Halides. Synlett 2005, 3, 514-516. 30. Gao, D. W.; Xiao, Y.; Liu, M.; Liu, Z.; Karunananda, M. K.; Chen, J. S.; Engle, K. M. Catalytic, Enantioselective Synthesis of Allenyl Boronates. ACS Catal. 2018, 8, 3650-3654. 31. Adamson, N. J.; Jeddi, H.; Malcolmson, S. J. Preparation of Chiral Allenes through Pd-Catalyzed Intermolecular Hydroamination of Conjugated Enynes: Enantioselective Synthesis Enabled by Catalyst Design. J. Am. Chem. Soc. 2019, 141, 8574-8583. 32. Huang, J.; Jia, Y.; Li, X.; Duan, J.; Jiang, Z. X.; Yang, Z. Halotrifluoromethylation of 1,3-Enynes: Access to Tetrasubstituted Allenes. Org Lett. 2021, 23, 2314-2319. 33. Miyaura, N.; Yamada, K.; Suzuki, A. A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides. Tetrahedron Lett. 1979, 20, 3437-3440. 34. King, A. O.; Okukado, N.; Negishi, E.-i. Highly general stereo-, regio-, and chemo-selective synthesis of terminal and internal conjugated enynes by the Pd-catalysed reaction of alkynylzinc reagents with alkenyl halides. J. Chem. Soc., Chem. Commun. 1977, 19, 683-684. 35. Heck, R. F. Palladium‐Catalyzed Vinylation of Organic Halides. Org. React. 1982, 345-390. 36. Johansson Seechurn, C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed. Engl. 2012, 51, 5062-5085. 37. Jiang, B.; Gui, W. T.; Wang, H. T.; Xie, K.; Chen, Z. C.; Zhu, L.; Ouyang, Q.; Du, W.; Chen, Y. C. Asymmetric Friedel-Crafts reaction of unsaturated carbonyl-tethered heteroarenes via vinylogous activation of Pd(0)-pi-Lewis base catalysis. Chem. Sci. J. 2023, 14, 10867-10874. 38. Chen, Z.-C.; Ouyang, Q.; Du, W.; Chen, Y.-C. Palladium(0) π-Lewis Base Catalysis: Concept and Development. J. Am. Chem. Soc. 2024, 146, 6422-6437. 39. Camacho, D. H.; Saito, S.; Yamamoto, Y. ‘Anti-Wacker’-type hydroalkoxylation of diynes catalyzed by palladium(0). Tetrahedron Lett. 2002, 43, 1085-1088. 40. Miller, K. M.; Luanphaisarnnont, T.; Molinaro, C.; Jamison, T. F. Alkene-Directed, Nickel-Catalyzed Alkyne Coupling Reactions. J. Am. Chem. Soc. 2004, 126, 4130-4131. 41. Tsukamoto, H.; Ueno, T.; Kondo, Y. Palladium(0)-Catalyzed Alkylative Cyclization of Alkynals and Alkynones: Remarkable trans-Addition of Organoboronic Reagents. J. Am. Chem. Soc. 2006, 128, 1406-1407. 42. Xiao, L. J.; Zhao, C. Y.; Cheng, L.; Feng, B. Y.; Feng, W. M.; Xie, J. H.; Xu, X. F.; Zhou, Q. L. Nickel(0)-Catalyzed Hydroalkenylation of Imines with Styrene and Its Derivatives. Angew. Chem. In.t Ed. Engl. 2018, 57, 3396-3400. 43. He, Z. L.; Zhang, Y.; Chen, Z. C.; Du, W.; Chen, Y. C. Cascade Multicomponent Assemblies Involving 1,3-Enynes via Auto-Tandem Palladium Catalysis. Org. Lett. 2022, 24, 6326-6330. 44. Jiang, S.; Ma, H.; Yang, R.; Song, X.-R.; Xiao, Q. Recent advances in the cascade reactions of enynols/diynols for the synthesis of carbo- and heterocycles. Org. Chem. Front. 