Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96242
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐丞志zh_TW
dc.contributor.advisorCheng-Chih Hsuen
dc.contributor.author謝昀辰zh_TW
dc.contributor.authorYun-Chen Hsiehen
dc.date.accessioned2024-11-28T16:22:01Z-
dc.date.available2024-11-29-
dc.date.copyright2024-11-28-
dc.date.issued2024-
dc.date.submitted2024-10-22-
dc.identifier.citation1. Roth, G. A.; Forouzanfar, M. H.; Moran, A. E.; Barber, R.; Nguyen, G.; Feigin, V. L.; Naghavi, M.; Mensah, G. A.; Murray, C. J. L., Demographic and Epidemiologic Drivers of Global Cardiovascular Mortality. N. Engl. J. M. 2015, 372 (14), 1333-1341.
2. Martin, S. S.; Aday, A. W.; Almarzooq, Z. I.; Anderson, C. A. M.; Arora, P.; Avery, C. L.; Baker-Smith, C. M.; Gibbs, B. B.; Beaton, A. Z.; Boehme, A. K.; Commodore-Mensah, Y.; Currie, M. E.; Elkind, M. S. V.; Evenson, K. R.; Generoso, G.; Heard, D. G.; Hiremath, S.; Johansen, M. C.; Kalani, R.; Kazi, D. S.; Ko, D.; Liu, J.; Magnani, J. W.; Michos, E. D.; Mussolino, M. E.; Navaneethan, S. D.; Parikh, N. I.; Perman, S. M.; Poudel, R.; Rezk-Hanna, M.; Roth, G. A.; Shah, N. S.; St-Onge, M.-P.; Thacker, E. L.; Tsao, C. W.; Urbut, S. M.; Spall, H. G. C. V.; Voeks, J. H.; Wang, N.-Y.; Wong, N. D.; Wong, S. S.; Yaffe, K.; Palaniappan, L. P., 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2024, 149 (8), e347-e913.
3. Li, Y.; Cao, G.-y.; Jing, W.-z.; Liu, J.; Liu, M., Global trends and regional differences in incidence and mortality of cardiovascular disease, 1990−2019: findings from 2019 global burden of disease study. Eur. J. Prev. Cardiol. 2022, 30 (3), 276-286.
4. World Health Organization. Cardiovascular diseases (CVDs). https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed 2024-10-21).
5. McGill, H. C., Jr.; McMahan, C. A.; Gidding, S. S., Preventing heart disease in the 21st century: implications of the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) study. Circulation 2008, 117 (9), 1216-27.
6. Cause of Death Statistics. Taiwan (R.O.C.) Ministry of Health and Welfare. June 16, 2024. https://www.mohw.gov.tw/dl-89199-61006ce7-5145-47ef-b9f7-d354698b7df6.html (accessed 2024-10-21).
7. The National Health Insurance Statistics. Taiwan (R.O.C.) National Health Insurance Administration, Ministry of Health and Welfare. September 15, 2022. https://www.nhi.gov.tw/ch/dl-52568-53471e6791e747a7b86fe119e7b95d99-1.pdf (accessed 2024-10-21).
8. Cleveland Clinic. Coronary Artery Disease. https://my.clevelandclinic.org/health/diseases/16898-coronary-artery-disease (accessed 2024-10-21).
9. Cleveland Clinic. Cardiovascular Disease. https://my.clevelandclinic.org/health/diseases/21493-cardiovascular-disease (accessed 2024-10-21).
10. Tabas, I.; Williams, K. J.; Borén, J., Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 2007, 116 (16), 1832-1844.
11. Libby, P.; Ridker, P. M.; Hansson, G. K., Progress and challenges in translating the biology of atherosclerosis. Nature 2011, 473 (7347), 317-25.
12. NIH National Heart, Lung, and Blood Institute. What Is Peripheral Artery Disease? https://www.nhlbi.nih.gov/health/peripheral-artery-disease (accessed 2024-10-21).
13. Cleveland Clinic. Cerebrovascular Disease. https://my.clevelandclinic.org/health/diseases/24205-cerebrovascular-disease (accessed 2024-10-21).
