請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9623完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 關秉宗(Biing T. Guan) | |
| dc.contributor.author | Chia-Shao Kang | en |
| dc.contributor.author | 康家韶 | zh_TW |
| dc.date.accessioned | 2021-05-20T20:32:01Z | - |
| dc.date.available | 2008-08-04 | |
| dc.date.available | 2021-05-20T20:32:01Z | - |
| dc.date.copyright | 2008-08-04 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-31 | |
| dc.identifier.citation | 王震哲 (2000) 棲蘭山檜木林區植物資源調查研究 國立台灣師範大學生物系.
李素華 (1995) 世界檜木類。郭寶章編。中華林業叢書956號。台灣貴重針葉五木。中華林學會。台北。第3-13頁。 林進龍 (2007) 棲蘭山檜木林冠層下檜木栽植苗之生長表現。國立宜蘭大學自然資源學系碩士論文79頁。 柯勇 (2002) 植物生理學。藝軒圖書出版社。台北市。 柳榗 (1975) 台灣檜木林之生態。台灣林業1(13):24-27。 洪富文、馬復京、游漢明、許原瑞、張乃航 (2000) 台灣原生檜木林面積的估算與其對保育的意涵。中華林學季刊33:143-153. 曹立松 (2007) 應用廣義加法模式建構六種台灣針葉樹物種分布範圍與氣候因子之關係。國立台灣大學森林環境暨資源學系碩士論文70頁。 郭寶章 (1995) 檜木類之生育地。郭寶章編。中華林業叢書956號。台灣貴重針葉五木。中華林學會。台北。第14-18頁。 陳冠瑋 (2000) 台灣杉營養芽生長之物候學。國立台灣大學森林學研究所碩士論文92頁。 陳耀德 (2003) 鴛鴦湖森林生態系大氣養分輸入之探討。國立東華大學自然資源管理研究所碩士論文114頁。 彭令豐 (1988) 棲蘭山檜木天然下種更新造林之實施及現況。現代育林3:20-23。 程膺 (1999) 棲蘭山區樹木年輪和氣候關係之研究。國立東華大學自然資源管理研究所碩士論文76頁。 黃進和 (1995) 森林開發處之檜木林分布與經營。郭寶章編。中華林業叢書956號。台灣貴重針葉五木。中華林學會。台北。第181-198頁。 劉俊毅 (2008) 棲蘭山區台灣扁柏老熟林及次生林枯落物養分動態。國立台灣大學森林學研究所碩士論文68頁。 賴宜鈴 (2006) 光環境對台灣棲蘭山區亞熱帶雲霧林內兩種檜木小苗生長與建立之影響。國立台灣大學森林學研究所博士論文128頁。 Aarssen, L. W. 1995. Hypotheses for the evolution of apical dominance in plants: implications for the interpretation of overcompensation. Oikos 74: 149-156. Abbasi, M. K., M. Zafar, and S. R. Khan. 2007. Influence of different land-cover types on the changes of selected soil properties in the mountain region of Rawalakot Azad Jammu and Kashmir. Nutrient Cycling in Agroecosystems 78: 97-110. Aerts, R. and F. S. Chapin Ⅲ. 2000. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research 30: 1-67. Ares, A. and S. M. Gleason. 2007. Foliar nutrient resorption in tree species. Pages 1-32 in New Research on Forest Ecology. Nova Science Plublishers, Inc., New York. Bremner, J. M. 1997. Sources of nitrous oxide in soils. Nutrient Cycling in Agroecosystems 49: 7-16. Brooks, J. R., T. M. Hinckley, and D. G. Sprugel. 1994. Acclimation responses of mature Abies amabilis sun foliage to shading. Oecologia 100: 316-324. Brooks, J. R., D. G. Sprugel, and T. M. Hinckley. 1996. The effects of light acclimation during and after foliage expansion on photosynthesis of Abies amabilis within the canopy. Oecologia 107: 21-32. Cannell, M. G. R. and R. I. Smith. 1983. Thermal time, chill days and prediction of budburst in Picea sitchensis. Journal of Applied Ecology 20: 951-963. Chabot, B. F. and D. J. Hicks. 1982. The ecology of leaf life spans. Annals Reviews of Ecology and Systematics 13: 229-259. Chang, N.-H., Y.-R. Hsui, F.-W. Horng, H.-M. Yu, and F.-C. Ma. 2001. Natural seeding and seedling occurrence in the Chamaecyparis forest at Chilan Mt. area. Taiwan Journal of Forest Science 16: 321-326. Chang, S.-C., C.-P. Wang, C.-M. Feng, R. Rees, U. Hell, and E. Matzner. 2007. Soil fluxes of mineral elements and dissolved organic matter following manipulation of leaf litter input in a Taiwan Chamaecyparis forest. Forest Ecology and Management 242: 133-141. Chapin Ⅲ, F. S. 1980. The mineral nutrition of wild plants. Annual Review of Ecology and Systematics 11: 233-260. Chapin Ⅲ, F. S. and R. A. Kedrowski. 