2022, 9, 5643-5674. 45. Mukhopadhyay, M.; Iqbal, J. Co(III)DMG-Catalyzed Synthesis of Allylamides from Allyl Alcohols and Acetonitrile. J. Org. Chem. 1997, 62, 1843-1845. 46. Yang, Z.; Kumar, R. K.; Liao, P.; Liu, Z.; Li, X.; Bi, X. Chemo- and regioselective reductive deoxygenation of 1-en-4-yn-ols into 1,4-enynes through FeF3 and TfOH co-catalysis. Chem. Commun. 2016, 52, 5936-5939. 47. Liu, Y.; Song, F.; Song, Z.; Liu, M.; Yan, B. Gold-Catalyzed Cyclization of (Z)-2-En-4-yn-1-ols: Highly Efficient Synthesis of Fully Substituted Dihydrofurans and Furans. Org. Lett. 2005, 7, 5409-5412. 48. Zhong, M. J.; Wang, X. C.; Zhu, H. T.; Hu, J.; Liu, L.; Liu, X. Y.; Liang, Y. M. Synthesis of tetrasubstituted cyclopentadienes via palladium-catalyzed reaction of (Z)-2-en-4-yn acetates and N-methyl indoles. J. Org. Chem. 2012, 77, 10955-10961. 49. Jonek, A.; Berger, S.; Haak, E. Ruthenium-catalyzed allylation-cyclization reactions of cyclic 1,3-dicarbonyl compounds with 1-vinyl propargyl alcohols. Chem. Eur. J. 2012, 18, 15504-15511. 50. Hung, S. H.; Wang, Y. M.; Liu, Y. H.; Liu, S. T. Preparation of 4-Allenyloxazolines from (Z)-2-En-4-yn-1-ol via Propargyl/Allenyl Isomerization. J. Org. Chem. 2024, 89, 12762-12768. 51. 洪士恒. 由 (Z)-戊-2-烯-4-炔-1-醇衍生物合成3-聯烯基四氫呋喃與4-聯烯基-2-噁唑啉. 國立臺灣大學, 2024. 52. Budakoti, A.; Bhat, A. R.; Azam, A. Synthesis of new 2-(5-substituted-3-phenyl-2-pyrazolinyl)-1,3-thiazolino[5,4-b]quinoxaline derivatives and evaluation of their antiamoebic activity. Eur. J. Med. Chem. 2009, 44 (3), 1317-1325. 53. Midland, M. M.; Tramontano, A.; Cable, J. R. Synthesis of alkyl 4-hydroxy-2-alkynoates. J. Org. Chem. 1980, 45, 28-29. 54. Xu, X.; Chen, J.; Gao, W.; Wu, H.; Ding, J.; Su, W. Palladium-catalyzed hydroarylation of alkynes with arylboronic acids. Tetrahedron 2010, 66, 2433-2438. 55. Cox, P. A.; Reid, M.; Leach, A. G.; Campbell, A. D.; King, E. J.; Lloyd-Jones, G. C. Base-Catalyzed Aryl-B(OH)(2) Protodeboronation Revisited: From Concerted Proton Transfer to Liberation of a Transient Aryl Anion. J. Am. Chem. Soc. 2017, 139, 13156-13165. 56. Rahman, M. M.; Liu, H. Y.; Eriks, K.; Prock, A.; Giering, W. P. Quantitative analysis of ligand effects. Part 3. Separation of phosphorus(III) ligands into pure sigma-donors and sigma-donor/pi-acceptors. Comparison of basicity and sigma-donicity. Organometallics 1989, 8, 1-7. 57. Montagnat, O. D.; Lessene, G.; Hughes, A. B. Synthesis of azide-alkyne fragments for "click" chemical applications. Part 2. Formation of oligomers from orthogonally protected chiral trialkylsilylhomopropargyl azides and homopropargyl alcohols. J. Org. Chem. 2010, 75, 390-398. 58. Ho, C. C.; Olding, A.; Smith, J. A.; Bissember, A. C. Nuances in Fundamental Suzuki–Miyaura Cross-Couplings Employing [Pd(PPh3)4]: Poor Reactivity of Aryl Iodides at Lower Temperatures. Organometallics 2018, 37, 1745-1750. 