請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96243完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 宋孔彬 | zh_TW |
| dc.contributor.advisor | Kung-Bin Sung | en |
| dc.contributor.author | 林柏詠 | zh_TW |
| dc.contributor.author | Bo-Yong Lin | en |
| dc.date.accessioned | 2024-11-28T16:22:22Z | - |
| dc.date.available | 2024-11-29 | - |
| dc.date.copyright | 2024-11-28 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-10-29 | - |
| dc.identifier.citation | Javad T Hashmi, Ying-Ying Huang, Bushra Z Osmani, Sulbha K Sharma, Margaret A Naeser, and Michael R Hamblin. Role of low-level laser therapy in neurorehabilitation. Pm&r, 2–S305, 2010.
Renlong Zhang, Ting Zhou, Soham Samanta, Ziyi Luo, Shaowei Li, Hao Xu, and Junle Qu. Synergistic photobiomodulation with 808-nm and 1064-nm lasers to reduce the β-amyloid neurotoxicity in the in vitro alzheimer’s disease models. Frontiers in Neuroimaging, 1:903531, 2022. William Todd Penberthy and Charles E Vorwaller. Utilization of the 1064 nm wavelength in photobiomodulation: a systematic review and meta-analysis. Journal of Lasers in Medical Sciences, 12, 2021. Xinlong Wang, Fenghua Tian, Divya D Reddy, Sahil S Nalawade, Douglas W Barrett, Francisco Gonzalez-Lima, and Hanli Liu. Up-regulation of cerebral cytochrome-c-oxidase and hemodynamics by transcranial infrared laser stimulation: a broadband near-infrared spectroscopy study. Journal of Cerebral Blood Flow & Metabolism, 37(12):3789–3802, 2017. Michael R Hamblin. Shining light on the head: photobiomodulation for brain disorders. BBA clinical, 6:113–124, 2016. Michael R Hamblin. Photobiomodulation for traumatic brain injury and stroke. Journal of neuroscience research, 96(4):731–743, 2018. Guilherme da Cruz Ribeiro Poiani, Ana Luiza Zaninotto, Ana Maria Costa Carneiro, Renato Amaro Zangaro, Afonso Shiguemi Inoue Salgado, Rodolfo Borges Parreira, Almir Ferreira de Andrade, Manoel Jacobsen Teixeira, and Wellingson Silva Paiva. Photobiomodulation using low-level laser therapy (lllt) for patients with chronic traumatic brain injury: a randomized controlled trial study protocol. Trials, 19:1–8, 2018. Hongjun Wu, Ziyang Zang, Zhenhua Pan, Jia Shi, Hongli Chen, Zhibo Han, and Jianquan Yao. Combined effects of low level laser therapy and inducers on the neural differentiation of mesenchymal stem cells. IEEE Access, 9:28946–28953, 2021. Michael R Hamblin. Photobiomodulation for alzheimer’s disease: Has the light dawned? In Photonics, volume 6, page 77. MDPI, 2019. Catherine Hamilton, David Hamilton, Frank Nicklason, Nabil El Massri, and John Mitrofanis. Exploring the use of transcranial photobiomodulation in parkinson’s disease patients. Neural regeneration research, 13(10):1738–1740, 2018. Daniel M Johnstone, Catherine Hamilton, Luke C Gordon, Cecile Moro, Napoleon Torres, Frank Nicklason, Jonathan Stone, Alim-Louis Benabid, and John Mitrofanis. Exploring the use of intracranial and extracranial (remote) photobiomodulation devices in parkinson’s disease: A comparison of direct and indirect systemic stimulations. Journal of Alzheimer’s Disease, 83(4):1399–1413, 2021. Marco Maiello, Olivia M Losiewicz, Eric Bui, Vincenza Spera, Michael R Hamblin, Luana Marques, and Paolo Cassano. Transcranial photobiomodulation with near-infrared light for generalized anxiety disorder: a pilot study. Photobiomodulation, photomedicine, and laser surgery, 37(10):644–650, 2019. Flávio