14. Libby, P.; Theroux, P., Pathophysiology of Coronary Artery Disease. Circulation 2005, 111 (25), 3481-3488.
15. Cleveland Clinic. Atherosclerosis. https://my.clevelandclinic.org/health/diseases/16753-atherosclerosis-arterial-disease (accessed 2024-10-21).
16. Gulati, M.; Levy, P. D.; Mukherjee, D.; Amsterdam, E.; Bhatt, D. L.; Birtcher, K. K.; Blankstein, R.; Boyd, J.; Bullock-Palmer, R. P.; Conejo, T.; Diercks, D. B.; Gentile, F.; Greenwood, J. P.; Hess, E. P.; Hollenberg, S. M.; Jaber, W. A.; Jneid, H.; Joglar, J. A.; Morrow, D. A.; O’Connor, R. E.; Ross, M. A.; Shaw, L. J., 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR Guideline for the Evaluation and Diagnosis of Chest Pain: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Cardiovasc. Comput. Tomogr. 2022, 16 (1), 54-122.
17. NIH National Heart, Lung, and Blood Institute. Coronary Heart Disease, Diagnosis. https://www.nhlbi.nih.gov/health/coronary-heart-disease/diagnosis (accessed 2024-10-21).
18. Wang, Z.; Klipfell, E.; Bennett, B. J.; Koeth, R.; Levison, B. S.; Dugar, B.; Feldstein, A. E.; Britt, E. B.; Fu, X.; Chung, Y.-M.; Wu, Y.; Schauer, P.; Smith, J. D.; Allayee, H.; Tang, W. H. W.; Didonato, J. A.; Lusis, A. J.; Hazen, S. L., Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011, 472 (7341), 57-63.
19. Koeth, R. A.; Wang, Z.; Levison, B. S.; Buffa, J. A.; Org, E.; Sheehy, B. T.; Britt, E. B.; Fu, X.; Wu, Y.; Li, L.; Smith, J. D.; DiDonato, J. A.; Chen, J.; Li, H.; Wu, G. D.; Lewis, J. D.; Warrier, M.; Brown, J. M.; Krauss, R. M.; Tang, W. H.; Bushman, F. D.; Lusis, A. J.; Hazen, S. L., Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 2013, 19 (5), 576-85.
20. Li, X. S.; Wang, Z.; Cajka, T.; Buffa, J. A.; Nemet, I.; Hurd, A. G.; Gu, X.; Skye, S. M.; Roberts, A. B.; Wu, Y.; Li, L.; Shahen, C. J.; Wagner, M. A.; Hartiala, J. A.; Kerby, R. L.; Romano, K. A.; Han, Y.; Obeid, S.; Luscher, T. F.; Allayee, H.; Rey, F. E.; DiDonato, J. A.; Fiehn, O.; Tang, W. H. W.; Hazen, S. L., Untargeted metabolomics identifies trimethyllysine, a TMAO-producing nutrient precursor, as a predictor of incident cardiovascular disease risk. JCI Insight 2018, 3 (6).
21. Ottosson, F.; Brunkwall, L.; Smith, E.; Orho-Melander, M.; Nilsson, P. M.; Fernandez, C.; Melander, O., The gut microbiota-related metabolite phenylacetylglutamine associates with increased risk of incident coronary artery disease. J. Hypertens. 2020, 38 (12).
22. Agatston, A. S.; Janowitz, W. R.; Hildner, F. J.; Zusmer, N. R.; Viamonte, M.; Detrano, R., Quantification of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 1990, 15 (4), 827-832.
23. NIH National Heart, Lung, and Blood Institute. What Is Cardiac Catheterization. https://www.nhlbi.nih.gov/health/cardiac-catheterization (accessed 2024-10-21).
24. Harris, P. J.; Behar, V. S.; Conley, M. J.; Harrell, F. E.; Lee, K. L.; Peter, R. H.; Kong, Y.; Rosati, R. A., The prognostic significance of 50% coronary stenosis in medically treated patients with coronary artery disease. Circulation 1980, 62 (2), 240-248.
25. Zeisel, S. H.; Mar, M.-H.; Howe, J. C.; Holden, J. M., Concentrations of Choline-Containing Compounds and Betaine in Common Foods. J. Nutr. 2003, 133 (5), 1302-1307.