1983. Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology 64: 376-391. Chen, J.-S. and C.-Y. Chiu. 2000. Effect of topography on the composition of soil organic substance in a perhumid sub-tropical montane forest ecosystem in Taiwan. Geoderma 96: 19-30. Chiu, C.-Y., S. Y. Lai, Y. M. Lin, and H. C. Chiang. 1999. Distribution of the radionuclide 137Cs in the soils of a wet mountainous forest in Taiwan. Applied Radiation and Isotopes 50: 1097-1103. Comerford, N. B. 1981. Distributional gradients and variability of macroelement concentrations in the crown of plantation-grown Pinus resinosa (Ait.). Plant and Soil 63: 345-353. Dickson, R. E. 1989. Carbon and nitrogen allocation in trees. Pages 631-647 in Annales des Sciences Forestieres (France), Forest Tree Physiology. Elsevier, Nancy (France). Eaton, J. S., G. E. Likens, and F. H. Bormann. 1973. Throughfall and atemflow chemistry in a northern hardwood forest. The Journal of Ecology 61: 495-508. Field, C. 1983. Allocating leaf nitrogen for the maximization of carbon gain: leaf age as a control on the allocation program. Oecologia 56: 341-347. Field, C. and H. A. Mooney. 1986. The Photosynthesis-Nitrogen Relationship in Wild Plants. Cambridge University Press. Finzi, A. C., E. H. Delucia, and W. H. Schlesinger. 2004. Canopy N and P dynamics of a southeastern US pine forest under elevated CO2. Biogeochemistry 69: 363-378. Fjeld, T. 1992. Effects of temperature and irradiance level on carbohydrate content and keeping quality of Christmas begonia (Begonia × cheimantha Everett). Scientia Horticulturae 50: 219-228. Franklin, O. and G. I. Ågren. 2002. Leaf senescence and resorption as mechanisms of maximizing photosynthetic production during canopy development at N limitation. Functional Ecology 16: 727-733. Fuchigami, L. H. and M. Wisniewski. 1997. Quantifying bud dormancy: physiological approaches. HortScience 32: 618-623. Hajabbasi, M. A., A. Jalalian, and H. R. Karimzadeh. 1997. Deforestation effects on soil physical and chemical properties, Lordegan, Iran. Plant and Soil 190: 301-308. Han, Q., T. Kawasaki, S. Katahata, Y. Mukai, and Y. Chiba. 2003. Horizontal and vertical variations in photosynthetic capacity in a Pinus densiflora crown in relation to leaf nitrogen allocation and acclimation to irradiance. Tree Physiology 23: 851-857. Hatcher, P. E. 1990. Seasonal and age-related variation in the needle quality of five conifer species. Oecologia 85: 200-212. Hayashida, Y. 1978. Seasonal changes in growth substance in the leaves of Chamaecyparis obtusa ENDL. Journal of Japanese Forestry Society 60: 67-70. Hikosaka, K. 2005. Leaf canopy as a dynamic system: ecophysiology and optimality in leaf turnover. Annals of Botany 95: 521-533. Hikosaka, K., I. Terashima, and S. Katoh. 1994. Effects of leaf age, nitrogen nutrition and photon flux density on the distribution of nitrogen among leaves of a vine (Ipomoea tricolor Cav.) grown horizontally to avoid mutual shading of leaves. Oecologia 97: 451-457. Hirose, T. and F. A. Bazzaz. 1998. Trade-off between light and nitrogen-use efficiency in canopy photosynthesis. Annals of Botany 82: 195-202. Hirose, T. and M. J. A. Werger. 1987. Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy. Oecologia 72: 520-526. Hoch, G., A. Richter, and C. Körner. 2003. Non-structural carbon compounds in temperate forest trees. Plant, Cell and Environment 26: 1067-1081. Hockman, J. N., J. A. Burger, and D. W. Smith. 1989. Spatial and temporal variability of foliar nutrient levels in fraser fir christmas trees. Forest Science 35: 632-639. Hollinger, D. Y. 1996. Optimality and nitrogen allocation in a tree canopy. Tree Physiology 16: 627-634. Horner, J. D., J. R. Gosz, and R. G. Cates. 1988. The role of carbon-based plant secondary metabolites in decomposition in terrestrial ecosystems. The American Naturalist 132: 869-883. Hoyle, M. C. and D. L. Mader. 1964. Relationships of foliar nutrients to growth of red pine in western Massachusetts. Forest Science 10: 337-347. Hsu, H.-W., S.-R. Kuo, N.-J. Chung, and Y.-C. Liang. 2002. Phenology of growth and development of strobili of Taiwania cryptomerioides Hay. Taiwan Journal of Forest Science 17: 241-255. Huang, T.-C. 1994. Flora of Taiwan. 2nd edition. Inagaki, Y., A. Sakai, S. Kuramoto, E. Kodani, T. Yamada, and T. Kawasaki. 2007. Inter-annual variations of leaf-fall phenology and leaf-litter nitrogen concentration in a hinoki cypress (Chamaecyparis obtusa Endlicher) stand. Ecological Research. DOI: 10.1007/s11284-008-0461-9 Ishii, H. and N. McDowell. 2002. Age-related development of crown structure in coastal Douglas-fir trees. Forest Ecology and Management 169: 257-270. Jagels, R., M. Jiang, S. Marden, and J. Carlisle. 2002. Red spruce canopy response to acid fog exposure. Atmospheric Research 64: 169-178. Kalra, Y. P. and D. G. Maynard. 1991. Methods Manual for Forest Soil and Plant Analysis. Forestry Canada, Northwest Region, Northern Forestry Centre. Kao, W.-Y., Y.-S. Chiu, and W. H. Chen. 2000. Vertical profiles of CO2 cocentration and δ13C values in a subalpine forest of Taiwan. Botanical Bulletin of Academia Sinica 41: 213-218. Kao, W.-Y., C.-S. Lu, and T.-C. Chang. 2004. Foliar nutrient dynamics of five dominant plant species in Yuanyang Lake Nature Preserve, Taiwan. Taiwania 49: 49-56. Klopatek, J. M. 2002. Belowground carbon pools and processes in different age stands of Douglas-fir. Tree Physiology 22: 197-204. Koch, G. W., S. C. Sillett, G. M. Jennings, and S. D. Davis. 2004. The limits to tree height. Nature 428: 851-854. Koike, T. 1982. The formation of new leaves on seedlings of Chamaecyparis obtusa S. et Z. treated photoperiodically from summer to winter. Journal of the Japanese Forestry Society 64: 275-279. Kull, O. and B. Kruijt. 1999. Acclimation of photosynthesis to light: a mechanistic approach. Functional Ecology 13: 24-36. Kull, O. and Ü. Niinemets. 1998. Distribution of leaf photosynthetic properties in tree canopies: comparison of species with different shade tolerance. Functional Ecology 12: 472-479. Larcher, W. 1995. Physiological Plant Ecology. 3rd edition. Larcher, W., editor. 2003. Environmental influences on growth and development. 4th edition. Springer-Verlag, Berlin. Lavender, D. P. and R. L. Carmichael. 1966. Effect of three variables on mineral concentrations in Douglas-fir needles. Forest Science 12: 441-446. Leal, D. B. and S. C. Thomas. 