59. Wright, S. W.; Hageman, D. L.; McClure, L. D. Fluoride-Mediated Boronic Acid Coupling Reactions. J. Org. Chem. 1994, 59, 6095-6097. 60. Zou, G.; Reddy, Y. K.; Falck, J. R. Ag(I)-promoted Suzuki–Miyaura cross-couplings of n-alkylboronic acids. Tetrahedron Lett. 2001, 42, 7213-7215. 61. Shintani, R.; Moriya, K.; Hayashi, T. Palladium-Catalyzed Desymmetrization of Silacyclobutanes with Alkynes: Enantioselective Synthesis of Silicon-Stereogenic 1-Sila-2-cyclohexenes and Mechanistic Considerations. Org. Lett. 2012, 14, 2902-2905. 62. Bai, T.; Ma, S.; Jia, G. Insertion reactions of allenes with transition metal complexes. Coord. Chem. Rev. 2009, 253, 423-448. 63. Deagostino, A.; Prandi, C.; Tabasso, S.; Venturello, P. The Heck reaction applied to 1,3- and 1,2-unsaturated derivatives, a way towards molecular complexity. Molecules 2010, 15, 2667-2685. 64. Shimizu, I.; Tsuji, J. Palladium-catalyzed synthesis if 2,3-disubstituted allylamines by regioselective aminophenylation or aminoalkenylation of 1,2-dienes. Chem. Lett. 1984, 13, 233-236. 65. Deagostino, A.; Prandi, C.; Venturello, P. Palladium-Catalyzed Heck Reaction on 1-Alkoxy-1,3-dienes: A Regioselective γ-Arylation of α,β-Unsaturated Carbonyl Compounds. Org. Lett. 2003, 5, 3815-3817. 66. Matsubara, R.; Jamison, T. F. Nickel-Catalyzed Allylic Substitution of Simple Alkenes. J. Am. Chem. Soc. 2010, 132, 6880-6881. 67. Aida, Y.; Shibata, Y.; Tanaka, K. Facile Synthesis of Dibenzotetracenedione Derivatives by Rhodium-Catalyzed [2+2+2] Cycloaddition/Spontaneous Aromatization. Asian J. Chem. 2019, 14, 1823-1829. 68. Shanker, C. G.; Mallaiah, B. V.; Srimannarayana, G. Dehydrogenation of Chromanones and Flavanones by 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ): A Facile Method for the Synthesis of Chromones and Flavones. Synth. 1983, 1983, 310-311. 69. Müller, P. The Dehydrogenation of 1,4‐Cyclohexadienes with 2,3‐Dichloro‐5,6‐dicyanobenzoquinone and Triphenylmethylfluoroborate. Helv. Chim. Acta. 2004, 56, 1243-1251. 70. Wang, Y.-M.; Liu, Y.-H.; Liu, S.-T. Synthesis of 3-Hydroxy-9H-fluorene-2-carboxylates via Michael Reaction, Robinson Annulation, and Aromatization. Organics 2022, 3, 481-490. 71. Matsuura, R.; Karunananda, M. K.; Liu, M.; Nguyen, N.; Blackmond, D. G.; Engle, K. M. Mechanistic Studies of Pd(II)-Catalyzed E/Z Isomerization of Unactivated Alkenes: Evidence for a Monometallic Nucleopalladation Pathway. ACS Catal. 2021, 11, 4239-4246. 72. He, G.; Zhou, C.; Fu, C.; Ma, S. Studies on the highly regio- and stereoselective selenohydroxylation of 1,2-allenylic sulfoxides with PhSeCl. Tetrahedron 2007, 63, 3800-3805. 73. Yang, X.; She, Y.; Chong, Y.; Zhai, H.; Zhu, H.; Chen, B.; Huang, G.; Yan, R. Iodothiocyanation/Nitration of Allenes with Potassium Thiocyanate/Silver Nitrite and Iodine. Adv. Synth. Catal. 2016, 358, 3130-3134. 74. Luzung, M. R.; Mauleón, P.; Toste, F. D. Gold(I)-Catalyzed [2 + 2]-Cycloaddition of Allenenes. J. Am. Chem. Soc. 2007, 129, 12402-12403. 75. Goure, W. F.; Wright, M. E.; Davis, P. D.; Labadie, S. S.; Stille, J. K. Palladium-catalyzed cross-coupling of vinyl iodides with organostannanes: synthesis of unsymmetrical divinyl ketones. J. Am. Chem. Soc. 1984, 106, 6417-6422. 76. Ma, S. Electrophilic Addition and Cyclization Reactions of Allenes. Acc. Chem. Res. 2009, 42, 1679-1688. 77. Prusinowski, A. F.; Twumasi, R. K.; Wappes, E. A.; Nagib, D. A. Vicinal, Double C-H Functionalization of Alcohols via an Imidate Radical-Polar Crossover Cascade. J. Am. Chem. Soc. 2020, 142, 5429-5438. 78. Georgoulis, C.; Smadja, W.; Valery, J. M. Electrophilic Addition to Allenic Derivatives: Regioselective Synthesis of Tertiary and Primary Isomeric Allylic Ethers with Iodine in the Vinylic α-Position. Synth. 1981, 1981, 572-574. 79. Jiang, X.; Fu, C.; Ma, S. Highly stereoselective iodolactonization of 4,5-allenoic acids--an efficient synthesis of 5-(1'-iodo-1'(Z)-alkenyl)-4,5-dihydro-2(3H)-furanones. Chem. Eur. J. 2008, 14, 9656-9664. 80. Wang, X.-C.; Hu, J.; Sun, P.-S.; Zhong, M.-J.; Ali, S.; Liang, Y.-M. Copper-catalyzed dimerization fragmentation cyclization reactions of (E)-1-en-4-yn-3-ols as a versatile approach for the synthesis of multisubstituted 1H-cyclopenta[b]naphthalenes. Org. Biomol. Chem. 2011, 9, 7461-7467. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96286 | - |
| dc.description.abstract | 聯烯由於結構的特殊性,具獨特的化學性質,常被用於有機合成上,在天然物、藥物與一些功能性材料上也有廣泛的應用性。本研究成功使用 (2-丙炔氧基)烯炔醚1在鈀金屬的催化下合成3-聯烯基-4-亞甲基四氫呋喃2;進而針對2的反應性做進一步探討。若使用碘分子與三取代聯烯2 (R3 = Ph) 進行反應,其會進行分子內一連串親電性加成與取代反應,生成三環分子6。而若將雙取代聯烯2 (R3 = H) 置於溝呂木-赫克反應條件下,則可以通過連續的遷移插入反應得到四氫異苯並呋喃4;此結構可進一步在2,3-二氯-5,6-二氰對苯醌 (DDQ) 的幫助下進行脫氫反應,得到二氫異苯並呋喃5。本研究拓展了零價鈀金屬對炔基的活化,提供一種嶄新的方法合成多取代聯烯2,也揭示了利用2產生三環化合物 6 和四氫異苯並呋喃 4 的新合成方法。 | zh_TW |
| dc.description.abstract | Due to the unique structural characteristics, allenes exhibit distinct chemical properties, allowing them to be invaluable in organic synthesis typically for natural products, pharmaceuticals, and functional materials. In this research, we have developed a new methodology to construct 3-allenyl-4-methylenetetrahydrofurans 2 from Pd-catalyzed cyclization of (Z)-5-(prop-2-yn-1-yloxy)pent-3-en-1-yne 1 through the vinyl-Pd intermediate I. Reactivity of 2 was further investigated. Treatment of the trisubstituted allene (2, R3 = Ph) with iodine caused a cascade cyclization to yield a spiral 5-5-5-tricyclic ring 6. On the other hand, reaction of the disubstituted allene (2, R3 = H) with aryl iodide