Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96275
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉浩澧zh_TW
dc.contributor.advisorHao-Li Liuen
dc.contributor.author陳品如zh_TW
dc.contributor.authorPin-Ju Chenen
dc.date.accessioned2024-11-28T16:31:30Z-
dc.date.available2024-11-29-
dc.date.copyright2024-11-28-
dc.date.issued2024-
dc.date.submitted2024-11-25-
dc.identifier.citationY. Meng, K. Hynynen, and N. Lipsman, “Applications of focused ultrasound in the brain: from thermoablation to drug delivery,” Nature Reviews Neurology, vol. 17, no. 1, pp. 7–22, 2021.
S. Vaezy, X. Shi, R. W. Martin, E. Chi, P. I. Nelson, M. R. Bailey, and L. A. Crum, “Real-time visualization of high-intensity focused ultrasound treatment using ultrasound imaging,” Ultrasound in medicine & biology, vol. 27, no. 1, pp. 33–42, 2001.
L. Curiel, R. Chopra, and K. Hynynen, “In vivo monitoring of focused ultrasound surgery using local harmonic motion,” Ultrasound in medicine & biology, vol. 35, no. 1, pp. 65–78, 2009.
Y. Kim, E. Vlaisavljevich, G. Owens, S. Allen, C. Cain, and Z. Xu, “In-vivo transcostal histotripsy therapy without aberration correction,” in 2013 IEEE International Ultrasonics Symposium (IUS), pp. 1817–1820, 2013.
C. R. Jensen, R. W. Ritchie, M. Gyöngy, J. R. Collin, T. Leslie, and C.-C. Coussios, “Spatiotemporal monitoring of high-intensity focused ultrasound therapy with passive acoustic mapping,” Radiology, vol. 262, no. 1, pp. 252–261, 2012.
R. M. Jones, M. A. O'Reilly, and K. Hynynen, “Transcranial passive acoustic mapping with hemispherical sparse arrays using ct-based skull-specific aberration corrections: a simulation study,” Physics in Medicine & Biology, vol. 58, no. 14, p. 4981, 2013.
S. Bae, K. Liu, A. N. Pouliopoulos, and E. E. Konofagou, “Coherence-factor-basedpassive acoustic mapping for real-time transcranial cavitation monitoring with improved axial resolution,” in 2021 IEEE International Ultrasonics Symposium (IUS), pp. 1–4, IEEE, 2021.
G.-D. Kim, C. Yoon, S.-B. Kye, Y. Lee, J. Kang, Y. Yoo, and T.-K. Song, “A single fpga-based portable ultrasound imaging system for point-of-care applications,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 59, no. 7, pp. 1386–1394, 2012.
V. Akkala, P. Rajalakshmi, P. Kumar, and U. B. Desai, “Fpga based ultrasound backend system with image enhancement technique,” in 5th ISSNIP-IEEE Biosignals and Biorobotics Conference (2014): Biosignals and Robotics for Better and Safer Living (BRC), pp. 1–5, IEEE, 2014.
H. J. Hewener, H.-J. Welsch, H. Fonfara, F. Motzki, and S. H. Tretbar, “Highly scalable and flexible fpga based platform for advanced ultrasound research,” in 2012 IEEE International Ultrasonics Symposium, pp. 2075–2080, IEEE, 2012.
H.-L. Liu, C.-K. Jan, P.-C. Chu, J.-C. Hong, P.-Y. Lee, J.-D. Hsu, C.-C. Lin, C.Y. Huang, P.-Y. Chen, and K.-C. Wei, “Design and experimental evaluation of a 256-channel dual-frequency ultrasound phased-array system for transcranial blood– brain barrier opening and brain drug delivery,” IEEE Transactions on Biomedical Engineering, vol. 61, no. 4, pp. 1350–1360, 2014.
S. Tamano, S. Yoshizawa, and S.-I. Umemura, “Multifunctional pulse generator for high-intensity focused ultrasound system,” Japanese Journal of Applied Physics, vol. 56, no. 7S1, p. 07JF21, 2017.
B. Abdullah, R. Subramaniam, S. Omar, P. Wragg, N. Ramli, A. Wui, C. Lee, and Y. Yusof, “Magnetic resonance-guided focused ultrasound surgery (mrgfus) treatment for uterine fibroids,” Biomedical imaging and intervention journal, vol. 6, no. 2, p. e15, 2010.
C.-T. Chang, C.-J. Jeng, C.-Y. Long, L. T. Chuang, and J. Shen, “High-intensity focused ultrasound treatment for large and small solitary uterine fibroids,” International Journal of Hyperthermia, vol. 39, no. 1, pp. 485–489, 2022.
C. Kotewall and H. Lang, “High-intensity focused ultrasound ablation as a treatment for benign thyroid diseases: the present and future,” Ultrasonography, 2019.
S.-S. Byun, N. Jin, and H. Lee, “High intensity focused ultrasound ablation for prostate cancer: whole versus partial gland ablation,” Clinical Genitourinary Cancer, vol. 20, no. 1, pp. e39–e44, 2022.