2003. Vertical gradients and tree-to-tree variation in shoot morphology and foliar nitrogen in an old-growth Pinus strobus stand. Canadian Journal of Forest Research 33: 1304-1314. Likens, G. E., F. H. Bormann, N. M. Johnson, D. W. Fisher, and R. S. Pierce. 1970. Effects of forest cutting and herbicide treatment on nutrient budgets in the Hubbard Brook watershed-ecosystem. Ecological Monographs 40: 23-47. Ma, X., K. V. Heal, A. Liu, and P. G. Jarvis. 2007. Nutrient cycling and distribution in different-aged plantations of Chinese fir in southern China. Forest Ecology and Management 243: 61-74. MacLean, K. S. and R. G. Robertson. 1981. Variation in the major element content of red spruce foliage with season, crown position, tree and tissue age. Communications in Soil Science and Plant Analysis 12: 39-49. Madgwick, H. A. I. 1963. Variations in the chemical composition of red pine (Pinus resinosa Ait) leaves: a comparison of well-grown and poorly grown trees. Plant and Soil 21: 70-80. Mae, T. 2004. Leaf Senescence and nitrogen metabolism.in L. D. Noodén, editor. Plant Cell Death Processes. Academic Press, London. McDowell, S. C. L., N. G. McDowell, J. D. Marshall, and K. Hultine. 2000. Carbon and nitrogen allocation to male and female reproduction in Rocky Mountain Douglas-fir (Pseudotsuga menziesii var. glauca, Pinaceae). American Journal of Botany 87: 539-546. Mclaughlin, S. B. and R. Wimmer. 1999. Calcium physiology and terrestrial ecosystem processes. New Phytologist 142: 373-417. Merino, A., J. M. Edeso, M.-J. González, and P. Marauri. 1998. Soil properties in a hilly area following different harvesting management practices. Forest Ecology and Management 103: 235-246. Miller, W. F. 1966. Annual changes in foliar nitrogen, phosphorus, and potassium levels of loblolly pine (Pinus Taeda L.) with sites, and weather factors. Plant and Soil 24: 369-378. Mooney, H. A. and S. L. Gulmon. 1982. Constraints on leaf structure and function in relation to herbivory. BioScience 32: 198-206. Moore, P. D. and S. B. Chapman. 1986. Methods in Plant Ecology. 2nd edition. Blackwell Scientific, Oxford. Moorhead, K. K. and J. V. McArthur. 1996. Spatial and temporal patterns of nutrient concentrations in foliage of riparian species. American Midland Naturalist 136: 29-41. Morrison, I. K. 1972. Variation with crown position and leaf age in content of seven elements in leaves of Pinus banksiana Lamb. Canadian Journal of Forest Research 2: 89-94. Morrison, I. K. 1974. Within-tree variation in mineral content of leaves of young balsam fir. Forest Science 20: 276-278. Myre, R. and C. Camiré. 1996. The effect of crown position and date of sampling on biomass, nutrient concentrations and contents of needles and shoots in European larch. Trees 10: 339-350. Nambiar, E. K. S. and D. N. Fife. 1987. Growth and nutrient retranslocation in needles of radiata pine in relation to nitrogen supply. Annals of Botany 60: 147-156. Niinemets, Ü. 1997. Energy requirement for foliage construction depends in tree size in young Picea abies trees. Trees 11: 420-431. Niinemets, Ü. 2007. Photosynthesis and resourse distribution through plant canopies. Plant, Cell and Environment 30: 1052-1071. Nippert, J. B. and J. D. Marshall. 