proceeded a cascade insertion to produce tetrahydroisobenzofurans 4 under Heck reaction conditions. The oxidation of 4 with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) resulted in the formation of 1,3-dihydroisobenzofuran 5. This research extends a palladium catalyzed activation of alkynyl groups for the synthesis of multi-substituted allenyltetrahydrofurans 2 and reveals new reactivity of 2 leading to 5-5-5-tricyclic rings 6 and tetrahydroisobenzofurans 4. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-12-24T16:10:17Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-12-24T16:10:17Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
ABSTRACT ii 目次 iii 附圖目次 v 附表目次 vi 流程目次 vii 第一章 緒論 1 1.1 聯烯的應用與合成策略 1 1.2 過渡金屬與不飽和鍵的反應性 4 1.3 1,4,3-烯炔醇衍生物的相關反應研究 6 1.4 研究動機與目的 8 第二章 3-聯烯基-4-亞甲基四氫呋喃的合成 9 2.1 起始物 (2-丙炔氧基)烯炔醚的製備 9 2.2 反應測試與結構鑑定 10 2.3 反應條件最佳化 14 2.4 聯烯基四氫呋喃的反應物容忍度測試 17 2.5 生成聯烯基四氫呋喃的反應機制探討 22 第三章 3-聯烯基-4-亞甲基四氫呋喃的合成應用 24 3.1 溝呂木-赫克反應於聯烯基四氫呋喃的合成應用 24 3.1.1 反應測試與結構鑑定 25 3.1.2 反應條件最佳化 27 3.1.3 四氫異苯並呋喃的反應物容忍度測試 29 3.1.4 反應機制探討 32 3.2 親電加成反應於聯烯基四氫呋喃的應用 34 3.2.1 初步反應測試與結構鑑定 35 3.2.2 反應條件最佳化 37 3.2.3 親電加成反應的反應物容忍度測試 39 3.2.4 反應機制討論 41 第四章 結論 43 第五章 實驗部分 44 5.1 實驗儀器與試劑 44 5.2 實驗步驟 45 5.2.1 查爾酮S3的標準合成步驟: 45 5.2.2 1,4,3-烯炔醇S4的標準合成步驟: 45 5.2.3 (2-丙炔氧基)烯炔醚1的標準合成步驟: 46 5.2.4 (2-丙炔氧基)烯炔醚1的去矽基化 46 5.2.5 3-聯烯基-4-亞甲基四氫呋喃2的合成 47 5.2.6 四氫異苯並呋喃4的合成 47 5.2.7 1,3-二氫異苯並呋喃5c的合成 48 5.2.8 三環分子6的合成 48 5.3 實驗數據 49 (2-丙炔氧基)烯炔醚1 49 3-聯烯基-4-亞甲基四氫呋喃2 59 氫芳基化產物3aa 74 四氫異苯並呋喃4 75 1,3-二氫異苯並呋喃5 83 三環分子6 86 第六章 參考資料 90 附錄一 (2-丙炔氧基)烯炔醚的合成 100 附錄二 化合物之光譜資料 103 附錄三 化合物之晶體資料 176 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 聯烯基衍生化 | zh_TW |
| dc.subject | (Z)-戊-2-烯-4-炔-1-醇衍生物 | zh_TW |
| dc.subject | 雙取代聯烯基雜環化合物 | zh_TW |
| dc.subject | 三取代聯烯基雜環化合物 | zh_TW |
| dc.subject | allene derivatizations | en |
| dc.subject | trisubstituted allenylheterocycles | en |
| dc.subject | disubstituted allenylheterocycles | en |
| dc.subject | (Z)-pent-2-en-4-yn-1-ol derivatives | en |
| dc.title | 3-聯烯基-4-亞甲基四氫呋喃的合成與其衍生化 | zh_TW |
| dc.title | Synthesis of 3-Allenyl-4-methylenetetrahydrofurans and Their Synthetic Applications | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡蘊明;詹益慈;侯敦仁 | zh_TW |
| dc.contributor.oralexamcommittee | Yeun-in Tsai;Yi-Tsu Chan;Duen-Ren Hou | en |
| dc.subject.keyword | 三取代聯烯基雜環化合物,雙取代聯烯基雜環化合物,(Z)-戊-2-烯-4-炔-1-醇衍生物,聯烯基衍生化, | zh_TW |
| dc.subject.keyword | trisubstituted allenylheterocycles,disubstituted allenylheterocycles,(Z)-pent-2-en-4-yn-1-ol derivatives,allene derivatizations, | en |
| dc.relation.page | 194 | - |
| dc.identifier.doi | 10.6342/NTU202404725 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-12-17 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf | 12.84 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