26. Al-Waiz, M.; Mikov, M.; Mitchell, S. C.; Smith, R. L., The exogenous origin of trimethylamine in the mouse. Metabolism 1992, 41 (2), 135-136.
27. Lang, D.; Yeung, C.; Peter, R.; Ibarra, C.; Gasser, R.; Itagaki, K.; Philpot, R.; Rettie, A., Isoform specificity of trimethylamine N-oxygenation by human flavin-containing monooxygenase (FMO) and P450 enzymes: Selective catalysis by fmo3. Biochem. Pharmacol. 1998, 56 (8), 1005-1012.
28. Tang, W. H.; Wang, Z.; Levison, B. S.; Koeth, R. A.; Britt, E. B.; Fu, X.; Wu, Y.; Hazen, S. L., Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 2013, 368 (17), 1575-84.
29. Li, X. S.; Obeid, S.; Klingenberg, R.; Gencer, B.; Mach, F.; Raber, L.; Windecker, S.; Rodondi, N.; Nanchen, D.; Muller, O.; Miranda, M. X.; Matter, C. M.; Wu, Y.; Li, L.; Wang, Z.; Alamri, H. S.; Gogonea, V.; Chung, Y. M.; Tang, W. H.; Hazen, S. L.; Luscher, T. F., Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur. Heart. J. 2017, 38 (11), 814-824.
30. Chou, R. H.; Chen, C. Y.; Chen, I. C.; Huang, H. L.; Lu, Y. W.; Kuo, C. S.; Chang, C. C.; Huang, P. H.; Chen, J. W.; Lin, S. J., Trimethylamine N-Oxide, Circulating Endothelial Progenitor Cells, and Endothelial Function in Patients with Stable Angina. Sci. Rep. 2019, 9 (1), 4249.
31. Zhu, W.; Gregory, J. C.; Org, E.; Buffa, J. A.; Gupta, N.; Wang, Z.; Li, L.; Fu, X.; Wu, Y.; Mehrabian, M.; Sartor, R. B.; McIntyre, T. M.; Silverstein, R. L.; Tang, W. H. W.; DiDonato, J. A.; Brown, J. M.; Lusis, A. J.; Hazen, S. L., Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell 2016, 165 (1), 111-124.
32. Singh, G. B.; Zhang, Y.; Boini, K. M.; Koka, S., High Mobility Group Box 1 Mediates TMAO-Induced Endothelial Dysfunction. Int. J. Mol. Sci. 2019, 20 (14).
33. Wang, Z.; Roberts, A. B.; Buffa, J. A.; Levison, B. S.; Zhu, W.; Org, E.; Gu, X.; Huang, Y.; Zamanian-Daryoush, M.; Culley, M. K.; DiDonato, A. J.; Fu, X.; Hazen, J. E.; Krajcik, D.; DiDonato, J. A.; Lusis, A. J.; Hazen, S. L., Non-lethal Inhibition of Gut Microbial Trimethylamine Production for the Treatment of Atherosclerosis. Cell 2015, 163 (7), 1585-95.
34. Randrianarisoa, E.; Lehn-Stefan, A.; Wang, X.; Hoene, M.; Peter, A.; Heinzmann, S. S.; Zhao, X.; Königsrainer, I.; Königsrainer, A.; Balletshofer, B., Relationship of serum trimethylamine N-oxide (TMAO) levels with early atherosclerosis in humans. Sci. Rep. 2016, 6 (1), 26745.
35. Suzuki, T.; Heaney, L. M.; Jones, D. J.; Ng, L. L., Trimethylamine N-oxide and risk stratification after acute myocardial infarction. Clin. Chem. 2017, 63 (1), 420-428.
36. Cleveland Clinic, H. L., Diagnostics & Testing Blood Tests to Determine Risk of Coronary Artery Disease.
37. Garcia, E.; Wolak-Dinsmore, J.; Wang, Z.; Li, X. S.; Bennett, D. W.; Connelly, M. A.; Otvos, J. D.; Hazen, S. L.; Jeyarajah, E. J., NMR quantification of trimethylamine-N-oxide in human serum and plasma in the clinical laboratory setting. Clin. Biochem. 2017, 50 (16-17), 947-955.