Klinpovous Kerppers, Kesia Maria Mangoni Gonçalves Dos Santos, Maria Elvira Ribeiro Cordeiro, Mário César da Silva Pereira, Danilo Barbosa, André Alexandre Pezzini, Luiza Ferreira Cunha, Maiara Fonseca, Ketlin Bragnholo, Afonso Shiguemi Inoue Salgado, et al. Study of transcranial photobiomodulation at 945-nm wavelength: anxiety and depression. Lasers in Medical Science, 35:1945–1954, 2020. Paolo Cassano, Samuel R Petrie, David Mischoulon, Cristina Cusin, Husam Katnani, Albert Yeung, Luis De Taboada, Abigal Archibald, Eric Bui, Lee Baer, et al. Transcranial photobiomodulation for the treatment of major depressive disorder. the elated-2 pilot trial. Photomedicine and laser surgery, 36(12):634–646, 2018. Douglas W Barrett and F Gonzalez-Lima. Transcranial infrared laser stimulation produces beneficial cognitive and emotional effects in humans. Neuroscience, 230:13–23, 2013. Nathaniel J Blanco, W Todd Maddox, and Francisco Gonzalez-Lima. Improving executive function using transcranial infrared laser stimulation. Journal of neuropsychology, 11(1):14–25, 2017. Zhishan Hu, Xiujuan Qu, Lexuan Li, Xiaohan Zhou, Qin Yang, Qi Dong, Hesheng Liu, Xiaobo Li, Ying Han, and Haijing Niu. Repeated photobiomodulation induced reduction of bilateral cortical hemodynamic activation during a working memory task in healthy older adults. IEEE Journal of Biomedical and Health Informatics, 2023. Thomas H Sanderson, Joseph M Wider, Icksoo Lee, Christian A Reynolds, Jenney Liu, Bradley Lepore, Reneé Tousignant, Melissa J Bukowski, Hollie Johnston, Alemu Fite, et al. Inhibitory modulation of cytochrome c oxidase activity with specific near-infrared light wavelengths attenuates brain ischemia/reperfusion injury. Scientific reports, 8(1):3481, 2018. 伍育汶. 功能性近紅外光譜術應用於經顱紅外光刺激前後之認知功能評估. Master’s thesis, 國立臺灣大學, Jan 2022. Li-Da Huang, Tzu-Chia Kao, Kung-Bin Sung, and Jacob A Abraham. Simulation study on the optimization of photon energy delivered to the prefrontal cortex in low-level-light therapy using red to near-infrared light. IEEE Journal of Selected Topics in Quantum Electronics, 27(4):1–10, 2021. Andreas Pitzschke, B Lovisa, O Seydoux, M Zellweger, M Pfleiderer, Y Tardy, and G Wagnières. Red and nir light dosimetry in the human deep brain. Physics in Medicine & Biology, 60(7):2921, 2015. Enrique Vargas, Douglas W Barrett, Celeste L Saucedo, Li-Da Huang, Jacob A Abraham, Hirofumi Tanaka, Andreana P Haley, and F Gonzalez-Lima. Beneficial neurocognitive effects of transcranial laser in older adults. Lasers in medical science, 32:1153–1162, 2017. Vincenza Spera, Tatiana Sitnikova, Meredith J Ward, Parya Farzam, Jeremy Hughes, Eric Bui, Marco Maiello, Luis De Taboada, Michael R Hamblin, Maria Angela Franceschini, et al. Transcranial near-infrared light: Dose-dependent effects on eeg oscillations but not cerebral blood flow. bioRxiv, page 837591, 2019. Vincenza Spera, Tatiana Sitnikova, Meredith J Ward, Parya Farzam, Jeremy Hughes, Samuel Gazecki, Eric Bui, Marco Maiello, Luis De Taboada, Michael R Hamblin, et al. Pilot study on dose-dependent effects of transcranial photobiomodulation on brain electrical oscillations: a potential therapeutic target in alzheimer’s disease. Journal of Alzheimer’s Disease, 83(4):1481–1498, 2021. Emad Eshaghi, Saeed Sadigh-Eteghad, Gisou Mohaddes, and Seyed Hossein Rasta. Transcranial photobiomodulation prevents anxiety and depression via changing serotonin and nitric oxide levels in brain of depression model mice: A study of three different doses of 810 nm laser. Lasers in Surgery and Medicine, 51(7):634–642, 2019. Ying-Ying Huang, Sulbha K Sharma, James Carroll, and Michael R Hamblin. Biphasic dose response in low level light therapy–an update. Dose-response, 9(4)–response, 2011. Denise H Hawkins and Heidi Abrahamse. The role of laser fluence in cell viability, proliferation, and membrane integrity of wounded human skin fibroblasts following helium-neon laser irradiation. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery, 38(1):74–83, 2006. Sulbha K Sharma, Gitika B Kharkwal, Mari Sajo, Ying-Ying Huang, Luis De Taboada, Thomas McCarthy, and Michael R Hamblin. Dose response effects of 810 nm laser light on mouse primary cortical neurons. Lasers in surgery and medicine, 43(8):851–859, 2011. Paolo Cassano, Anh Phong Tran, Husam Katnani, Benjamin S Bleier, Michael R Hamblin, Yaoshen Yuan, and Qianqian Fang. Selective photobiomodulation for emotion regulation: model-based dosimetry study. Neurophotonics, 6(1):015004–015004, 2019. Yaoshen Yuan, Paolo Cassano, Matthew Pias, and Qianqian Fang. Transcranial photobiomodulation with near-infrared light from childhood to elderliness: simulation of dosimetry. Neurophotonics, 7(1):015009–015009, 2020. SR Arridge, M Schweiger, M Hiraoka, and DT Delpy. A finite element approach for modeling photon transport in tissue. Medical physics, 20(2):299–309, 1993. Sergio Fantini, Maria Angela Franceschini, and Enrico Gratton. Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation. JOSA B, 11(10):2128–2138, 1994. Carole K Hayakawa, Brian Y Hill, Joon S You, Frédéric Bevilacqua, Jerome Spanier, and Vasan Venugopalan. Use of the δ-p 1 approximation for recovery of optical absorption, scattering, and asymmetry coefficients in turbid media. Applied optics, 43(24):4677–4684, 2004. David A Boas, Joseph P Culver, Jonathan J Stott, and Andrew K Dunn. Three dimensional monte carlo code for photon migration through complex heterogeneous media including the adult human head. Optics express, 10(3):159–170, 2002. Jared R Jagdeo, Lauren E Adams, Neil I Brody, and Daniel M Siegel. Transcranial red and near infrared light transmission in a cadaveric model. PloS one, 2012. Clark E Tedford, Scott DeLapp, Steven Jacques, and Juanita Anders. Quantitative analysis of transcranial and intraparenchymal light penetration in human cadaver brain tissue. Lasers in surgery and medicine, 47(4):312–322, 2015. Theodore A Henderson and Larry D Morries. Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain? Neuropsychiatric disease and treatment, pages 2191–2208, 2015. Takahiro Ando, Weijun Xuan, Tao Xu, Tianhong Dai, Sulbha K Sharma, Gitika B Kharkwal, Ying-Ying Huang, Qiuhe Wu, Michael J Whalen, Shunichi Sato, et al. Comparison of therapeutic effects between pulsed and continuous wave 810-nm wavelength laser irradiation for traumatic brain injury in mice. PloS one, 6(10), 2011. Juanita J Anders, Helina Moges, Xingjia Wu, Isaac D Erbele, Stephanie L Alberico, Edward K Saidu, Jason T Smith, and Brian A Pryor. In vitro and in vivo optimization of infrared laser treatment for injured peripheral nerves. Lasers in surgery and medicine, 46(1):34–45, 2014. Lan Yue and Mark S Humayun. Monte carlo analysis of the enhanced transcranial penetration using distributed near-infrared emitter array. Journal of biomedical optics, 