請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96268完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃心豪 | zh_TW |
| dc.contributor.advisor | Hsin-Haou Huang | en |
| dc.contributor.author | 胡登善 | zh_TW |
| dc.contributor.author | Teng-Shan Hu | en |
| dc.date.accessioned | 2024-11-28T16:29:31Z | - |
| dc.date.available | 2024-11-29 | - |
| dc.date.copyright | 2024-11-28 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-11-20 | - |
| dc.identifier.citation | [1] V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ϵ and μ. " Physics-Uspekhi, vol. 10, pp. 509-514, 1968.
[2] J. B. Pendry, "Negative refraction makes a perfect lens. " Physical review letters, vol. 85, p. 3966, 2000. [3] R. M. Walser, "Metamaterials: What are they? What are they good for? " APS March Meeting Abstracts, vol. 1, p. 5001, 2000. [4] D. R. Smith, J. B. Pendry, and M. C. Wiltshire, "Metamaterials and negative refractive index. " Science, vol. 305, pp. 788-792, 2004. [5] J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index. " Nature, vol. 455, pp. 376-379, 2008. [6] S. John, "Strong localization of photons in certain disordered dielectric superlattices. " Physical review letters, vol. 58, no. 23, p. 2486, 1987. [7] M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, "Acoustic band structure of periodic elastic composites. " Physical review letters, vol. 71, no. 13, p. 2022, 1993. [8] Z. Y. Liu, X. X. Zhang, Y. W. Mao, Y. Y. Zhu, Z. Y. Yang, and C. T. Chan, "Locally resonant sonic materials. " Science, vol. 289, no. 5485, pp. 1734-1736, 2000. [9] N. Fang, D. J. Xi, J. Y. Xu, M. Ambati, W. Srituravanich, C. Sun and X. Zhang, "Ultrasonic metamaterials with negative modulus. " Nature materials, vol. 5, no. 6, pp. 452-456, 2006. [10] S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, "Composite acoustic medium with simultaneously negative density and modulus. " Physical review letters, vol. 104, no. 5, p. 054301, 2010. [11] G. W. Milton and J. R. Willis, "On modifications of Newton's second law and linear continuum elastodynamics. " Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 463, pp. 855-880, 2007. [12] H. H. Huang, C. T. Sun, and G. L. Huang, "On the negative effective mass density in acoustic metamaterials. " International Journal of Engineering Science, vol. 47, pp. 610-617, 2009. [13] H. H. Huang and C. T. Sun, "Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density. " New Journal of Physics, vol. 11, p. 013003, 2009. [14] Z. Chen, Y. B. Chong, K. M. Lim, H. P. Lee, "Reconfigurable 3D printed acoustic metamaterial chamber for sound insulation. " International Journal of Mechanical Sciences, vol. 266, p. 108978, 2024. [15] N. S. Gao, Z. C. Zhang, J. Deng, X. Y. Guo, B. Z. Cheng and H. Hou, " Acoustic metamaterials for noise reduction: a review. " Advanced Materials Technologies, vol. 7, no. 6, p. 2100698, 2022. [16] J. F. Mericer, J. J. Marigo and A. Maurel, "Influence of the neck shape for Helmholtz resonators. " The Journal of the Acoustical Society of America, vol. 142, no. 6, pp. 3703-3714, 2017. [17] C. Cai, C. M. Mak and X. Shi, "An extended neck versus a spiral neck of the Helmholtz resonator. " Applied Acoustics, vol. 115, pp. 74-80, 2017. [18] S. H. Bi, F. Yang, S. A. Tang, X. M. Shen, X. N. Zhang, J. W. Zhu and F. C. Yuan, "Effects of Aperture Shape on Absorption Property of Acoustic Metamaterial of Parallel-Connection Helmholtz Resonator. " Materials, vol. 16, no. 4, p. 1597, 2023. [19] H. Dastourani and I. Bahman-Jahromi, "Evaluation of aeroacoustic performance of a Helmholtz resonator system with different resonator cavity shapes in the presence of a grazing flow. "Journal of Aerospace Engineering, vol. 34, no. 5, p. 04021061, 2021. [20] X. W. Li, X. Yu, J. W. Chua and W. Zhai, "Harnessing cavity dissipation for enhanced sound absorption in Helmholtz resonance metamaterials. " Materials Horizons, vol. 10, no. 8, pp. 2892-2903, 2023. [21] X. C. Yang, F. Yang, X. M. Shen, E. H. Wang, X. N. Zhang, C. Shen and W. Q. Peng, "Development of Adjustable Parallel Helmholtz Acoustic Metamaterial for Broad Low-Frequency Sound Absorption Band. " Materials, vol. 15, no. 17, p. 5938, 2022. [22] J. Z. Zhang, T. N. Chen, F. X. Xin and J. Zhu, "New-parallel connection of the Helmholtz resonator with embedded apertures for low-frequency broadband sound absorption. " Japanese Journal of Applied Physics, vol. 61, no. 7, p. 077001, 2022. [23] E. S. Wang, F. Yang, X. M. Shen, H. Q. Duan, X. N. Zhang, Q. Yin, W. Q. Peng, X. C. Yang and L. Yang, "Development and Optimization of Broadband Acoustic Metamaterial Absorber Based on Parallel–Connection Square Helmholtz Resonators. " Materials, vol. 15, no. 10, p. 3417, 2022. [24] M. B. Xu, A. Selamet and H. Kim, "Dual helmholtz resonator. " Applied Acoustics, vol. 71, no. 9, pp. 822-829, 2010. [25] A. Rasha, Y. Wu, "Coupled resonators for sound trapping and absorption. " Scientific Reports, vol. 8, no. 1, p. 13855, 2018. [26] H. Y. Long, Y. Cheng and X. J. Liu, "Reconfigurable sound anomalous absorptions in transparent waveguide with modularized multi-order Helmholtz resonator. " Scientific Reports, vol. 8, no. 1, p. 15678, 2018. [27] H. Q. Duan, X. M. Shen, E. S. Wang, F. Yang, X. N. Zhang and Q. Yin, "Acoustic multi-layer Helmholtz resonance metamaterials with multiple adjustable absorption peaks. " Applied Physics Letters, vol. 118, no. 24, p. 241904, 2021. [28] N. Gao, S. C. Qu, J. Li, J. Wang and W. Q. Chen, "Harnessing post-buckling deformation to tune sound absorption in soft Helmholtz absorbers. " International Journal of Mechanical Sciences, vol. 208, p. 106695, 2021. [29] G. L. Wen, S. D. Zhang, H. X. Wang, Z. P. Wang, J. F. He, Z. J. Chen and Y. M. Xie, " Origami-based acoustic metamaterial for tunable and broadband sound attenuation. " International Journal of Mechanical Sciences, vol. 239, p. 107872, 2023 [30] J. Kennedy, L. Flanagan, L. Dowling, G. J. Bennett, H. Rice and D. Trimble, "The influence of additive manufacturing processes on the performance of a periodic acoustic metamaterial. " International Journal of Polymer Science, 2019. [31] C. Casarini, B. Tiller, C. Mineo, C. N. MacLeod, J. F. Windmill, and J. C. Jackson, "Enhancing the sound absorption of small-scale 3-D printed acoustic metamaterials based on Helmholtz resonators. " IEEE Sensors Journal, vol. 18, no. 19, pp. 7949-7955, 2018. [32] D. Deery, L. Flanagan, G. O’Brien, H. J. Rice, and J. Kennedy, "Efficient modelling of acoustic metamaterials for the performance enhancement of an automotive silencer. " Acoustics, vol. 4, no. 2, pp. 329-344, 2022. [33] O. Ogun and J. Kennedy, "Noise Attenuation Through Optimised Acoustic Metamaterials: A Low Form Factor Design for Targeted Noise Reduction. " 2022 28th International Workshop on Thermal Investigations of ICs and Systems, pp. 1-4, 2022. [34] T. A. Johansson and M. Kleiner, "Theory and experiments on the coupling of two Helmholtz resonators. " The Journal of the Acoustical Society of America, vol. 110, no. 3, pp. 1315-1328, 2001. [35] C. L. Ding, Y. B. Dong, K. Song, S. L. Zhai, Y. B. Wang and X. P. Zhao, "Mutual inductance and coupling effects in acoustic resonant unit cells. " Materials, vol. 12, no. 9, p. 1558, 2019. [36] R. Sabat, Y. Pennec, G. Lévêque, D. Torrent, C. Ding and B. Djafari-Rouhani, " Single and coupled Helmholtz resonators for low frequency sound manipulation. " Journal of Applied Physics, vol. 132, no. 6, 2022. [37] M. Krasikova, S. Krasikov, A. Melnikov, Y. Baloshin, S. Marburg, D. A. Powell and A. Bogdanov, "Metahouse: Noise‐Insulating Chamber Based on Periodic Structures. "Advanced Materials Technologies, vol. 8, no. 1, p. 2200711, 2023. [38] I. Uno, "On the theory and design of acoustic resonators. " The Journal of the acoustical society of America, vol. 25, no. 6, pp. 1037-1061, 1953. [39] C.Z. Cai, M. M. Cheuk and W. Xu, "Noise attenuation performance improvement by adding Helmholtz resonators on the periodic ducted Helmholtz resonator system. " Applied Acoustics, vol. 122, pp. 8-15, 2017. [40] D. Z. Wu, N. Zhang, C. M. Mak and C. Z. Cai, "Hybrid noise control using multiple Helmholtz resonator arrays. " Applied Acoustics, vol. 143, pp. 31-37, 2019. [41] C. Z. Cai and M. M. Cheuk "Acoustic performance of different Helmholtz resonator array configurations. " Applied Acoustics, vol. 130, pp. 204-209, 2018. [42] S. Kumar, T. B. Xiang and H. P. Lee, "Ventilated acoustic metamaterial window panels for simultaneous noise shielding and air circulation. " Applied Acoustics, vol. 159, p. 107088, 2020. [43] C. Y. Tsui, C. R. Voorhees and C. S. Yang, "The design of small reverberation chambers for transmission loss measurement. " Applied Acoustics, vol. 9, no. 3, pp. 165-175, 1976. [44] X. P. Wang, Y. Y. Chen, G. J. Zhou, T. N. Chen and F. Y. Ma, "Synergetic coupling large-scale plate-type acoustic metamaterial panel for broadband sound insulation. " Journal of Sound and Vibration, vol. 459, p. 114867, 2019. [45] J. Y. Jang, C. S. Park and K. Song, "Lightweight soundproofing membrane acoustic metamaterial for broadband sound insulation. "Mechanical Systems and Signal Processing, vol. 178, p. 109270, 2022. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96268 | - |
| dc.description.abstract | 伺服器做為計算機系統的核心組件,隨著運算能力的提升,同時也帶來可觀的散熱需求。然而,散熱風扇在高轉速下所產生的噪音對於硬碟讀取輸出的效能產生影響。為了解決伺服器散熱風扇噪音問題,本研究提出基於平面拉張超穎材料 (planar auxetic metamaterial,PAM) 結合亥姆霍茲共振元 (Helmholtz resonator,HR) 的小型被動式通風聲學超穎材料。此結構能夠在狹小空間內實現風扇噪音的有效衰減,並透過施加結構應變改變共振元間的耦合效應,實現共振頻率的實時調控,以針對不同風扇噪音頻段進行降噪。本研究利用理論方法預測共振元耦合後的共振頻率,並與數值模擬結果進行比較,從而降低計算成本。後續利用3D列印技術以軟彈性材料製作結構,透過自製聲學裝置驗證了結構的降噪能力,並確認對結構施加不同應變能夠有效調控共振頻率,共振頻率可調範圍達到200Hz以上,調控頻率範圍與理論方法及數值模擬預測結果吻合。最後將結構安裝於伺服器內部後,驗證其能夠衰減伺服器風扇的噪音,並提升伺服器硬碟讀取輸出的效能20%以上。此研究展示了超穎材料在伺服器降噪領域的應用潛力,為高效能伺服器系統的開發提供了一種新穎且實用的解決方案。 | zh_TW |
| dc.description.abstract | As the core component of computer systems, servers require significant cooling capacity due to the increasing computational power they provide. However, the noise generated by high-speed cooling fans negatively impacts the performance of hard disk drives (HDDs). To address the issue of noise from server cooling fans, this study proposes a small passive ventilated acoustic metamaterial based on planar auxetic metamaterial (PAM) combined with Helmholtz resonators (HR). This structure effectively attenuates fan noise in confined spaces and allows real-time tuning of the resonance frequency by altering the coupling effect between resonators through applied strain, targeting different fan noise frequency bands. The study utilizes theoretical methods to predict the resonance frequency of coupled resonators and compares the results with numerical simulations to reduce computational costs. The structure was fabricated using 3D printing technology with soft elastic materials, and its noise reduction capability was verified using a custom-built acoustic device. It was confirmed that applying different strains to the structure can effectively tune the resonance frequency, with an adjustable range exceeding 200 Hz, matching the predictions from theoretical methods and numerical simulations. Finally, when the structure was installed inside a server, it was verified that it could reduce fan noise and improve HDD performance by more than 20%. This research demonstrates the application potential of metamaterials in server noise reduction, offering a novel and practical solution for developing high-performance server systems. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-28T16:29:31Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-11-28T16:29:31Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
謝辭 ii 中文摘要 iii Abstract iv 目次 v 圖次 ix 表次 xii 英文專有名詞與中文翻譯對照 xiii 第一章 緒論 1 1.1 研究動機 1 1.2 研究背景 2 1.3 研究目的 2 1.4 重要性與貢獻 3 1.5 研究流程 3 第二章 文獻探討 5 2.1 超穎材料 5 2.1.1 超穎材料回顧 5 2.1.2 聲學超穎材料 6 2.2 亥姆霍茲共振元 7 2.2.1 亥姆霍茲共振元設計 8 2.2.2 並聯亥姆霍茲共振元設計 9 2.2.3 亥姆霍茲共振元空腔相互串聯 10 2.2.4 亥姆霍茲共振元調控共振頻率 10 2.2.5 小型亥姆霍茲共振元實體製作 11 2.3 亥姆霍茲共振元耦合 12 2.4 結構降噪能力評估 13 第三章 研究方法 14 3.1 聲學與固體力學之數值模擬建構 14 3.2 數值模擬方法 15 3.2.1 結構聲固耦合數值模型 15 3.2.2 固體力學模型數值模型 17 3.3 亥姆霍茲共振元 18 3.3.1 亥姆霍茲共振元共振頻率計算 18 3.3.2 亥姆霍茲共振元耦合理論方法 21 3.4 亥姆霍茲共振元耦合共振頻率理論方法優化 23 3.4.1 數值模擬參數定義 24 3.4.2 基於數值模擬結果擬合優化 25 3.5 結構設計與分析 27 3.5.1 平面拉張超穎材料結合亥姆霍茲共振元單元結構設計 27 3.5.2 結構各應變通風率分析 28 3.5.3 結構模組化設計與製作 29 3.6 結構聲學特性評估 30 3.6.1 單結構聲學測定 30 3.6.2 多層結構聲學測定 31 3.7 PAM於伺服器內實驗測試 32 3.7.1 伺服器風扇噪音實驗評估 32 3.7.2 伺服器硬碟效能測試 33 3.8 實驗儀器介紹 34 3.8.1 伺服器 34 3.8.2 壓電麥克風與數據擷取控制系統 34 3.8.3 訊號產生器與被動式喇叭 35 3.8.4 實驗環境 35 第四章 結果與討論 36 4.1 亥姆霍茲共振元耦合理論方法 36 4.1.1 耦合亥姆霍茲共振元模擬結果 36 4.1.2 耦合理論方法驗證 39 4.2 平面拉張超穎材料結合亥姆霍茲共振元 44 4.2.1 各應變PAMHR單元幾何分析 44 4.2.2 各應變PAMHR單元共振頻率分析 47 4.2.3 理論方法預測聲音傳輸損失 49 4.2.4 結構耦合模態分析 50 4.3 結構聲學性能實驗評估 51 4.3.1 無應變PAMHR降噪性能實驗評估 51 4.3.2 多應變共振頻率調控測試 53 4.3.3 PAMHR與一般結構比較 55 4.3.4 多層結構降噪能力實驗結果 57 4.4 伺服器實驗 58 4.4.1 PAMHR應用於伺服器風扇降噪 58 4.4.2 PAMHR應用於伺服器硬碟效能提升測試 59 第五章 討論 62 5.1 平面拉張超穎材料結合亥姆霍茲共振元討論 62 5.1.1 幾何討論 62 5.1.2 溫度與共振頻率討論 65 5.1.3 不同聲音入射角討論 67 5.1.4 週期性邊界條件與模組化結構剛性邊界條件比較 69 5.1.5 正蒲松比結構比較 70 5.2 數值模擬結果模態分析 72 5.2.1 結構降噪機制分析 72 5.2.2 PAMHR速度分布模態分析 73 5.2.3 熱黏滯聲學探討 74 第六章 結論與未來展望 77 6.1 結論 77 6.2 未來展望 78 參考文獻 80 附錄 86 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 共振頻率實時調控 | zh_TW |
| dc.subject | 伺服器風扇降噪 | zh_TW |
| dc.subject | 平面拉張超穎材料 | zh_TW |
| dc.subject | 耦合亥姆霍茲共振元 | zh_TW |
| dc.subject | 被動式通風降噪超穎材料 | zh_TW |
| dc.subject | Server fan noise reduction | en |
| dc.subject | Passive ventilation noise reduction metamaterials | en |
| dc.subject | Helmholtz resonator elements | en |
| dc.subject | Planar auxetic metamaterials | en |
| dc.subject | Real-time resonance frequency tunability | en |
| dc.title | 基於平面拉張超穎材料結合亥姆霍茲共振元實現共振頻率調控與伺服器風扇噪音衰減 | zh_TW |
| dc.title | Acoustic Tuning and Fan Noise Attenuation via Auxetic Metamaterials with Helmholtz Resonators | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 宋家驥;施文彬;周光武;陳伯修 | zh_TW |
| dc.contributor.oralexamcommittee | Chia-Chi Sung;Wen-Pin Shih;Kuang-Wu Chou;Po-Hsiu Chen | en |
| dc.subject.keyword | 被動式通風降噪超穎材料,耦合亥姆霍茲共振元,平面拉張超穎材料,共振頻率實時調控,伺服器風扇降噪, | zh_TW |
| dc.subject.keyword | Passive ventilation noise reduction metamaterials,Helmholtz resonator elements,Planar auxetic metamaterials,Real-time resonance frequency tunability,Server fan noise reduction, | en |
| dc.relation.page | 88 | - |
| dc.identifier.doi | 10.6342/NTU202404612 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-11-20 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 7.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