38. Rox, K.; Rath, S.; Pieper, D. H.; Vital, M.; Bronstrup, M., A simplified LC-MS/MS method for the quantification of the cardiovascular disease biomarker trimethylamine-N-oxide and its precursors. J. Pharm. Anal. 2021, 11 (4), 523-528.
39. Le, T. T.; Shafaei, A.; Genoni, A.; Christophersen, C.; Devine, A.; Lo, J.; Wall, P. L.; Boyce, M. C., Development and validation of a simple LC-MS/MS method for the simultaneous quantitative determination of trimethylamine-N-oxide and branched chain amino acids in human serum. Anal. Bioanal. Chem. 2019, 411 (5), 1019-1028.
40. Wheeler, M. J., Immunoassay Techniques. In Hormone Assays in Biological Fluids, 1st ed; Wheeler, M. J.; Hutchinson, J. S. M., Eds.; Humana Press: Totowa, 2006; pp 1-23.
41. Calidonio, J. M.; Hamad-Schifferli, K., Biophysical and biochemical insights in the design of immunoassays. Biochim. Biophys. Acta. Gen. Subj. 2023, 1867 (1), 130266.
42. Sturgeon, C. M.; Viljoen, A., Analytical error and interference in immunoassay: minimizing risk. Ann. Clin. Biochem. 2011, 48 (5), 418-432.
43. Wauthier, L.; Plebani, M.; Favresse, J., Interferences in immunoassays: review and practical algorithm. Clin. Chem. Lab. Med. 2022, 60 (6), 808-820.
44. Favresse, J.; Burlacu, M.-C.; Maiter, D.; Gruson, D., Interferences With Thyroid Function Immunoassays: Clinical Implications and Detection Algorithm. Endocr. Rev. 2018, 39 (5), 830-850.
45. Nevraumont, A.; Deltombe, M.; Favresse, J.; Guillaume, L.; Chapelle, V.; Twerenbold, R.; Gruson, D., Interferences with cardiac biomarker assays: understanding the clinical impact. Eur. Heart J. 2022, 43 (24), 2286-2288.
46. Mitrova, B.; Waffo, A. F. T.; Kaufmann, P.; Iobbi‐Nivol, C.; Leimkühler, S.; Wollenberger, U., Trimethylamine N‐Oxide Electrochemical Biosensor with a Chimeric Enzyme. ChemElectroChem 2018, 6 (6), 1732-1737.
47. Yi, Y.; Liang, A.; Luo, L.; Zang, Y.; Zhao, H.; Luo, A., A novel real-time TMAO detection method based on microbial electrochemical technology. Bioelectrochemistry 2022, 144, 108038.
48. Chang, Y. C.; Chu, Y. H.; Wang, C. C.; Wang, C. H.; Tain, Y. L.; Yang, H. W., Rapid Detection of Gut Microbial Metabolite Trimethylamine N-Oxide for Chronic Kidney Disease Prevention. Biosensors 2021, 11 (9), 339.
49. Lakshmi, G. B. V. S.; Yadav, A. K.; Mehlawat, N.; Jalandra, R.; Solanki, P. R.; Kumar, A., Gut microbiota derived trimethylamine N-oxide (TMAO) detection through molecularly imprinted polymer based sensor. Sci. Rep. 2021, 11 (1), 1338.
50. Becker, J. S.; Dietze, H.-J., Inorganic trace analysis by mass spectrometry. Spectrochim. Acta, Part B 1998, 53 (11), 1475-1506.
51. Busetti, F.; Backe, W. J.; Bendixen, N.; Maier, U.; Place, B.; Giger, W.; Field, J. A., Trace analysis of environmental matrices by large-volume injection and liquid chromatography–mass spectrometry. Anal. Bioanal. Chem. 2012, 402 (1), 175-186.
52. Gathungu, R. M.; Kautz, R.; Kristal, B. S.; Bird, S. S.; Vouros, P., The integration of LC-MS and NMR for the analysis of low molecular weight trace analytes in complex matrices. Mass Spectrom. Rev. 2020, 39 (1-2), 35-54.
53. Perez de Souza, L.; Alseekh, S.; Scossa, F.; Fernie, A. R., Ultra-high-performance liquid chromatography high-resolution mass spectrometry variants for metabolomics research. Nat. Methods 2021, 18 (7), 733-746.