L. Bretsztajn and W. Gedroyc, “Brain-focussed ultrasound: what's the “fus"all about? a review of current and emerging neurological applications,” The British journal of radiology, vol. 91, no. 1087, p. 20170481, 2018.
A. Burgess, K. Shah, O. Hough, and K. Hynynen, “Focused ultrasound-mediated drug delivery through the blood–brain barrier,” Expert review of neurotherapeutics, vol. 15, no. 5, pp. 477–491, 2015.
J. Jagannathan, N. T. Sanghvi, L. A. Crum, C.-P. Yen, R. Medel, A. S. Dumont, J. P. Sheehan, L. Steiner, F. Jolesz, and N. F. Kassell, “High-intensity focused ultrasound surgery of the brain: part 1—a historical perspective with modern applications,” Neurosurgery, vol. 64, no. 2, pp. 201–211, 2009.
A. R. Rezai, M. Ranjan, M. W. Haut, J. Carpenter, P.-F. D'Haese, R. I. Mehta, U. Najib, P. Wang, D. O. Claassen, J. L. Chazen, et al., “Focused ultrasound–mediated blood-brain barrier opening in alzheimer's disease: long-term safety, imaging, and cognitive outcomes,” Journal of Neurosurgery, vol. 139, no. 1, pp. 275–283, 2022.
T. Zhang, N. Pan, Y. Wang, C. Liu, and S. Hu, “Transcranial focused ultrasound neuromodulation: a review of the excitatory and inhibitory effects on brain activity in human and animals,” Frontiers in Human Neuroscience, vol. 15, p. 749162, 2021.
F. A. Jolesz, “Mri-guided focused ultrasound surgery,” Annual review of medicine, vol. 60, no. 1, pp. 417–430, 2009.
K. Hynynen, G. T. Clement, N. McDannold, N. Vykhodtseva, R. King, P. J. White, S. Vitek, and F. A. Jolesz, “500-element ultrasound phased array system for noninvasive focal surgery of the brain: A preliminary rabbit study with ex vivo human skulls,” Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol. 52, no. 1, pp. 100–107, 2004.
Z. Xu, T. L. Hall, E. Vlaisavljevich, and F. T. Lee Jr, “Histotripsy: the first noninvasive, non-ionizing, non-thermal ablation technique based on ultrasound,” International Journal of Hyperthermia, vol. 38, no. 1, pp. 561–575, 2021.
A. D. Maxwell, C. A. Cain, A. P. Duryea, L. Yuan, H. S. Gurm, and Z. Xu, “Noninvasive thrombolysis using pulsed ultrasound cavitation therapy–histotripsy,” Ultrasound in medicine & biology, vol. 35, no. 12, pp. 1982–1994, 2009.
M. Gyöngy, “Passive cavitation mapping for monitoring ultrasound therapy,” 2010.
P. Kim, J. H. Song, and T.-K. Song, “A new frequency domain passive acoustic mapping method using passive hilbert beamforming to reduce the computational complexity of fast fourier transform,” Ultrasonics, vol. 102, p. 106030, 2020.
V. A. Salgaonkar, S. Datta, C. K. Holland, and T. D. Mast, “Passive cavitation imaging with ultrasound arrays,” The Journal of the Acoustical Society of America, vol. 126, no. 6, pp. 3071–3083, 2009.
陳均懋, “基於現場可程式化邏輯閘陣列控制之高功率驅動系統設計應用於高強度聚焦式超音波,” 國立臺灣大學電機工程學系學位論文, vol. 2023, pp. 1–93,2023.
莊家慶, “超音波相位陣列系統中之驅動級阻抗匹配設計,” 長庚大學電機工程學系學位論文, vol. 2020, pp. 1–74, 2020.
S. Lu, R. Su, C. Wan, S. Guo, and M. Wan, “Passive acoustic mapping with absolute time-of-flight information and delay-multiply-sum beamforming,” Medical Physics, vol. 50, no. 4, pp. 2323–2335, 2023.