2003. Sources of variation in ecophysiological parameters in Douglas-fir and grand fir canopies. Tree Physiology 23: 591-601. Parker, J. L., I. J. Fernandez, L. E. Rustadc, and S. A. Norton. 2001. Effects of nitrogen enrichment, wildfire, and harvesting on forest-soil carbon and nitrogen. Soil Science Society of America Journal 65: 1248-1255. Parrish, J. A. D. and F. A. Bazzaz. 1982. Responses of plants from three successional communities to a nutrient gradient. Journal of Ecology 70: 233-248. Perry, D. A. 1994. Forest Ecosystems. The Johns Hopkins University Press. Potočić, N., T. Ćosić, and I. Pilaš. 2005. The influence of climate and soil properties on calcium nutrition and vitality of silver fir (Abies alba Mill.). Environmental Pollution 137: 596-602. Prescott, C. E. 2002. The influence of the forest canopy on nutrient cycling. Tree Physiology 22: 1193-1200. Prescott, C. E., H. N. Chappell, and L. Vesterdal. 2000. Nitrogen turnover in forest floors of coastal Douglas-fir at sites differing in soil nitrogen capital. Ecology 81: 1878-1886 Ranger, J., S. Allie, D. Gelhaye, B. Pollier, M.-P. Turpault, and A. Granier. 2002. Nutrient budgets for a rotation of a Douglas-fir plantation in the Beaujolais (France) based on a chronosequence study. Forest Ecology and Management 171: 3-16. Richardson, A. D. 2004. Foliar chemistry of balsam fir and red spruce in relation to elevation and the canopy light gradient in the mountains of the northeastern United States. Plant and Soil 260: 291-299. Richardson, A. D., P. M. S. Ashton, G. P. Berlyn, M. E. McGroddy, and I. R. Cameron. 2001. Within-crown foliar plasticity of western hemlock, Tsuga heterophylla, in relation to stand age. Annals of Botany 88: 1007-1015. Schaberg, P. G., M. C. Snyder, J. B. Shane, and J. R. Donnelly. 2000. Seasonal patterns of carbohydrate reserves in red spruce seedlings. Tree Physiology 20: 549-555. Schoettle, A. W. and W. K. Smith. 1998. Interrelationships among light, photosynthesis and nitrogen in the crown of mature Pinus contorta ssp. latifolia. Tree Physiology 19: 13-22. Su, H.-J. 1984. Studies on the climate and vegetation types of the natural forests in Taiwan (II) Altitudinal vegetation zones in relation to temperature gradient. Quarterly Journal of Chinese Forestry 17: 57-73. The R Development Core Team. 2008. R: a language and environment for statistical computing. R Fundation for Statistical Computaing, Vienna, Austria. Available from http://www.r-project.org/. Tien, Y.-C., S.-R. Kuo, and N.-J. Chung. 2003. A phenological model of vegetative bud development in Taiwania cryptomerioides Hay. - variation among different clones at 2 sites. Taiwan Journal of Forest Science 18: 191-200. Tockner, K., D. Pennetzdorfer, N. Reiner, F. Schiemer, and J. V. Ward. 1999. Hydrological connectivity, and the exchange of organic matter and nutrients in a dynamic river-floodplain system (Danubem, Austria). Freshwater Biology 41: 521-535. Turner, J., S. F. Dice, D. W. Cole, and S. P. Gessel. 1977. Variation of nutrients in forest tree foliage: a review. College of Forest Resources University of Washington Seattle, Washington Turner, J. and M. J. Singer. 1976. Nutrient distribution and cycling in a sub-alpine coniferous forest ecosystem. The Journal of Applied Ecology 13: 295-301. Vance, N. C. and J. B. Zaerr. 