54. Alseekh, S.; Aharoni, A.; Brotman, Y.; Contrepois, K.; D’Auria, J.; Ewald, J.; C. Ewald, J.; Fraser, P. D.; Giavalisco, P.; Hall, R. D.; Heinemann, M.; Link, H.; Luo, J.; Neumann, S.; Nielsen, J.; Perez de Souza, L.; Saito, K.; Sauer, U.; Schroeder, F. C.; Schuster, S.; Siuzdak, G.; Skirycz, A.; Sumner, L. W.; Snyder, M. P.; Tang, H.; Tohge, T.; Wang, Y.; Wen, W.; Wu, S.; Xu, G.; Zamboni, N.; Fernie, A. R., Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nat. Methods 2021, 18 (7), 747-756.
55. Augustini, A. L. R. M.; Borg, C.; Sielemann, S.; Telgheder, U., Making Every Single Puff Count—Simple and Sensitive E-Cigarette Aerosol Sampling for GCxIMS and GC-MS Analysis. Molecules 2023, 28 (18), 6574.
56. Alves, S.; Paris, A.; Rathahao-Paris, E. Chapter Four - Mass spectrometry-based metabolomics for an in-depth questioning of human health. In Advances in Clinical Chemistry, Makowski, G. S., Ed.; Vol. 99; Elsevier, 2020; pp 147-191.
57. Piehowski, P. D.; Zhu, Y.; Bramer, L. M.; Stratton, K. G.; Zhao, R.; Orton, D. J.; Moore, R. J.; Yuan, J.; Mitchell, H. D.; Gao, Y.; Webb-Robertson, B.-J. M.; Dey, S. K.; Kelly, R. T.; Burnum-Johnson, K. E., Automated mass spectrometry imaging of over 2000 proteins from tissue sections at 100-μm spatial resolution. Nat. Commun. 2020, 11 (1), 8.
58. Soares da Silva Burato, J.; Vargas Medina, D. A.; de Toffoli, A. L.; Vasconcelos Soares Maciel, E.; Mauro Lanças, F., Recent advances and trends in miniaturized sample preparation techniques. J. Sep. Sci. 2020, 43 (1), 202-225.
59. Kanu, A. B., Recent developments in sample preparation techniques combined with high-performance liquid chromatography: A critical review. J. Chromatogr. A 2021, 1654, 462444.
60. Dettmer, K.; Aronov, P. A.; Hammock, B. D., Mass spectrometry-based metabolomics. Mass Spectrom. Rev. 2007, 26 (1), 51-78.
61. Klampfl, C. W.; Himmelsbach, M., Direct ionization methods in mass spectrometry: An overview. Anal. Chim. Acta 2015, 890, 44-59.
62. Feider, C. L.; Krieger, A.; Dehoog, R. J.; Eberlin, L. S., Ambient Ionization Mass Spectrometry: Recent Developments and Applications. Anal. Chem. 2019, 91 (7), 4266-4290.
63. Dempster, A. J., A new Method of Positive Ray Analysis. Phys. Rev. 1918, 11 (4), 316-325.
64. Munson, M. S.; Field, F. H., Chemical Ionization Mass Spectrometry. I. General Introduction. J. Am. Chem. Soc. 1966, 88, 2621-2630.
65. Carroll, D.; Dzidic, I.; Stillwell, R. N.; Haegele, K. D.; Horning, E. C., Atmospheric Pressure Ionization Mass Spectrometry: Corona Discharge ion Source for Use in Liquid Chromatograph-Mass Spectrometer-Computer Analytical System. Anal. Chem. 1975, 47, 2369-2373.
66. Karas, M.; Hillenkamp, F., Laser Desorption Ionization of Proteins with Molecular Masses Exceeding 10,000 Daltons. Anal. Chem. 1988, 60, 2299-2301.
67. Dole, M.; Mack, L. L.; Hines, R. L.; Mobley, R. C.; Ferguson, L. D.; Alice, M. B., Molecular Beams of Macroions. J. Chem. Phys. 1968, 49 (5), 2240-2249.
68. Peacock, P. M.; Zhang, W.-J.; Trimpin, S., Advances in Ionization for Mass Spectrometry. Anal. Chem. 2017, 89 (1), 372-388.