S. Lu, R. Li, X. Yu, D. Wang, and M. Wan, “Delay multiply and sum beamforming method applied to enhance linear-array passive acoustic mapping of ultrasound cavitation,” Medical Physics, vol. 46, no. 10, pp. 4441–4454, 2019.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96275-
dc.description.abstract聚焦式超音波治療由於具備非侵入性和高安全性,近年來被認為有高度發展潛力。被動聲學成像(PAM)近年來也被發展成為一種新型工具,可以進行聚焦超音波之能量分布追蹤。本研究開發了一套被動影像導引聚焦超音波治療系統,旨在提出一種以新型態被動聲學成像進行聚焦超音波治療導引的想法實現。本研究中,系統的核心控制單元採用了現場可程式化邏輯閘陣列(FPGA),實現了靈活的同步發射與接收控制。接收端由FPGA 控制64 通道診斷探頭,發射端則透過FPGA 實現精確的脈衝發射信號,並搭配線性功率放大器,以確保訊號的低失真度。在本系統中,透過FPGA 的調整,使接收和發射系統具備不同工作頻率。同時,為了加快運算速度,本研究使用了新的查找技術,將運算時間從超過1 秒縮短10 倍至約100 毫秒。被動聲學成像實驗結果證實了發射與接收系統之間的精確同步。在保留傳統超音波成像功能上,系統可同時即時顯示被動成像技術即時追蹤聚焦超音波能量束,為治療過程提供了多元資訊。研究結果顯示所開發的被動影像導引聚焦超音波治療系統,不僅成功縮小了設備體積,還顯著提升了運算效率。該系統同時提供了不同成像模式,為未來便攜式超音波系統的發展提供了新的可能性。zh_TW
dc.description.abstractFocused ultrasound therapy has garnered significant attention in recent years due to its non-invasive nature and high safety profile, making it a promising technology for future development. Similarly, Passive Acoustic Mapping (PAM) has emerged as a novel tool for tracking the energy distribution of focused ultrasound. This study developed a passive imaging-guided focused ultrasound therapy system, aiming to implement a novel concept for guiding focused ultrasound therapy using PAM. In this study, the core control unit of the system employs a Field-Programmable Gate Array (FPGA) to achieve flexible, synchronized control of both transmission and reception. The receiving unit is controlled by an FPGA to manage a 64-channel diagnostic probe, while the transmitting unit utilizes the FPGA to deliver precise pulsed signals and is paired with a linear power amplifier to maintain low signal distortion. Within the system, the FPGA allows the transmission and reception units to operate at different frequencies. Additionally, to accelerate computation speed, the study employed a novel lookup table technique, reducing processing time by tenfold—from over 1 second to approximately 100 ms. PAM experimental results demonstrated precise synchronization between the transmitting and receiving systems. The system retains traditional ultrasound imaging capabilities while simultaneously providing real-time passive imaging to track focused ultrasound energy beams, offering diverse information for the treatment process. The results indicate that the developed passive imaging-guided focused ultrasound therapy system not only successfully reduces the system’s size but also significantly enhances computational efficiency. The system offers different imaging modes, paving the way for future advancements in portable ultrasound systems.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-28T16:31:30Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-11-28T16:31:30Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
摘要 iii
Abstract iv
圖次 viii
表次 xi
第一章緒論 1
1.1 聚焦式超音波 1
1.2 超音波監測技術 2
1.3 被動聲學成像監測技術 6
1.4 商用超音波系統的局限之解決方案 11
1.5 研究目的與貢獻 16
第二章方法與理論 18
2.1 系統總覽 18
2.2 發射系統 21
2.2.1 獨立超音波系統之發射端介紹 21
2.2.1.1 發射端數位區塊設計 22
2.2.1.2 發射端類比區塊設計 26
2.2.2 驗證用發射系統介紹 30
2.3 接收系統 31
2.3.1 接收系統設計介紹 31
2.3.2 使用者介面 32
2.3.3 被動聲學成像演算法介紹 35
2.3.4 平面波背景成像演算法介紹 38
2.4 實驗設計 39
2.4.1 單通道聚焦式超音波聲場實驗 39
2.4.2 成像品質實驗 40
2.4.3 被動聲學成像搭配背景成像實驗 42
第三章實驗設置與結果 43
3.1 實驗目的 43
3.2 實驗結果 44
3.2.1 聲場實驗 44
3.2.2 成像品質實驗 50
3.2.3 被動聲學成像搭配背景成像實驗 58
3.2.4 效能分析與比較 70
第四章結論與未來展望 72
4.1 結論 72
4.2 未來展望 74
參考文獻 75
-
dc.language.isozh_TW-
dc.subject現場可程式化邏輯閘陣列zh_TW
dc.subject超音波發射系統zh_TW
dc.subject線性功率放大器zh_TW
dc.subject被動聲學成像zh_TW
dc.subject超音波接收系統zh_TW
dc.subjectUltrasound transmission systemen
dc.subjectLinear power amplifieren
dc.subjectPassive acoustic mappingen
dc.subjectFPGAen
dc.subjectUltrasound receiving systemen
dc.title被動影像導引聚焦超音波治療系統zh_TW
dc.titlePassive Imaging-Guided Focused Ultrasound Therapy Systemen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee沈哲州;葉秩光;謝寶育zh_TW
dc.contributor.oralexamcommitteeChe-Chou Shen;Chih-Kuang Yeh;Bao-Yu Hsiehen
dc.subject.keyword現場可程式化邏輯閘陣列,線性功率放大器,超音波發射系統,超音波接收系統,被動聲學成像,zh_TW
dc.subject.keywordFPGA,Linear power amplifier,Ultrasound transmission system,Ultrasound receiving system,Passive acoustic mapping,en
dc.relation.page79-
dc.identifier.doi10.6342/NTU202404632-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-11-26-
dc.contributor.author-college工學院-
dc.contributor.author-dept醫學工程學系-
dc.date.embargo-lift2029-11-25-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
20.76 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved