請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96272完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 薛馬坦 | zh_TW |
| dc.contributor.advisor | Matan Shelomi | en |
| dc.contributor.author | 黃麟傑 | zh_TW |
| dc.contributor.author | Lin-Jie Huang | en |
| dc.date.accessioned | 2024-11-28T16:30:40Z | - |
| dc.date.available | 2024-11-29 | - |
| dc.date.copyright | 2024-11-28 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-11-15 | - |
| dc.identifier.citation | Abdul Fattah, T., Saeed, A., Channar, P. A., Ashraf, Z., Abbas, Q., Hassan, M., & Larik, F. A. (2018). Synthesis, enzyme inhibitory kinetics, and computational studies of novel 1-(2-(4-isobutylphenyl) propanoyl)-3-arylthioureas as Jack bean urease inhibitors. Chemical Biology & Drug Design, 91(2), 434-447. https://doi.org/10.1111/cbdd.13090
Acharya, B., Chaijaroenkul, W., & Na-Bangchang, K. (2021). Therapeutic potential and pharmacological activities of β-eudesmol. Chemical Biology & Drug Design, 97(4), 984-996. https://doi.org/10.1111/cbdd.13823 Ajaiyeoba, E. O., Sama, W., Essien, E. E., Olayemi, J. O., Ekundayo, O., Walker, T. M., & Setzer, W. N. (2008). Larvicidal activity of turmerone-rich essential oils of Curcuma longa leaf and rhizome from Nigeria on Anopheles gambiae. Pharmaceutical Biology, 46(4), 279-282. https://doi.org/10.1080/13880200701741138 Amala, V. E., & Jeyaraj, M. (2014). Determination of antibacterial, antifungal, bioactive constituents of triphala by FT-IR and GC-MS analysis. International Journal of Pharmacy and Pharmaceutical Sciences, 6(8), 123-126. Baker, R., & Longhurst, C. (1981). Chemical control of insect behaviour. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 295(1076), 73-82. http://www.jstor.org/stable/2395579 Benelli, G., Pavela, R., Drenaggi, E., Desneux, N., & Maggi, F. (2020). Phytol, (E)-nerolidol and spathulenol from Stevia rebaudiana leaf essential oil as effective and eco-friendly botanical insecticides against Metopolophium dirhodum. Industrial Crops and Products, 155, 112844. https://doi.org/10.1016/j.indcrop.2020.112844 Chow, C. Y., Lien, J. C., & Wang, C. H. (2005). Wen yu denggere [Mosquitoes and dengue fever]. In C. Y. Chow, J. C. Lien, & C. H. Wang (Eds.), Yixue kunchong yu bingmei fangzhi [Medical insects and vector control] (pp. 145-157). Nanshantang. Damalas, C. A., & Koutroubas, S. D. (2020). Botanical pesticides for eco‐friendly pest management: Drawbacks and limitations. Pesticides in Crop Production: Physiological and Biochemical Action, 181-193. Demiray, H., Gemici, M., Yazici, I., & Karabey, F. (2013). Chemical constituents of Heliotropium hirsitutissimum Grauer (heliotrope)(sigil otu, bambil)(sonnenwende) and ecotype. Asian Journal of Chemistry, 25(7), 3725. Dhivya, K., Vengateswari, G., Arunthirumeni, M., Karthi, S., Senthil-Nathan, S., & Shivakumar, M. S. (2018). Bioprospecting of Prosopis juliflora (Sw.) DC seed pod extract effect on antioxidant and immune system of Spodoptera litura (Lepidoptera: Noctuidae). Physiological and Molecular Plant Pathology, 101, 45-53. https://doi.org/10.1016/j.pmpp.2017.09.003 Di Campli, E., Di Bartolomeo, S., Delli Pizzi, P., Di Giulio, M., Grande, R., Nostro, A., & Cellini, L. (2012). Activity of tea tree oil and nerolidol alone or in combination against Pediculus capitis (head lice) and its eggs. Parasitology Research, 111(5), 1985-1992. https://doi.org/10.1007/s00436-012-3045-0 Esquivel-Chi, M. C., Ruiz-Sánchez, E., Ballina-Gómez, H. S., Martín, J., Reyes, F., Carnevali, G., Tapia-Muñoz, J. L., & Gamboa-Angulo, M. (2024). Repellent screening of ethanol extracts from plants of the Yucatan Peninsula against Bemisia tabaci (Gennadius, 1889) and chemical profile of Malpighia glabra L. leaves. Journal of Plant Diseases and Protection. https://doi.org/10.1007/s41348-024-00901-5 Finney, D. J. (1971). Probit analysis (Third ed.). University Press. Fujiwara, G. M., Annies, V., de Oliveira, C. F., Lara, R. A., Gabriel, M. M., Betim, F. C. M., Nadal, J. M., Farago, P. V., Dias, J. F. G., Miguel, O. G., Miguel, M. D., Marques, F. A., & Zanin, S. M. W. (2017). Evaluation of larvicidal activity and ecotoxicity of linalool, methyl cinnamate and methyl cinnamate/linalool in combination against Aedes aegypti. Ecotoxicology and Environmental Safety, 139, 238-244. https://doi.org/10.1016/j.ecoenv.2017.01.046 Gerber, R., Smit, N. J., Van Vuren, J. H. J., Nakayama, S. M. M., Yohannes, Y. B., Ikenaka, Y., Ishizuka, M., & Wepener, V. (2016). Bioaccumulation and human health risk assessment of DDT and other organochlorine pesticides in an apex aquatic predator from a premier conservation area. Science of The Total Environment, 550, 522-533. https://doi.org/10.1016/j.scitotenv.2016.01.129 Ghosh, A., Chowdhury, N., & Chandra, G. (2012). Plant extracts as potential mosquito larvicides. Indian Journal of Medical Research, 135(5). https://journals.lww.com/ijmr/fulltext/2012/35050/plant_extracts_as_potential_mosquito_larvicides.3.aspx Gong, X., & Ren, Y. (2020). Larvicidal and ovicidal activity of carvacrol, p-cymene, and γ-terpinene from Origanum vulgare essential oil against the cotton bollworm, Helicoverpa armigera (Hübner). Environmental Science and Pollution Research, 27(15), 18708-18716. https://doi.org/10.1007/s11356-020-08391-2 Govindarajan, M., & Benelli, G. (2016). α-Humulene and β-elemene from Syzygium zeylanicum (Myrtaceae) essential oil: Highly effective and eco-friendly larvicides against Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus (Diptera: Culicidae). Parasitology Research, 115(7), 2771-2778. https://doi.org/10.1007/s00436-016-5025-2 Govindarajan, M., Rajeswary, M., Hoti, S. L., Bhattacharyya, A., & Benelli, G. (2016). Eugenol, α-pinene and β-caryophyllene from Plectranthus barbatus essential oil as eco-friendly larvicides against malaria, dengue and Japanese encephalitis mosquito vectors. Parasitology Research, 115(2), 807-815. https://doi.org/10.1007/s00436-015-4809-0 Guo, L. D., Luo, Y. P., Lin, P. Y., Chou, K. C. C., & Shelomi, M. (2023). Spatial repellency effects of Taiwanese plant oils on the biting midge, Forcipomyia taiwana. All Life, 16(1), 2167871. https://doi.org/10.1080/26895293.2023.2167871 Huang, J. G., Zhou, L. J., Xu, H. H., & Li, W. O. (2009). Insecticidal and cytotoxic activities of extracts of Cacalia tangutica and Its two active ingredients against Musca domestica and Aedes albopictus. Journal of Economic Entomology, 102(4), 1444-1447. https://doi.org/10.1603/029.102.0407 Hwang, Y. S., & Mulla, M. S. (1980). Insecticidal activity of alkanamides against immature mosquitoes. Journal of Agricultural and Food Chemistry, 28(6), 1118-1122. Isman, M. B. (2015). A renaissance for botanical insecticides? Pest Management Science, 71(12), 1587-1590. Jadhav, S. K. (2017). Synthesis and characterization of novel quinoxaline derivatives. International Journal of Chemical & Pharmaceutical Analysis, 4(2). Junhirun, P., Pluempanupat, W., Yooboon, T., Ruttanaphan, T., Koul, O., & Bullangpoti, V. (2018). The study of isolated alkane compounds and crude extracts from Sphagneticola trilobata (Asterales: Asteraceae) as a candidate botanical insecticide for lepidopteran larvae. Journal of Economic Entomology, 111(6), 2699-2705. https://doi.org/10.1093/jee/toy246 Kala, S., Sogan, N., Naik, S. N., Agarwal, A., & Kumar, J. (2020). Impregnation of pectin-cedarwood essential oil nanocapsules onto mini cotton bag improves larvicidal performances. Scientific Reports, 10(1), 14107. https://doi.org/10.1038/s41598-020-70889-z Kareem, R. O., & Annon, M. R. (2016). GC-MS analysis of bioactive compounds in phenolic extracts of leaves and flowers of Chrysanthemum cinerariaefolium and their efficacy against larvae of Culexquin quefaciatus Say (Diptera: Culicidae). Journal of Chemical and Pharmaceutical Research, 8(3), 782-787. Khan, U., Khan, I. H., Javaid, A., & Ahmed, D. (2019). Pesticidal constituents in n-hexane inflorescence extract of Chenopodium quinoa. Mycopath, 16(1). Kiran, S. R., Reddy, A. S., Devi, P. S., & Reddy, K. J. (2006). Insecticidal, antifeedant and oviposition deterrent effects of the essential oil and individual compounds from leaves of Chloroxylon swietenia DC. Pest Management Science, 62(11), 1116-1121. https://doi.org/10.1002/ps.1266 Komalamisra, N., Trongtokit, Y., Rongsriyam, Y., & Apiwathnasorn, C. (2005). Screening for larvicidal activity in some Thai plants against four mosquito vector species. Southeast Asian journal of tropical medicine and public health, 36(6), 1412. Lawal, O., Opoku, A., & Ogunwande, I. (2014). Phytoconstituents and insecticidal activity of different solvent leaf extracts of Chromolaena odorata L., against Sitophilus zeamais (Coleoptera: Curculionidae). European Journal of Medicinal Plants, 5(3), 237-247. https://doi.org/10.9734/EJMP/2015/6739 Lee, M. F., Wu, Y. S., & Poh, C. L. (2023). Molecular mechanisms of antiviral agents against dengue virus. Viruses, 15(3). https://doi.org/10.3390/v15030705 Manzano, P., García, O. V., Malusín, J., Villamar, J., Quijano, M., Viteri, R., Barragán, A., & Orellana-Manzano, A. (2020). Larvicidal activity of ethanolic extract of Azadirachta indica against Aedes aegypti larvae [Actividad larvicida del extracto etanólico de Azadirachta indica contra larvas de Aedes aegypti]. Revista Facultad Nacional de Agronomia Medellin, 73(3), 9315-9320. https://doi.org/10.15446/rfnam.v73n3.80501 Marqueño, A., Pérez-Albaladejo, E., Flores, C., Moyano, E., & Porte, C. (2019). Toxic effects of bisphenol A diglycidyl ether and derivatives in human placental cells. Environmental Pollution, 244, 513-521. https://doi.org/10.1016/j.envpol.2018.10.045 McDonald, G. R., Hudson, A. L., Dunn, S. M. J., You, H., Baker, G. B., Whittal, R. M., Martin, J. W., Jha, A., Edmondson, D. E., & Holt, A. (2008). Bioactive contaminants leach from disposable laboratory plasticware. Science, 322(5903), 917-917. https://doi.org/10.1126/science.1162395 Michałowicz, J., & Duda, W. (2007). Phenols – sources and toxicity. Polish Journal of Environmental Studies, 16(3), 347-362. https://www.pjoes.com/Phenols-Sources-and-Toxicity,87995,0,2.html Muthusamy, S., Malarvizhi, M., & Suresh, E. (2021). Catalyst-free synthesis of 3, 1-benzoxathiin-4-ones/1, 3-benzodioxin-4-ones. Organic & Biomolecular Chemistry, 19(7), 1508-1513. Muturi, E. J., Hay, W. T., Doll, K. M., Ramirez, J. L., & Selling, G. (2020). Insecticidal activity of Commiphora erythraea essential oil and its emulsions against larvae of three mosquito species. Journal of Medical Entomology, 57(6), 1835-1842. https://doi.org/10.1093/jme/tjaa097 Nandi, N. K., Vyas, A., Akhtar, M. J., & Kumar, B. (2022). The growing concern of chlorpyrifos exposures on human and environmental health. Pesticide Biochemistry and Physiology, 185, 105138. https://doi.org/10.1016/j.pestbp.2022.105138 Niculau, E. D., Ribeiro, L. D., Ansante, T. F., Fernandes, J. B., Forim, M. R., Vieira, P. C., Vendramim, J. D., & Da Silva, M. F. (2018). Isolation of chavibetol and methyleugenol from essential oil of Pimenta pseudocaryophyllus by high performance liquid chromatography. Molecules, 23(11). Okonkwo, C., & Onyeji, C. (2018). Insecticidal potentials and chemical composition of essential oils from the leaves of Phyllanthus amarus and Stachytarpheta cayennensis in Nigeria. international Journal of Biochemistry Research & Review, 22(3), 1-16. Pai, H. H., Chang, C. Y., Lin, K. C., & Hsu, E. L. (2023). Rapid insecticide resistance bioassays for three major urban insects in Taiwan. Parasites & Vectors, 16(1), 447. https://doi.org/10.1186/s13071-023-06055-x Pavela, R. (2008). Larvicidal effects of various Euro-Asiatic plants against Culex quinquefasciatus Say larvae (Diptera: Culicidae). Parasitology Research, 102, 555-559. Pavela, R., Maggi, F., Iannarelli, R., & Benelli, G. (2019). Plant extracts for developing mosquito larvicides: From laboratory to the field, with insights on the modes of action. Acta Tropica, 193, 236-271. https://doi.org/10.1016/j.actatropica.2019.01.019 Peach, D. A. H., Almond, M., Gries, R., & Gries, G. (2019). Lemongrass and cinnamon bark: Plant essential oil blend as a spatial repellent for mosquitoes in a field setting. Journal of Medical Entomology, 56(5), 1346-1352. https://doi.org/10.1093/jme/tjz078 Perera, H., & Wijerathna, T. (2019). Sterol carrier protein inhibition-based control of mosquito vectors: Current knowledge and future perspectives. Canadian Journal of Infectious Diseases and Medical Microbiology, 2019, 7240356. https://doi.org/10.1155/2019/7240356 Pohlit, A. M., Rezende, A. R., Baldin, E. L. L., Lopes, N. P., & de Andrade Neto, V. F. (2011). Plant extracts, isolated phytochemicals, and plant-derived agents which are lethal to arthropod vectors of human tropical diseases–a review. Planta Medica, 77(06), 618-630. Ragasa, C., Biona, K., & Shen, c.-c. (2014). Chemical constituents of Sechium edule (Jacq.) Swartz. Der Pharma Chemica, 6, 251-255. Ragavendran, C., & Natarajan, D. (2015). Insecticidal potency of Aspergillus terreus against larvae and pupae of three mosquito species Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti. Environmental Science and Pollution Research, 22(21), 17224-17237. https://doi.org/10.1007/s11356-015-4961-1 Rai, K. K. R., Trivedi, R. V., & Umekar, M. J. (2019). Review on betel leaf used in various ailments. International Journal of Pharmacognosy, 6(8), 259-267. Rajashekar, Y. (2016). Toxicity of coumaran to stored products beetles. Journal of Stored Products Research, 69, 172-174. https://doi.org/10.1016/j.jspr.2016.07.006 Ramsewak, R. S., Nair, M. G., Murugesan, S., Mattson, W. J., & Zasada, J. (2001). Insecticidal fatty acids and triglycerides from Dirca palustris. Journal of Agricultural and Food Chemistry, 49(12), 5852-5856. https://doi.org/10.1021/jf010806y Rattan, R. S. (2010). Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Protection, 29(9), 913-920. https://doi.org/10.1016/j.cropro.2010.05.008 Redfern, J., Kinninmonth, M., Burdass, D., & Verran, J. (2014). Using Soxhlet ethanol extraction to produce and test plant material (essential oils) for their antimicrobial properties. Journal of Microbiology & Biology Education, 15(1), 45-46. https://doi.org/10.1128/jmbe.v15i1.656 Reyes-Ávila, A., Romero-González, R., Arrebola-Liébanas, F. J., & Garrido Frenich, A. (2023). Comprehensive analysis of commercial biopesticides using UHPLC and GC-HRMS: Targeted, suspect and unknown component determination. Microchemical Journal, 193, 109020. https://doi.org/10.1016/j.microc.2023.109020 Russell, R. M., Preisler, H. K., Savin, N., & Robertson, J. (2007). Bioassays with arthropods. CRC Press. Silva, A. L. da, Azevedo, L. S., Gonçalves, T. P. R., Coimbra, M. C., Siqueira, E. P. de, Alves, S. N., & Lima, L. A. R. dos S. (2023). Larvicidal activity of hexane extract, fatty acids, and methyl esters from Tecoma stans pericarps against Culex quinquefasciatus. Natural Product Research, 37(24), 4227-4231. https://doi.org/10.1080/14786419.2023.2172725 Taiwan Centers for Disease Control. (2024, 28 March, 2024). Denggere - jibing jieshao [Dengue fever - disease introduction]. Retrieved 24 June, 2024 from https://www.cdc.gov.tw/Category/Page/e6K1xXr0VJQ7FuxsMtMVhw Taiwan Environment Protection Administration. (2022, 14 September, 2023). Huanbaoshu gonggao taosisong ji jiajitaosisong wei huanjing yong yao jinyong chengfen [Environment Protection Administration announced that chlorpyrifos and chlorpyrifos-methyl are banned as ingredients in environmental agents]. Retrieved 24 June, 2024 from https://www.cha.gov.tw/cp-23-5830-b7466-1.html Tripathi, A. K., Bhakuni, R. S., Upadhyay, S., & Gaur, R. (2011). Insect feeding deterrent and growth inhibitory activities of scopoletin isolated from Artemisia annua against Spilarctia obliqua (Lepidoptera: Noctuidae). Insect Science, 18(2), 189-194. https://doi.org/10.1111/j.1744-7917.2010.01350.x Tripathi, A. K., Prajapati, V., Khanuja, S. P. S., & Kumar, S. (2003). Effect of d-limonene on three stored-product beetles. Journal of Economic Entomology, 96(3), 990-995. https://doi.org/10.1093/jee/96.3.990 Tsai, P.-J., & Teng, H.-J. (2016). Role of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) in local dengue epidemics in Taiwan. BMC Infectious Diseases, 16(1), 662. https://doi.org/10.1186/s12879-016-2002-4 Ullah, S., Zuberi, A., Alagawany, M., Farag, M. R., Dadar, M., Karthik, K., Tiwari, R., Dhama, K., & Iqbal, H. M. N. (2018). Cypermethrin induced toxicities in fish and adverse health outcomes: Its prevention and control measure adaptation. Journal of Environmental Management, 206, 863-871. https://doi.org/10.1016/j.jenvman.2017.11.076 Wheeler, M. W., Park, R. M., & Bailer, A. J. (2006). Comparing median lethal concentration values using confidence interval overlap or ratio tests. Environmental Toxicology and Chemistry, 25(5), 1441-1444. https://doi.org/10.1897/05-320R.1 World Health Organization. (2005). Guidelines for laboratory and field testing of mosquito larvicides. Yang, C. F., Hou, J. N., Chen, T. H., & Chen, W. J. (2014). Discriminable roles of Aedes aegypti and Aedes albopictus in establishment of dengue outbreaks in Taiwan. Acta Tropica, 130, 17-23. https://doi.org/10.1016/j.actatropica.2013.10.013 Zayed, M. Z., Ahmad, F. B., Ho, W. S., & Pang, S. L. (2014). GC-MS analysis of phytochemical constituents in leaf extracts of Neolamarckia cadamba (Rubiaceae) from Malaysia. International Journal of Pharmacy and Pharmaceutical Sciences, 6(9), 123-127. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96272 | - |
| dc.description.abstract | 登革熱一直是臺灣重要的公共衛生問題,此病已在近數十年來爆發過多次疫情。病媒蚊防治能夠防止或減緩登革熱疫情擴散,而使用合成殺蟲劑的化學防治是常用的防治手段。然而,過度使用合成殺蟲劑導致了害蟲抗藥性、危害非目標生物、長期汙染等問題。取自植物的殺蟲化學物質被認為是良好的化學防治藥劑替代品,因為藉由其複雜的作用機制、對人畜可能較為安全、可生物分解等特性能彌補合成殺蟲劑的問題。本研究目標為測試茵陳蒿(Artemisia capillaris)、棕葉狗尾草(Setaria palmifolia)、血桐(Macaranga tanarius)的萃取物對登革熱病媒蚊埃及斑蚊(Aedes aegypti)幼蟲的毒性。本研究室先前的研究顯示這些植物的萃取物對臺灣蛺蠓(Forcipomyia taiwana)具有忌避效果,但是其對蚊科的效果尚未被探討過。萃取物由這些植物的葉片經過冷凍、磨粉、以己烷和乙酸乙酯萃取而成,並在實驗室條件下,以不同的濃度測試其對埃及斑蚊幼蟲的殺蟲效果。測試結果顯示僅有茵陳蒿的己烷萃取物能作為有效的蚊蟲幼蟲殺蟲劑,其能夠快速擊暈幼蟲,且其在24與48小時內對埃及斑蚊幼蟲的半數致死濃度分別為187.60 ppm (v/v)與128.31 ppm。以氣相層析質譜儀分析各萃取物的化學成分的結果也顯示,和其他殺蟲效果較弱的植物萃取物相比,茵陳蒿己烷萃取物含有最多種被指出具殺蟲活性的化學物質。本研究的延伸方向包含測試化學協同作用的存在與否、探究殺蟲的作用機制、開發可實地應用的蚊蟲幼蟲殺蟲劑劑型。本研究也能對從植物中找尋殺蟲劑的生物探勘做出貢獻。 | zh_TW |
| dc.description.abstract | Dengue is a major public health concern in Taiwan, with multiple outbreaks in recent decades. Mosquito vector control is an effective way of preventing or mitigating the spread of the disease, and chemical control with synthetic insecticides is a common practice. Overuse of synthetic insecticides had led to problems such as resistance, non-target effects, and long-term pollution. Insecticidal chemicals derived from plants are considered good alternative options for chemical control agents due to their complex modes of action, potentially better safety to humans and domestic animals, and biodegradability. This study aimed to test the larvicidal effects of leaf extracts of capillary wormwood (Artemisia capillaris), palmgrass (Setaria palmifolia), and parasol leaf tree (Macaranga tanarius) against dengue vector yellow fever mosquito (Aedes aegypti). A previous study in our laboratory suggested that extracts from these plants have repellency effects against biting midges (Forcipomyia taiwana), but their effects against mosquitoes were yet to be explored. The plant leaves were frozen, ground into powder, and extracted with hexane and ethyl acetate. These extracts were tested in laboratory assays against larval Aedes aegypti at different concentrations. Only A. capillaris hexane extract was found to be an effective larvicide, causing fast knockdown and having an LC50 of 187.60 ppm (v/v) at 24 hours of exposure and 128.31 ppm at 48 hours of exposure. Gas-chromatography mass-spectrometry (GC-MS) determined chemical compositions of the tested plant extracts found that, compared to other less effective extracts, A. capillaris hexane extract contains the most chemicals reported to be insecticidal. This study may be further extended by checking for synergistic effects, exploring the modes of action, and developing mosquito larvicide formulations for field use, and the study can contribute to the bioprospecting for pesticides in plant-derived chemicals. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-28T16:30:40Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-11-28T16:30:40Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements ii Chinese Abstract iii English Abstract iv Table of Contents vi List of Figures vii List of Tables vii Introduction 1 I. Importance of dengue, its vector, and vector control 1 II. Concerns regarding synthetic insecticides 2 III. Plant-derived chemicals as dengue vector control agent 5 Materials and Methods 9 I. Plant sample collection 9 II. Plant sample extraction 9 III. Plant extract solution preparation 10 IV. Mosquito rearing 11 V. Larvicidal assay 12 VI. Toxicity determination 14 VII. Plant extract chemical composition analysis 15 Results 16 I. Larvicidal assays 16 II. Effects of A. capillaris hexane extract on Ae. aegypti larvae 18 III. Known insecticidal compounds in the plant extracts 19 Discussion 28 References 34 Appendix 41 | - |
| dc.language.iso | en | - |
| dc.subject | 殺幼蟲劑 | zh_TW |
| dc.subject | 血桐 | zh_TW |
| dc.subject | 棕葉狗尾草 | zh_TW |
| dc.subject | 茵陳蒿 | zh_TW |
| dc.subject | 植物萃取物 | zh_TW |
| dc.subject | 埃及斑蚊 | zh_TW |
| dc.subject | Artemisia capillaris | en |
| dc.subject | plant extract | en |
| dc.subject | larvicide | en |
| dc.subject | Aedes aegypti | en |
| dc.subject | Macaranga tanarius | en |
| dc.subject | Setaria palmifolia | en |
| dc.title | 三種臺灣產植物之萃取物對埃及斑蚊幼蟲的殺蟲活性 | zh_TW |
| dc.title | Larvicidal activity of extracts from three Taiwanese plants on Aedes aegypti | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 杜武俊;林柏安;蔡坤憲 | zh_TW |
| dc.contributor.oralexamcommittee | Wu-Chun Tu;Po-An Lin;Kun-Hsien Tsai | en |
| dc.subject.keyword | 埃及斑蚊,殺幼蟲劑,植物萃取物,茵陳蒿,棕葉狗尾草,血桐, | zh_TW |
| dc.subject.keyword | Aedes aegypti,larvicide,plant extract,Artemisia capillaris,Setaria palmifolia,Macaranga tanarius, | en |
| dc.relation.page | 47 | - |
| dc.identifier.doi | 10.6342/NTU202404592 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-11-15 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 昆蟲學系 | - |
| 顯示於系所單位: | 昆蟲學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf | 1.06 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