69. Takáts, Z.; Wiseman, J. M.; Gologan, B.; Cooks, R. G., Mass Spectrometry Sampling Under Ambient Conditions with Desorption Electrospray Ionization. Science 2004, 306 (5695), 471-473.
70. Morato, N. M.; Cooks, R. G., Desorption Electrospray Ionization Mass Spectrometry: 20 Years. Acc. Chem. Res. 2023, 56 (18), 2526-2536.
71. Cooks, R. G.; Ouyang, Z.; Takats, Z.; Wiseman, J. M., Ambient Mass Spectrometry. Science 2006, 311 (5767), 1566-1570.
72. Costa, A. B.; Graham Cooks, R., Simulated splashes: Elucidating the mechanism of desorption electrospray ionization mass spectrometry. Chem. Phys. Lett. 2008, 464 (1-3), 1-8.
73. Morato, N. M.; Brown, H. M.; Garcia, D.; Middlebrooks, E. H.; Jentoft, M.; Chaichana, K.; Quinones-Hinojosa, A.; Cooks, R. G., High-throughput analysis of tissue microarrays using automated desorption electrospray ionization mass spectrometry. Sci. Rep. 2022, 12 (1), 18851.
74. Huang, K. H.; Morato, N. M.; Feng, Y.; Cooks, R. G., High-Throughput Diversification of Complex Bioactive Molecules by Accelerated Synthesis in Microdroplets. Angew. Chem. Int. Ed. Engl. 2023, 62 (22), e202300956.
75. Wleklinski, M.; Loren, B. P.; Ferreira, C. R.; Jaman, Z.; Avramova, L.; Sobreira, T. J. P.; Thompson, D. H.; Cooks, R. G., High throughput reaction screening using desorption electrospray ionization mass spectrometry. Chem. Sci. 2018, 9 (6), 1647-1653.
76. Chen, H.; Talaty, N. N.; Takáts, Z.; Cooks, R. G., Desorption Electrospray Ionization Mass Spectrometry for High-Throughput Analysis of Pharmaceutical Samples in the Ambient Environment. Anal. Chem. 2005, 77 (21), 6915-6927.
77. Manicke, N. E.; Kistler, T.; Ifa, D. R.; Cooks, R. G.; Ouyang, Z., High-throughput quantitative analysis by desorption electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 2009, 20 (2), 321-5.
78. Gao, L.; Zhang, Z.; Wu, W.; Deng, Y.; Zhi, H.; Long, H.; Lei, M.; Hou, J.; Wu, W.; Guo, D. A., Quantitative imaging of natural products in fine brain regions using desorption electrospray ionization mass spectrometry imaging (DESI-MSI): Uncaria alkaloids as a case study. Anal. Bioanal. Chem. 2022, 414 (17), 4999-5007.
79. Wiseman, J. M.; Evans, C. A.; Bowen, C. L.; Kennedy, J. H., Direct analysis of dried blood spots utilizing desorption electrospray ionization (DESI) mass spectrometry. Analyst 2010, 135 (4), 720-725.
80. Lanekoff, I.; Stevens, S. L.; Stenzel-Poore, M. P.; Laskin, J., Matrix effects in biological mass spectrometry imaging: identification and compensation. Analyst 2014, 139 (14), 3528-3532.
81. Shelley, J. T.; Badal, S. P.; Engelhard, C.; Hayen, H., Ambient desorption/ionization mass spectrometry: evolution from rapid qualitative screening to accurate quantification tool. Anal. Bioanal. Chem. 2018, 410 (17), 4061-4076.
82. Kuo, T.-H.; Dutkiewicz, E. P.; Pei, J.; Hsu, C.-C., Ambient Ionization Mass Spectrometry Today and Tomorrow: Embracing Challenges and Opportunities. Anal. Chem. 2020, 92 (3), 2353-2363.
83. Cotte-Rodríguez, I.; Mulligan, C. C.; Cooks, R. G., Non-Proximate Detection of Small and Large Molecules by Desorption Electrospray Ionization and Desorption Atmospheric Pressure Chemical Ionization Mass Spectrometry:  Instrumentation and Applications in Forensics, Chemistry, and Biology. Anal. Chem. 2007, 79 (18), 7069-7077.