1991. Influence of drought stress and low irradiance on plant water relations and structural constituents in needles of Pinus ponderosa seedlings. Tree Physiology 8: 175-184. van den Driessche, R. 1974. Prediction of mineral nutrient status of trees by foliar analysis. The Botanical Review 40: 347-294. Wang, G. G. and K. Klinka. 1997. White spruce foliar nutrient concentrations in relation to tree growth and soil nutrient amounts. Forest Ecology and Management 98: 89-99. Waring, R. H., A. J. S. McDonald, S. Larsson, T. Ericsson, A. Wiren, E. Arwidsson, A. Ericsson, and T. Lohammar. 1985. Differences in chemical composition of plants grown at constant relative growth rates with stable mineral nutrition. Oecologia 66: 157-160. Waring, R. H. and S. W. Running. 2007. Forest Ecosystems: Analysis at Multiple Scales Academic Press. White, D. P. 1954. Variation in the nitrogen, phosphorus, and potassium contents of pine needles with season, crown position, and sample treatment. Soil Science Society of America Proceedings 18: 326-330. Will, G. M. 1957. Variations in the mineral content of radiata pine needles with age and position in tree crown. New Zealand Journal of Science and Technology 38: 699-706. Will, R. E., Barron-Gafford, G. Teskey, R. O., and B. D.Shiver. 2004. Within and between canopy variabilit of foliar nitrogen concentration for loblolly and slash pine stands planted at different densities. Pages 407-410 in 12th Biennial Southern Silvicultural Research Conference. Department of Agriculture, Forest Service, Southern Research Station, Asheville, NC: U.S. Winborne, I. C. 2001. Seasonal nutrient dynamics and vertical nutrient distribution in Loblolly Pine (Pinus taeda). North Carolina State University. Wood, S. N. 2006. Generalized Additive Models: An Introduction with R. Chapman & Hall / CRC Taylor & Francis Group, Boca Raton. Wullschleger, S. D., R. J. Norby, and D. L. Hendrix. 1992. Carbon exchange rates, chlorophyll content, and carbohydrate status of two forest tree species exposed to carbon dioxide enrichment. Tree Physiology 10: 21-31. Xue, L. and S. Luo. 2002. Seasonal changes in the nutrient concentrations of leaves and leaf litter in a young Cryptomeria japonica stand. Scandinavian Journal of Forest Research 17: 495-500. Zhang, S. and H. L. Allen. 1996. Foliar nutrient dynamics of 11-year-old loblolly pine (Pinus taeda) following nitrogen fertilization. Canadian Journal of Forest Research 26: 1426-1439. Zobel, D. B. 1998. Chamaecyparis forests: a comparative analysis. Pages 39-53 in Coastally Restricted Forests. Oxford University Press, Oxford. Zobel, D. B. and V. T. Liu. 1979. Foliar nutrient concentrations of small Chamaecyparis in Taiwan. Plant and Soil 53: 373-384 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9623 | - |
| dc.description.abstract | 植物葉部是森林養分主要的匯積處,藉由冠層葉部養分組成,有助於瞭解植物對養分的吸收利用,及反映生立木之營養狀況。為暸解各養分於台灣扁柏(Chamaecyparis obtusa var. formosana)林木冠層空間內的分配樣式與其影響因子,本試驗於台灣東北部之棲蘭山區選定三個林分進行研究,分別為未經干擾之老熟林、經林地枯倒木整理之老熟林及天然次生林,其中兩老熟林分別擁有6株樣木,而次生林則包含12株樣木。本研究將樣木冠層分為6個不同位置,自2006年1月至2007年12月逐月採取冠層各空間位置之葉部樣本,並取其奇數月分進行葉部全碳、全氮、鉀、鈣及鎂濃度之分析;另於2007年11月採集土壤樣本以進行土壤基本性質分析。結果顯示台灣扁柏冠層葉部養分受到季節、生育地土壤肥沃度以及不同的冠層空間等因子之影響,而具有不同的動態形式。整體而言,不同程度之林地擾動使土壤環境有異,進而影響冠層氮、鈣及鎂於林分間之差異。季節動態方面:碳、氮素隨生長季開始增加,且兩者於生長季後期均有再移轉之現象(轉移對象可能是繁殖體,如雌毬果);休眠時期唯碳素持續累積而氮素則伴隨枯老葉凋零進行養分再移轉至新鮮葉片中。鉀於生長季時隨大量新鮮組織建構而受稀釋,且於颱風季節具有明顯的淋洗效應。相對來說,鎂及鈣之季節效應較為微弱。空間分布方面顯見老熟林及次生林分之冠層已達最佳碳分配。各養分方面:老熟林受光適應及冠層結構較稀疏之影響,隨冠層垂直高度位置越高而氮濃度降低;反之,次生林因林分密度高的影響,顯見頂層-外幅達氮濃度最高的表現。鉀與氮於光合作用同等重要,故於林分間的分配樣式近乎一致。三個林分之鈣與鎂濃度均以樹冠內側高於外幅,且因冠層位置高度越高具有較大量的新鮮葉片之影響,鎂濃度因此隨冠層位置越高而遞減。 | zh_TW |
| dc.description.abstract | As a major nutrient sink in a forest, knowing the canopy foliar nutrient components will enhance our understandings to the nutrient uptakes and utilizations of trees. To understand the within canopy nutrient allocation patterns and the factors influencing the patterns of Taiwan yellow false cypress (Chamaecyparis obtusa var. formosana), we selected three Taiwan yellow false cypress stands in the Chilanshan area, northeastern Taiwan. The three stands represented an undisturbed old-growth stand, an old-growth stand subjected to salvaging operations, and a naturally regenerated second-growth stand. Six trees were selected in each of the two old-growth stands, whereas 12 trees were selected in the second-growth for analysis. Six foliar samples were collected per tree from six positions of a canopy every month since January, 2006 to December, 2007. The odd month samples were then analyzed for concentrations of total carbon (TC), total nitrogen (TN), potassium (K), calcium (Ca), and magnesium (Mg). Soil properties were analyzed from soil samples collected in November, 2007.
The study showed that the canopy nutrient dynamics of Taiwan yellow false cypress were influenced by seasons, site fertility, and canopy positions. As a whole, there were significant differences of foliar N, Ca and Mg concentrations among the three stands, which were affected by site nutrition conditions. With respect to the seasonal dynamics, foliar C and N increased with the onset of the growing season, and were translocated (likely to the reproductive organs) in the late growing season. In late fall, foliar N was retranslocated from the senescent leaves to the younger ones. There was a strong dilution effect of foliar K in the growing season and a leaching effect in the typhoon season. In contrast, no strong seasonal trend was detected for the foliar Mg and Ca concentrations. In all three stands, optimizing carbon production could be used to explain the within canopy nutrient allocation patterns. In general, the foliar N concentration decreased with increasing vertical canopy position in the old-growth stands, which were relatively sparse. In contrast, due to a high stand density of the second-growth stand, foliar in the outer-top canopy position had the highest N concentration. Because K and N were both major nutrients related to photosynthetic process, their within canopy spatial patterns were almost identical in all three stands. The foliar Ca and Mg concentrations were higher at the inner than at the outer canopy positions in all three stands. The foliar Mg concentration decreased with increasing vertical position, as the top canopy position usually has a large amount of younger foliage. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T20:32:01Z (GMT). No. of bitstreams: 1 ntu-97-R94625010-1.pdf: 3271938 bytes, checksum: 810e2153e575770a094b1b8a1147cd67 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 口試委員會審定書………………………………………………i
誌謝………………………………………………………………ii 中文摘要…………………………………………………………iv 英文摘要…………………………………………………………v 目錄………………………………………………………………vii 表目錄……………………………………………………………xi 圖目錄……………………………………………………………xii 附表目錄…………………………………………………………xiii 附圖目錄…………………………………………………………xiv 1. 前言 Introduction…………………………………………1 1.1 森林養分循環概述…………………………………………1 1.2 冠層葉片養分於生態上代表之意義………………………2 1.2.1 枯枝落葉…………………………………………………2 1.2.2 新鮮葉片…………………………………………………2 1.3 植物葉片中各營養元素之特性……………………………3 1.3.1 碳…………………………………………………………3 1.3.2 氮…………………………………………………………4 1.3.3 鉀、鈣及鎂..……………………………………………4 1.4 葉部養分的季節性變動……………………………………5 1.5 冠層葉部各組成分分布與動態……………………………5 1.5.1 冠層碳分布之相關研究…………………………………6 1.5.2 冠層氮分布之相關理論及假說…………………………7 1.5.3 冠層鉀、鈣及鎂元素分布之樣式………………………9 1.6 大尺度林分下之冠層養分動態……………………………9 1.7 檜木之分布及其重要性……………………………………10 1.8 檜木冠層養分之相關研究…………………………………11 1.9 研究目的……………………………………………………12 2. 研究區域概述 Site Description…………………………15 2.1 地理位置……………………………………………………15 2.2 氣候概況……………………………………………………15 2.3 試驗地點與植物組成概況…………………………………16 2.4 各試驗地之土壤概況………………………………………17 3. 材料與方法 Materials and Methods ……………………19 3.1 取樣方法……………………………………………………19 3.1.1 樣木及葉部樣本…………………………………………19 3.1.2 土壤樣本…………………………………………………20 3.1.3 採樣時序…………………………………………………21 3.2 樣本處理及化學分析………………………………………21 3.2.1 葉部樣本…………………………………………………21 3.2.2 土壤樣本…………………………………………………23 3.3 資料處理及統計方法………………………………………24 3.3.1 氣溫資料…………………………………………………24 3.3.2 季節的判定………………………………………………25 3.3.3 土壤資料之分析…………………………………………25 3.3.4 葉部各組成分資料之分析………………………………26 4. 結果 Results ………………………………………………30 4.1 時間性的動態………………………………………………30 4.1.1 氣候整體趨勢及颱風擾動時序…………………………30 4.1.2 生長季節之門檻溫度與生長季之界定…………………31 4.2 不同試驗地間土壤基質之差異……………………………33 4.2.1 土壤pH值…………………………………………………33 4.2.2 土壤全碳及全氮量………………………………………33 4.2.3 土壤可交換性鈉、鉀、鈣及鎂…………………………33 4.2.4 土壤可交換性陽離子容量及土壤鹽基飽和度…………34 4.3 葉部碳及各養分濃度之動態………………………………34 4.3.1 年間之差異………………………………………………34 4.3.2 各月分之變化趨勢………………………………………40 4.3.3 不同試驗地間冠層各組成分濃度之比較………………46 4.3.4 各組成分濃度於冠層空間位置之差異-分區結果 ……46 5. 討論 Discussion……………………………………………49 5.1 林分間養分狀態之差異及其原因…………………………49 5.1.1 土壤基質部分……………………………………………49 5.1.2 冠層部分…………………………………………………52 5.1.3 小結………………………………………………………53 5.2 季節變化對葉部各組成分的影響…………………………54 5.2.1 以氣溫判定之季節時序…………………………………54 5.2.2 葉部碳濃度與季節的關係………………………………54 5.2.3 葉部養分濃度與季節的關係……………………………56 5.3 冠層葉部的資源分配………………………………………60 5.3.1 碳的空間分布……………………………………………60 5.3.2 葉部各養分之空間分布…………………………………61 5.3.3 冠層養分分配之相關研究與比較………………………67 6. 結論 Conclusions …………………………………………69 7. 引用文獻 Literatures Cited ……………………………71 8. 附錄 Appendix………………………………………………83 | |
| dc.language.iso | zh-TW | |
| dc.title | 棲蘭山區亞熱帶雲霧林台灣扁柏冠層養分之動態 | zh_TW |
| dc.title | Canopy nutrient dynamics of Chamaecyparis obtusa var. formosana in a subtropical montane cloud forest in Chilanshan area, Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 邱志郁(Chih-Yu Chiu) | |
| dc.contributor.oralexamcommittee | 郭幸榮(Shing-Rong Kuo),林世宗(Shu-Tzong Lin),鹿兒陽(Erh-Yang Lu) | |
| dc.subject.keyword | 棲蘭山,冠層養分分布樣式,養分季節趨勢,台灣扁柏, | zh_TW |
| dc.subject.keyword | Chilanshan,nutrient allocation patterns,seasonal nutrient trends,Taiwan yellow false cypres, | en |
| dc.relation.page | 100 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2008-07-31 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf | 3.2 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