20(8):088001, 2015. Farzad Salehpour, Javad Mahmoudi, Farzin Kamari, Saeed Sadigh-Eteghad, Seyed Hossein Rasta, and Michael R Hamblin. Brain photobiomodulation therapy: a narrative review. Molecular neurobiology, 55:6601–6636, 2018. Xinlong Wang, Jacek P Dmochowski, Li Zeng, Elisa Kallioniemi, Mustafa Husain, F Gonzalez-Lima, and Hanli Liu. Transcranial photobiomodulation with 1064-nm laser modulates brain electroencephalogram rhythms. Neurophotonics, 6(2):025013–025013, 2019. Steven L Jacques and Scott A Prahl. Ece532 biomedical optics. Oregon Graduate Institute: Washington, DC, USA, 1998. Kanamat Efendiev, Pavel Grachev, Arkadii Moskalev, and Victor Loschenov. Non-invasive high-contrast infrared imaging of blood vessels in biological tissues by the backscattered laser radiation method. Infrared Physics & Technology, 111:103562, 2020. Juliette Selb, Danny K Joseph, and David A Boas. Time-gated optical system for depth-resolved functional brain imaging. Journal of biomedical optics, 11(4):044008–044008, 2006. Troy O McBride, Brian W Pogue, Shudong Jiang, Ulf L Österberg, and Keith D Paulsen. A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo. Review of Scientific Instruments, 72(3):1817–1824, 2001. 曾士育(Shih-Yu Tzeng), 郭俊言(Chun-Yen Kuo), 鄭南玉(Nan-Yu Cheng), and 曾盛豪(Sheng-Hao Tseng). 簡介漫反射光譜學-光學穿戴式生理監控裝置之核心技術. 科儀新知, 17(224), Sep 2020. Caigang Zhu and Quan Liu. Review of monte carlo modeling of light transport in tissues. Journal of biomedical optics, 18(5):050902–050902, 2013. 高子佳. 以連續波近紅外光譜與三維模型定量人體腦部光學參數. Master’s thesis, 國立臺灣大學, Jan 2021. R. L. Workman et al. Review of Particle Physics - 42. Monte Carlo Techniques. PTEP, 2022:083C01, 2022. Lihong Wang, Steven L Jacques, and Liqiong Zheng. Mcml—monte carlo modeling of light transport in multi-layered tissues. Computer methods and programs in biomedicine, 47(2):131–146, 1995. Brian C Wilson and Gerhard Adam. A monte carlo model for the absorption and flux distributions of light in tissue. Medical physics, 10(6):824–830, 1983. Scott A Prahl. A monte carlo model of light propagation in tissue. In Dosimetry of laser radiation in medicine and biology, volume 10305, pages 105–114. SPIE, 1989. Erik Alerstam, Stefan Andersson-Engels, and Tomas Svensson. White monte carlo for time-resolved photon migration. Journal of biomedical optics, 13(4):041304–041304, 2008. Erik Alerstam, Tomas Svensson, and Stefan Andersson-Engels. Parallel computing with graphics processing units for high-speed monte carlo simulation of photon migration. Journal of biomedical optics, 13(6):060504–060504, 2008. Angelo Sassaroli and Fabrizio Martelli. Equivalence of four monte carlo methods for photon migration in turbid media. JOSA A, 29(10):2110–2117, 2012. Joe Alexandersen. Topology Optimisation for Coupled Convection Problems. PhD thesis, DTU Mechanical Engineering, 2013. Qianqian Fang and David A Boas. Monte carlo simulation of photon migration in 3d turbid media accelerated by graphics processing units. Optics express, 17(22):20178–20190, 2009. William D Penny, Karl J Friston, John T Ashburner, Stefan J Kiebel, and Thomas E Nichols. Statistical parametric mapping: the analysis of functional brain images. Elsevier, 2011. Chiao-Yi Wang, Tzu-Chia Kao, Yin-Fu Chen, Wen-Wei Su, Hsin-Jou Shen, and Kung-Bin Sung. Validation of an inverse fitting method of diffuse reflectance spectroscopy to quantify multi-layered skin optical properties. In Photonics, volume 6, page 61. MDPI, 2019. Ali Afshari, Rolf B Saager, David Burgos, William C Vogt, Jianting Wang, Gonzalo Mendoza, Sandy Weininger, Kung-Bin Sung, Anthony J Durkin, and T Joshua Pfefer. Evaluation of the robustness of cerebral oximetry to variations in skin pigmentation using a tissue-simulating phantom. Biomedical Optics Express, 13(5):2909–2928, 2022. JeeHyun Choi, Martin Wolf, Vladislav Toronov, Ursula Wolf, Chiara Polzonetti, Dennis Hueber, Larisa P Safonova, Rajarsi Gupta, Antonios Michalos, William Mantulin, et al. Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach. Journal of biomedical optics, 9(1):221–229, 2004. KL Leenders, D Perani, AA Lammertsma, JD Heather, P Buckingham, T Jones, MJR Healy, JM Gibbs, RJS Wise, J Hatazawa, et al. Cerebral blood flow, blood volume and oxygen utilization: normal values and effect of age. Brain, 113(1):27–47, 1990. Frank P Bolin, Luther E Preuss, Roy C Taylor, and Robert J Ference. Refractive index of some mammalian tissues using a fiber optic cladding method. Applied optics, 28(12):2297–2304, 1989. Sanathana Konugolu Venkata Sekar, Ilaria Bargigia, Alberto Dalla Mora, Paola Taroni, Alessandro Ruggeri, Alberto Tosi, Antonio Pifferi, and Andrea Farina. Diffuse optical characterization of collagen absorption from 500 to 1700 nm. Journal of biomedical optics, 22(1):015006–015006, 2017. Steven L Jacques and Daniel J McAuliffe. The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation. Photochemistry and photobiology, 53(6):769–775, 1991. Linhong Kou, Daniel Labrie, and Petr Chylek. Refractive indices of water and ice in the 0.65-to 2.5-μm spectral range. Applied optics, 32(19):3531–3540, 1993. Williem G Zijlstra, Anneke Buursma, and Onno W Van Assendelft. Visible and near infrared absorption spectra of human and animal haemoglobin determination and application. CRC press, 2021. Yu Shimojo, Takahiro Nishimura, Hisanao Hazama, Toshiyuki Ozawa, and Kunio Awazu. Measurement of absorption and reduced scattering coefficients in asian human epidermis, dermis, and subcutaneous fat tissues in the 400-to 1100-nm wavelength range for optical penetration depth and energy deposition analysis. Journal of biomedical optics, 25(4):045002–045002, 2020. Pranav Lanka, Agnese Segala, Andrea Farina, Sanathana Konugolu Venkata Sekar, Enzo Nisoli, Alessandra Valerio, Paola Taroni, Rinaldo Cubeddu, and Antonio Pifferi. Non-invasive investigation of adipose tissue by time domain diffuse optical spectroscopy. Biomedical Optics Express, 11(5):2779–2793, 2020. Anne L Hayman, Vershalee Shukla, Cindy Ly, and Katherine H Taber. Clinical and imaging anatomy of the scalp. Journal of computer assisted tomography, 27(3):454–459, 2003. Eiji Okada and David T Delpy. Near-infrared light propagation in an adult head model. i. modeling of low-level scattering in the cerebrospinal fluid layer. Applied optics, 42(16):2906–2914, 2003. Nobuhiro Okui and Eiji Okada. Wavelength dependence of crosstalk in dual-wavelength measurement of oxy-and deoxy-hemoglobin. Journal of biomedical optics, 10(1):011015–011015, 2005. Paolo Giacometti, Katherine L Perdue, and Solomon G Diamond. Algorithm to find high density eeg scalp coordinates and analysis of their correspondence to structural and functional regions of the brain. Journal of neuroscience methods, 229:84–96, 2014. PV Bayly, LA Taber, and CD Kroenke. Mechanical forces in cerebral cortical folding: a review of measurements and models. Journal of the mechanical behavior of biomedical materials, 29:568–581, 2014. Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780, 1997. Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural networks. In International conference on machine learning, pages 1310–1318. Pmlr, 2013. Min Ma, Chenbin Liu, Ran Wei, Bin Liang, and Jianrong Dai. Predicting machine’s performance record using the stacked long short-term memory (lstm) neural networks. Journal of Applied Clinical Medical Physics, 23(3), 2022. Danni Sun, Xin Wang, Min Huang, Qibing Zhu, and Jianwei Qin. Estimation of optical properties of turbid media using spatially resolved diffuse reflectance combined with lstm-attention network. Optics Express, 31(6):10260–10272, 2023. Less Wright and Nestor Demeure. Ranger21: a synergistic deep learning optimizer. arXiv preprint arXiv:2106.13731, 2021. Ekaba Bisong et al. Building machine learning and deep learning models on Google cloud platform. Springer, 2019. Antonio M Chiarelli, Filippo Zappasodi, Francesco Di Pompeo, and Arcangelo Merla. Simultaneous functional near-infrared spectroscopy and electroencephalography for monitoring of human brain activity and oxygenation: a review. Neurophotonics, 4(4):041411–041411, 2017. Tyrell Pruitt, Xinlong Wang, Anqi Wu, Elisa Kallioniemi, Mustafa M Husain, and Hanli Liu. Transcranial photobiomodulation (tpbm) with 1,064-nm laser to improve cerebral metabolism of the human brain in vivo. Lasers in surgery and medicine, 52(9):807–813, 2020. Zachary S Wade, Douglas W Barrett, Roger E Davis, Adrian Nguyen, Sindhu Venkat, and F Gonzalez-Lima. Histochemical mapping of the duration of action of photobiomodulation on cytochrome c oxidase in the rat brain. Frontiers in Neuroscience, 17:1243527, 2023. Satoko Kawauchi, Shunichi Sato, Hidetoshi Ooigawa, Hiroshi Nawashiro, Miya Ishihara, and Makoto Kikuchi. Simultaneous measurement of changes in light absorption due to the reduction of cytochrome c oxidase and light scattering in rat brains during loss of tissue viability. Applied optics, 47(22):4164–4176, 2008. Mahasweta Bhattacharya and Anirban Dutta. Computational modeling of the photon transport, tissue heating, and cytochrome c oxidase absorption during transcranial near-infrared stimulation. Brain sciences, 9(8):179, 2019. Ajit Kumar Sahoo and Siba Kumar Udgata. A novel ann-based adaptive ultrasonic measurement system for accurate water level monitoring. IEEE Transactions on Instrumentation and Measurement, 69(6):3359–3369, 2019. F. Ernst, R. Bruder, T. Wissel, P. Stüber, and A. Schweikard. Measuring cranial soft tissue thickness with mri or force-compensated tracked ultrasound. British journal of medicine and medical research, 4:937–948, 2014. Takashi Abe, Fumiko Tanaka, Yasuo Kawakami, Kohki Yoshikawa, and Tetsuo Fukunaga. Total and segmental subcutaneous adipose tissue volume measured by ultrasound. Medicine and science in sports and exercise, 28(7):908–912, 1996. Sean Mc Auliffe, Karen Mc Creesh, Helen Purtill, and Kieran O’Sullivan. A systematic review of the reliability of diagnostic ultrasound imaging in measuring tendon size: Is the error clinically acceptable? Physical Therapy in Sport, 26:52–63, 2017. ANSI. American National Standard for Safe Use of Lasers. Z136.1-2014. Laser Institute of America, Orlando, FL, 2014. Bertan Hallacoglu, Angelo Sassaroli, Michael Wysocki, Elizabeth Guerrero-Berroa, Michal Schnaider Beeri, Vahram Haroutunian, Merav Shaul, Irwin H Rosenberg, Aron M Troen, and Sergio Fantini. Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy. Journal of biomedical optics, 17(8):081406–081406, 2012. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96243 | - |
| dc.description.abstract | 本研究的主要目標是透過近紅外光譜技術獲得漫反射光譜,以非侵入式的方式量化經顱光生物調節過程中前額葉皮質的光通量密度。基於提出的神經網路預測模型,使用頭皮表面的空間解析漫反射光譜,結合人口統計參數和頭部物理測量數據作為特徵,來預測刺激光束穿透前額葉皮質的光子能量比例。本研究提供了一種最佳化個人劑量的非侵入性替代方案,相較於傳統的固定劑量,使用神經網路模型可以有效減少與真實值之間的誤差。
在訓練模型的方法上,本研究使用 154 名年齡介於 51 到 80 歲間的健康受試者的 MRI 頭部掃描影像建立 3D 模型,根據頭皮、顱骨、腦脊髓液、灰質和白質等主要組織層的均勻光學參數變化,並使用多波長和不同偵測器與光源間距,以蒙地卡羅模擬漫反射光譜,作為訓練資料。神經網路架構結合 SLSTM 模型以及全連接網路,用於預測光源波長在 810 nm 和 1064 nm 時,目標關注區域內的平均光通量密度。 本研究所建立的預測模型結果顯示,不同預測驗證實驗設計下的相對誤差表現良好,特別是在 New-OPs 實驗中,使用所有生成資料中不同組別的吸收和散射係數組合分別作為訓練集和測試集,達到了最低的相對誤差水平。此外,在接近真實情境的受試者交叉驗證實驗中,由於受試者樣本數量有限,相對誤差較高,反映了模型在捕捉人類頭部解剖結構多樣性方面的挑戰。然而,與固定刺激劑量方法相比,整體上顯著提升了對不同受試者光通量密度的預估準確性,平均使相對誤差降低約 27% 至 49%。尤其針對在固定劑量方法中相對誤差較大的受試者,預測結果明顯降低相對誤差,達到約 94% 至 112% 的改善。藉由本研究提出的預測模型能有效減少過量和劑量不足的情況,為經顱光生物調節在臨床應用中的個人化治療提供了重要的依據。 | zh_TW |
| dc.description.abstract | The main objective of this study is to obtain diffuse reflectance spectra through near-infrared spectroscopy to non-invasively predict the photon fluence rate in the prefrontal cortex during transcranial photobiomodulation (tPBM). Based on the proposed neural network prediction model, spatially resolved diffuse reflectance spectroscopy from the scalp surface is used. These data, combined with demographic parameters and physical measurements of the head, serve as features to predict the proportion of photon energy penetrating the prefrontal cortex. This study provides a non-invasive alternative to optimize individual dosages, effectively reducing the error between the predicted and actual values compared to conventional constant dosages.
In the methodology, the study utilized MRI head scans of 154 healthy subjects, aged between 51 and 80 years, to build 3D models. These models simulate the absorption and scattering characteristics of major tissue layers, including the scalp, skull, cerebrospinal fluid, gray matter, and white matter, using Monte Carlo simulations to generate diffuse reflectance spectra as the training database. The simulations covered these tissues' homogeneous optical parameter variations, employing multiple wavelengths and different source-detector separations. The neural network architecture integrates an SLSTM model, along with fully connected networks, to predict the average photon fluence rate in the target regions at wavelengths of 810 nm and 1064 nm. The results of the prediction model developed in this study showed good relative error performance under various validation experiments. This was especially evident in the New-OPs experiment, which achieved the lowest relative error. In this experiment, different combinations of absorption and scattering coefficients were used in the generated database for the training and test sets, respectively. Additionally, in subject-wise cross-validation experiments that mimic real-life scenarios, the relative error was higher due to the limited number of subject samples. This reflects the challenges of the model in capturing the diversity of human head anatomical structures. However, compared to the constant stimulation dosage method, the overall accuracy of predicting photon fluence rates for different subjects significantly improved, reducing the relative error by approximately 27% to 49% on average. For subjects with higher relative errors in the fixed-dose method, the prediction results significantly reduce the relative error, achieving improvements of about 94% to 112%. The proposed predicted model effectively reduced instances of over-dosing and under-dosing. This provides important support for personalized treatment in clinical applications of tPBM. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-28T16:22:22Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-11-28T16:22:22Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 iii 摘要 v Abstract vii 目次 xi 圖次 xv 表次 xix 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與文獻回顧 3 1.3 研究目標 4 1.3.1 建立預測模型並定義能量比例 5 1.3.2 以蒙地卡羅產生大量光譜資料 5 1.3.3 設計驗證實驗了解模型優勢 6 第二章 理論 7 2.1 空間解析漫反射光譜 7 2.2 蒙地卡羅演算法 11 2.2.1 基本原理 11 2.2.2 蒙地卡羅模擬於光學中的應用 14 2.2.2.1 初始化光子 16 2.2.2.2 移動光子 16 2.2.2.3 通過介質邊界 18 2.2.2.4 計算光子吸收能量 19 2.2.2.5 更新光子方向 20 2.2.3 白蒙地卡羅法 22 2.2.4 光子能量分布 23 2.3 深度神經網路 24 2.3.1 基本原理 24 2.3.2 損失函數與梯度下降 26 2.3.3 深度神經網路於本研究中的應用 28 第三章 研究方法設計 29 3.1 蒙地卡羅模擬工具 31 3.1.1 人體頭部模型 31 3.1.2 光學參數設定 32 3.1.2.1 散射係數 36 3.1.2.2 吸收係數 36 3.2 漫反射光譜模擬 40 3.3 大腦能量分布模擬 41 3.3.1 光源設定 41 3.3.2 模擬結果縮減 42 3.3.3 目標關注區域設定 43 3.3.4 能量穿透比例設定 44 3.4 平均光通量密度預測模型 45 3.4.1 訓練資料 45 3.4.1.1 散射係數 45 3.4.1.2 吸收係數 46 3.4.2 腦外組織厚度估計 47 3.4.3 訓練資料預處理 48 3.4.4 建立深度神經網路 50 3.4.5 預測驗證實驗設計 54 第四章 實驗結果與討論 56 4.1 組織光學參數和頭部結構的影響 56 4.1.1 光學參數相關係數 56 4.1.2 輸入特徵相關係數 57 4.1.3 頭部結構相關係數 58 4.1.4 刺激能量穿透與吸收比例 59 4.1.5 不同波長下刺激能量穿透至 ROI 之比較 61 4.2 預測模型驗證 63 4.2.1 訓練資料穩定分析 63 4.2.2 模型架構評估 65 4.2.3 預測模型表現分析 66 4.2.3.1 All-random 實驗結果 67 4.2.3.2 New-OPs 實驗結果 68 4.2.3.3 SCV 實驗結果 70 4.2.3.4 異常受試者分析 71 4.2.4 不同情境下訓練資料的影響 73 4.2.4.1 異常受試者資料的影響 73 4.2.4.2 超音波預估腦外組織厚度的影響 75 4.2.4.3 偵測器偏移的影響 76 4.3 與傳統方法之比較 78 第五章 結論與未來展望 82 5.1 結論 82 5.1.1 潛在影響特徵模擬分析 82 5.1.2 預測模型驗證 83 5.1.3 對比固定功率密度方法表現評估 83 5.2 未來展望 84 5.2.1 增加預測模型泛用性 84 5.2.2 實驗人體的有效刺激光通量密度 84 5.2.3 縮小預測模型與人體間的差異 85 5.2.4 提升模擬資料的密度 86 參考文獻 87 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 蒙地卡羅演算法 | zh_TW |
| dc.subject | 漫反射光譜 | zh_TW |
| dc.subject | 經顱光生物調節 | zh_TW |
| dc.subject | 預測模型 | zh_TW |
| dc.subject | 深度神經網路 | zh_TW |
| dc.subject | 光學劑量測定 | zh_TW |
| dc.subject | Deep Neural Network | en |
| dc.subject | Transcranial Photobiomodulation | en |
| dc.subject | Monte Carlo Algorithm | en |
| dc.subject | Diffuse Reflectance Spectroscopy | en |
| dc.subject | Optical Dosimetry | en |
| dc.subject | Prediction Model | en |
| dc.title | 經顱光生物調節光通量於前額葉皮質的非侵入性定量 | zh_TW |
| dc.title | Non-Invasive Quantification of the Photon Fluence Rate in the Prefrontal Cortex for Transcranial Photobiomodulation (tPBM) | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 劉子毓;吳文超 | zh_TW |
| dc.contributor.oralexamcommittee | Tzu-Yu Liu;Wen-Chau Wu | en |
| dc.subject.keyword | 經顱光生物調節,蒙地卡羅演算法,漫反射光譜,光學劑量測定,預測模型,深度神經網路, | zh_TW |
| dc.subject.keyword | Transcranial Photobiomodulation,Monte Carlo Algorithm,Diffuse Reflectance Spectroscopy,Optical Dosimetry,Prediction Model,Deep Neural Network, | en |
| dc.relation.page | 101 | - |
| dc.identifier.doi | 10.6342/NTU202402349 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-10-29 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | - |
| dc.date.embargo-lift | 2029-10-28 | - |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 15.48 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