84. Takáts, Z.; Wiseman, J. M.; Cooks, R. G., Ambient mass spectrometry using desorption electrospray ionization (DESI): instrumentation, mechanisms and applications in forensics, chemistry, and biology. J. Mass Spectrom. 2005, 40 (10), 1261-1275.
85. Haddad, R.; Sparrapan, R.; Eberlin, M. N., Desorption sonic spray ionization for (high) voltage-free ambient mass spectrometry. Rapid Commun. Mass Spectrom. 2006, 20 (19), 2901-2905.
86. Takats, Z.; Nanita, S. C.; Cooks, R. G.; Schlosser, G.; Vekey, K., Amino Acid Clusters Formed by Sonic Spray Ionization. Anal. Chem. 2003, 75 (6), 1514-1523.
87. Wang, M.; Tang, W. H. W.; Li, X. S.; de Oliveira Otto, M. C.; Lee, Y.; Lemaitre, R. N.; Fretts, A.; Nemet, I.; Sotoodehnia, N.; Sitlani, C. M.; Budoff, M.; DiDonato, J. A.; Wang, Z.; Bansal, N.; Shlipak, M. G.; Psaty, B. M.; Siscovick, D. S.; Sarnak, M. J.; Mozaffarian, D.; Hazen, S. L., The Gut Microbial Metabolite Trimethylamine N -oxide, Incident CKD, and Kidney Function Decline. J. Am. Soc. Nephrol. 2024, 35 (6), 749-760.
88. Iyngkaran, P.; Schneider, H.; Devarajan, P.; Anavekar, N.; Krum, H.; Ronco, C., Cardio-Renal Syndrome: New Perspective in Diagnostics. Seminars in Nephrology 2012, 32 (1), 3-17.
89. Ronco, C.; Ronco, F., Cardio-renal syndromes: a systematic approach for consensus definition and classification. Heart Failure Rev. 2012, 17 (2), 151-160.
90. Dutta, A.; Saha, S.; Bahl, A.; Mittal, A.; Basak, T., A comprehensive review of acute cardio-renal syndrome: need for novel biomarkers. Front. Pharmacol. 2023, 14.
91. Schiattarella, G. G.; Sannino, A.; Toscano, E.; Giugliano, G.; Gargiulo, G.; Franzone, A.; Trimarco, B.; Esposito, G.; Perrino, C., Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: a systematic review and dose-response meta-analysis. Eur. Heart J. 2017, 38 (39), 2948-2956.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96242-
dc.description.abstract心血管疾病有著極高的盛行率以及逐年提升的死亡率,讓這類疾病成為了世界主要的健康問題之一。三甲基胺氧化物在近二十年內已經被確認是重要的心血管疾病風險因子之一。此分子一開始被發現參與進與腸道菌有關的膳食磷脂膽鹼代謝,並且被發現到會誘使動脈粥狀硬化發生,且與不良心血管疾病事件有關。然而常規化的三甲基胺氧化物之檢測在現今是具有難度的,其原因在於缺乏一個簡單、可靠、且高通量的定量平台。因此,我們開發了一個基於脫附式電噴灑游離質譜法的新穎定量平台,以用於快速的三甲基胺氧化物之分析,並對常規化的心血管疾病風險之預測做出貢獻。經過對樣品前處理方式、脫附式電噴灑游離儀以及質譜儀之運作參數進行最佳化後,此平台在具生物意義的濃度區間內表現出高度的精準度、準確度、以及再現性。在平台建立完成以後,此平台也被用以進行197個人類血漿樣品的分析以進行平台之確效。結果顯示,在定量實驗與風險等級分類上,此平台與傳統的液相層析串聯質譜法平台所得到的結果具有高度的一致性,同時將分析時間大幅縮短了十倍。透過使用此一快速、穩定、高通量的基於脫附式電噴灑游離法開發之三甲胺氧化物分析平台,常規化的心血管疾病風險評估將會成為可行的方案,並藉此對於個人化的醫療策略或是健康照護有所助益。zh_TW
dc.description.abstractCardiovascular disease (CVD) has emerged as a major global health concern due to its high prevalence and elevated mortality rates. A recognized risk factor for CVD is Trimethylamine N-oxide (TMAO), a metabolite derived from the gut-microbiome-linked metabolism of dietary choline, which has been implicated in promoting atherosclerosis and associated with adverse cardiovascular outcomes. Routine TMAO screening for CVD risk prediction, however, remains a challenge due to the lack of a well-validated strategy utilized in a simple and high-throughput manner. Here, we introduced a novel approach employing desorption electrospray ionization mass spectrometry (DESI-MS) for rapid plasma TMAO quantification to aid in widespread CVD risk assessment. The DESI-MS platform exhibited high accuracy, precision, and reproducibility after optimization of sample pretreatment and instrumental parameters. Next, the platform was validated by analyzing 197 plasma samples. The analysis results showed high consistency with those obtained from liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques while speeding up ten times. By adopting this rapid, robust, and high-throughput DESI-MS platform for TMAO analysis, routine CVD risk assessment could be achieved, thereby benefiting personalized treatment and healthcare strategies.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-28T16:22:01Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-11-28T16:22:01Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 ii
摘要 iv
Abstract v
List of Figures viii
List of Tables x
Chapter 1. Introduction 1
1-1. Cardiovascular Disease 1
1-1-1. Overview 1
1-1-2. Types of Cardiovascular Diseases and the Progression 5
1-1-3. The Screening and Diagnosis of Cardiovascular Diseases 7
1-2. Risk Factor Trimethylamine N-oxide: Discovery and the Challenges 9
1-2-1. Trimethylamine N-oxide in Cardiovascular Diseases 9
1-2-2. Challenges for the High-throughput Screening of Trimethylamine N-oxide 13
1-3. Desorption Electrospray Ionization Mass Spectrometry 16
Chapter 2. Method 20
2-1. Chemicals and Materials 20
2-2. Human Plasma Samples 20
2-3. Preparation of Calibration Standards and Quality Controls 21
2-4. Evaluation of Matrix Effect 21
2-5. Pretreatment of Plasma Samples 21
2-6. High-throughput DESI-MS Platform for TMAO Analysis 22
2-7. Data Analysis 23
2-8. Liquid-Chromatography Tandem Mass Spectrometry Analysis 23
Chapter 3. Results and Discussions 25
3-1. Study Design 25
3-2. Construction of the DESI-MS Platform 27
3-2-1. Sample Pretreatment and Instrumental Parameters 27
3-2-2. Process Stability and In-use Stability 32
3-2-3. Calibration Curve 34
3-2-4. Precision and Accuracy 38
3-2-5. Intra-day and Inter-day CV 39
3-2-6. Matrix Effect 40
3-2-7. Carry-over 41
3-3. Application in Cardiovascular Disease Risk Determination 42
3-3-1. The Characteristics 42
3-3-2. Validate the Performance Against CVD and Non-CVD Cohort 44
3-3-3. Risk Group and the Other Clinical Characteristics 50
3-4. Limitations and Future Works 54
Chapter 4. Conclusion 55
Reference 56
Appendix A. Table of Abbreviation 64
Appendix B. Functions for DESI-MS Platform Evaluation 65
-
dc.language.isoen-
dc.title利用脫附式電噴灑游離質譜法進行氧化三甲胺快速定量之新式心血管疾病風險評估平台zh_TW
dc.titleRapid Screening for Plasma Trimethylamine N-oxide Using Desorption Electrospray Ionization Mass Spectrometry: A Novel Approach for Cardiovascular Disease Risk Assessmenten
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee謝建台;吳偉愷zh_TW
dc.contributor.oralexamcommitteeJen-Taie Shiea;Wei-Kai Wuen
dc.subject.keyword脫附式電噴灑游離法,三甲基胺氧化物,心血管疾病,快速篩檢,早期疾病風險評估,zh_TW
dc.subject.keywordCardiovascular disease (CVD),Desorption Electrospray Ionization (DESI),early disease risk assessment,rapid analysis,Trimethylamine N-Oxide (TMAO),en
dc.relation.page65-
dc.identifier.doi10.6342/NTU202404493-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-10-22-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
dc.date.embargo-lift2029-10-21-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  目前未授權公開取用
3.3 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved