Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96198
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭梅君zh_TW
dc.contributor.advisorMei-Chun Chengen
dc.contributor.author陳宥盈zh_TW
dc.contributor.authorYu-Ying Chenen
dc.date.accessioned2024-11-28T16:08:53Z-
dc.date.available2024-11-29-
dc.date.copyright2024-11-28-
dc.date.issued2024-
dc.date.submitted2024-09-25-
dc.identifier.citationAbe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15: 63-78
Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology 141: 391-396
Balasubramaniam T, Shen GX, Esmaeili N, Zhang H (2023) Plants' Response Mechanisms to Salinity Stress. Plants-Basel 12: 2253
Ben Rejeb K, Benzarti M, Debez A, Bailly C, Savouré A, Abdelly C (2015) NADPH oxidase-dependent H2O2 production is required for salt-induced antioxidant defense in. Journal of Plant Physiology 174: 5-15
Boudsocq M, Barbier-Brygoo H, Laurière C (2004) Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in. Journal of Biological Chemistry 279: 41758-41766
Byrt CS, Munns R, Burton RA, Gilliham M, Wege S (2018) Root cell wall solutions for crop plants in saline soils. Plant Science 269: 47-55
Cameron KD, Teece MA, Smart LB (2006) Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiology 140: 176-183
Choi HI, Hong JH, Ha JO, Kang JY, Kim SY (2000) ABFs, a family of ABA-responsive element binding factors. Journal of Biological Chemistry 275: 1723-1730
Clark G, Brown KA, Tripathy MK, Roux SJ (2021) Recent Advances Clarifying the Structure and Function of Plant Apyrases (Nucleoside Triphosphate Diphosphohydrolases). Int J Mol Sci 22: 3283
Clark G, Roux SJ (2011) Apyrases, extracellular ATP and the regulation of growth. Curr Opin Plant Biol 14: 700-706
Davletova S, Schlauch K, Coutu J, Mittler R (2005) The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol 139: 847-856
Demidchik V, Shang ZL, Shin R, Thompson E, Rubio L, Laohavisit A, Mortimer JC, Chivasa S, Slabas AR, Glover BJ, Schachtman DP, Shabala SN, Davies JM (2009) Plant extracellular ATP signalling by plasma membrane NADPH oxidase and Ca2+ channels. Plant Journal 58: 903-913
Deng S, Sun J, Zhao R, Ding M, Zhang Y, Sun Y, Wang W, Tan Y, Liu D, Ma X, Hou P, Wang M, Lu C, Shen X, Chen S (2015) Populus euphratica APYRASE2 Enhances Cold Tolerance by Modulating Vesicular Trafficking and Extracellular ATP in Arabidopsis Plants. Plant Physiol 169: 530-548
dos Santos TB, Ribas AF, de Souza SGH, Budzinski IGF, Domingues DS (2022) Physiological Responses to Drought, Salinity, and Heat Stress in Plants: A Review. Stresses 2: 113-135
Fang YJ, Xiong LZ (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences 72: 673-689
Fortunato S, Lasorella C, Dipierro N, Vita F, de Pinto MC (2023) Redox Signaling in Plant Heat Stress Response. Antioxidants 12: 605
Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran LSP, Yamaguchi-Shinozaki K, Shinozaki K (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant Journal 39: 863-876
Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the "gene-jockeying" tool. Microbiol Mol Biol Rev 67: 16-37, table of contents
Gladman NP, Marshall RS, Lee KH, Vierstra RD (2016) The Proteasome Stress Regulon Is Controlled by a Pair of NAC Transcription Factors in Arabidopsis. Plant Cell 28: 1279-1296
Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants. International Journal of Molecular Sciences 14: 9643-9684
Hassan N, Ebeed H, Aljaarany A (2020) Exogenous application of spermine and putrescine mitigate adversities of drought stress in wheat by protecting membranes and chloroplast ultra-structure. Physiology and Molecular Biology of Plants 26: 233-245
He Z, Zhang J, Jia H, Zhang S, Sun X, Nishawy E, Zhang H, Dai M (2024) Genome-wide identification and analyses of ZmAPY genes reveal their roles involved in maize development and abiotic stress responses. Mol Breed 44: 37
Huang J, Ren R, Rong Y, Tang B, Deng J, Chen Q, Shi T (2022) Identification, Expression, and Functional Study of Seven NAC Transcription Factor Genes Involved in Stress Response in Tartary Buckwheat (Fagopyrum tataricum (L.) Gaertn.). Agronomy 12: 849
Ishitani M, Liu JP, Halfter U, Kim CS, Shi WM, Zhu JK (2000) SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell 12: 1667-1677
Kabbadj A, Makoudi B, Mouradi M, Pauly N, Frendo P, Ghoulam C (2017) Physiological and biochemical responses involved in water deficit tolerance of nitrogen-fixing. Plos One 12: e0190284
Kang JY, Choi HI, Im MY, Kim SY (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14: 343-357
Kim MJ, Park MJ, Seo PJ, Song JS, Kim HJ, Park CM (2012) Controlled nuclear import of the transcription factor NTL6 reveals a cytoplasmic role of SnRK2.8 in the drought-stress response. Biochemical Journal 448: 353-363
Kim SY, Kim SG, Kim YS, Seo PJ, Bae M, Yoon HK, Park CM (2007) Exploring membrane-associated NAC transcription factors in Arabidopsis: implications for membrane biology in genome regulation. Nucleic Acids Res 35: 203-213
Kim SY, Sivaguru M, Stacey G (2006) Extracellular ATP in plants. Visualization, localization, and analysis of physiological significance in growth and signaling. Plant Physiology 142: 984-992
Kotak S, Larkindale J, Lee U, von Koskull-Doring P, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10: 310-316
Lang T, Deng C, Yao J, Zhang H, Wang Y, Deng S (2020) A Salt-Signaling Network Involving Ethylene, Extracellular ATP, Hydrogen Peroxide, and Calcium Mediates K(+)/Na(+) Homeostasis in Arabidopsis. Int J Mol Sci 21
Larkindale J, Mishkind M, Vierling E (2005) Plant responses to high temperature. Plant Abiotic Stress: 100-144
Lee S, Seo PJ, Lee HJ, Park CM (2012) A NAC transcription factor NTL4 promotes reactive oxygen species production during drought-induced leaf senescence in Arabidopsis. Plant Journal 70: 831-844
Liang MW, Li HJ, Zhou F, Li HY, Liu J, Hao Y, Wang YD, Zhao HP, Han SC (2015) Subcellular Distribution of NTL Transcription Factors in. Traffic 16: 1062-1074
Lin HX, Yang YQ, Quan RD, Mendoza I, Wu YS, Du WM, Zhao SS, Schumaker KS, Pardo JM, Guo Y (2009) Phosphorylation of SOS3-LIKE CALCIUM BINDING PROTEIN8 by SOS2 Protein Kinase Stabilizes Their Protein Complex and Regulates Salt Tolerance in. Plant Cell 21: 1607-1619
Liu HC, Liao HT, Charng YY (2011) The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in. Plant Cell and Environment 34: 738-751
Liu W, Ni J, Shah FA, Ye K, Hu H, Wang Q, Wang D, Yao Y, Huang S, Hou J, Liu C, Wu L (2019) Genome-wide identification, characterization and expression pattern analysis of APYRASE family members in response to abiotic and biotic stresses in wheat. PeerJ 7: e7622
Liu XH, Lyu YS, Yang WP, Yang ZT, Lu SJ, Liu JX (2020) A membrane-associated NAC transcription factor OsNTL3 is involved in thermotolerance in rice. Plant Biotechnology Journal 18: 1317-1329
Liu Y, He C (2016) Regulation of plant reactive oxygen species (ROS) in stress responses: learning from AtRBOHD. Plant Cell Rep 35: 995-1007
Lu Q, Tang XR, Tian G, Wang F, Liu KD, Nguyen V, Kohalmi SE, Keller WA, Tsang EWT, Harada JJ, Rothstein SJ, Cui YH (2010) Arabidopsis homolog of the yeast TREX-2 mRNA export complex: components and anchoring nucleoporin. Plant Journal 61: 259-270
Marques DN, Reis SPd, de Souza CRB (2017) Plant NAC transcription factors responsive to abiotic stresses. Plant Gene 11: 170-179
Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl JL, Mittler R (2009) The Plant NADPH Oxidase RBOHD Mediates Rapid Systemic Signaling in Response to Diverse Stimuli. Science Signaling 2: ra45-ra45
Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiologia Plantarum 133: 481-489
Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell and Environment 33: 453-467
Mishra NS, Tuteja R, Tuteja N (2006) Signaling through MAP kinase networks in plants. Archives of Biochemistry and Biophysics 452: 55-68
Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11: 15-19
Mittler R, Kim Y, Song L, Coutu J, Coutu A, Ciftci-Yilmaz S, Lee H, Stevenson B, Zhu JK (2006) Gain- and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress. FEBS Lett 580: 6537-6542
Mohammad-Sidik A, Sun J, Shin R, Song Z, Ning Y, Matthus E, Wilkins KA, Davies JM (2021) Annexin 1 Is a Component of eATP-Induced Cytosolic Calcium Elevation in Arabidopsis thaliana Roots. Int J Mol Sci 22: 494
Morishita T, Kojima Y, Maruta T, Nishizawa-Yokoi A, Yabuta Y, Shigeoka S (2009) Arabidopsis NAC transcription factor, ANAC078, regulates flavonoid biosynthesis under high-light. Plant Cell Physiol 50: 2210-2222
Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annual Review of Plant Biology 59: 651-681
Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K (2017) Transcriptional Regulatory Network of Plant Heat Stress Response. Trends in Plant Science 22: 53-65
Pietrowska-Borek M, Dobrogojski J, Sobieszczuk-Nowicka E, Borek S (2020) New Insight into Plant Signaling: Extracellular ATP and Uncommon Nucleotides. Cells 9: 345
Pinheiro C, Chaves MM (2011) Photosynthesis and drought: can we make metabolic connections from available data? Journal of Experimental Botany 62: 869-882
Quan R, Lin H, Mendoza I, Zhang Y, Cao W, Yang Y, Shang M, Chen S, Pardo JM, Guo Y (2007) SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell 19: 1415-1431
Reymond P, Weber H, Damond M, Farmer EE (2000) Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12: 707-719
Roux SJ, Steinebrunner I (2007) Extracellular ATP: an unexpected role as a signaler in plants. Trends in Plant Science 12: 522-527
Ruelland E, Zachowski A (2010) How plants sense temperature. Environmental and Experimental Botany 69: 225-232
Sakuraba Y, Kim YS, Han SH, Lee BD, Paek NC (2015) The Arabidopsis Transcription Factor NAC016 Promotes Drought Stress Responses by Repressing Transcription through a Trifurcate Feed-Forward Regulatory Loop Involving NAP. Plant Cell 27: 1771-1787
Sato H, Mizoi J, Tanaka H, Maruyama K, Qin F, Osakabe Y, Morimoto K, Ohori T, Kusakabe K, Nagata M, Shinozaki K, Yamaguchi-Shinozaki K (2015) DPB3-1, a DREB2A interactor, specifically enhances heat stress-induced gene expression by forming a heat stress-specific transcriptional complex with NF-Y subunits. Plant Cell 26: 4954-4973
Schiller M, Massalski C, Kurth T, Steinebrunner I (2012) The Arabidopsis apyrase AtAPY1 is localized in the Golgi instead of the extracellular space. BMC Plant Biol 12: 123
Seleiman MF, Al-Suhaibani N, Ali N, Akmal M, Alotaibi M, Refay Y, Dindaroglu T, Abdul-Wajid HH, Battaglia ML (2021) Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. Plants (Basel) 10: 259
Shao H, Wang H, Tang X (2015) NAC transcription factors in plant multiple abiotic stress responses: progress and prospects. Front Plant Sci 6: 902
Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany 58: 221-227
Shu L, Li L, Jiang YQ, Yan J (2024) Advances in membrane-tethered NAC transcription factors in plants. Plant Sci 342: 112034
Soma F, Mogami J, Yoshida T, Abekura M, Takahashi F, Kidokoro S, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2017) ABA-unresponsive SnRK2 protein kinases regulate mRNA decay under osmotic stress in plants. Nature Plants 3: 1-8
Song CJ, Steinebrunner I, Wang XZ, Stout SC, Roux SJ (2006) Extracellular ATP induces the accumulation of superoxide via NADPH oxidases in Arabidopsis. Plant Physiology 140: 1222-1232
Sun J, Zhang C, Zhang X, Deng S, Zhao R, Shen X, Chen S (2012) Extracellular ATP signaling and homeostasis in plant cells. Plant Signal Behav 7: 566-569
Tang Y, Zhao CY, Tan ST, Xue HW (2016) Arabidopsis Type II Phosphatidylinositol 4-Kinase PI4Kgamma5 Regulates Auxin Biosynthesis and Leaf Margin Development through Interacting with Membrane-Bound Transcription Factor ANAC078. PLoS Genet 12: e1006252
Teige M, Scheikl E, Eulgem T, Doczi R, Ichimura K, Shinozaki K, Dangl JL, Hirt H (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15: 141-152
Veerappa R, Slocum RD, Siegenthaler A, Wang J, Clark G, Roux SJ (2019) Ectopic expression of a pea apyrase enhances root system architecture and drought survival in Arabidopsis and soybean. Plant Cell Environ 42: 337-353
Wegner LH, Stefano G, Shabala L, Rossi M, Mancuso S, Shabala S (2011) Sequential depolarization of root cortical and stelar cells induced by an acute salt shock - implications for Na and K transport into xylem vessels. Plant Cell and Environment 34: 859-869
Wu J, Steinebrunner I, Sun Y, Butterfield T, Torres J, Arnold D, Gonzalez A, Jacob F, Reichler S, Roux SJ (2007) Apyrases (nucleoside triphosphate-diphosphohydrolases) play a key role in growth control in Arabidopsis. Plant Physiol 144: 961-975
Wu Z, Li T, Xiang J, Teng RD, Zhang DH, Teng NJ (2023) A lily membrane-associated NAC transcription factor LlNAC014 is involved in thermotolerance via activation of the DREB2-HSFA3 module. Journal of Experimental Botany 74: 945-963
Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends in Plant Science 10: 88-94
Yan JL, Li YF, Zhao PY, Mu BB, Chen QQ, Li X, Cui X, Wang ZQ, Li J, Li SJ, Yang B, Jiang YQ (2021) Membrane-Bound Transcriptional Activator NTL1 from Rapeseed Positively Modulates Leaf Senescence through Targeting Genes Involved in Reactive Oxygen Species Production and Programmed Cell Death. Journal of Agricultural and Food Chemistry 69: 4968-4980
Yang YQ, Guo Y (2018) Unraveling salt stress signaling in plants. Journal of Integrative Plant Biology 60: 796-804
Yoshida T, Ohama N, Nakajima J, Kidokoro S, Mizoi J, Nakashima K, Maruyama K, Kim JM, Seki M, Todaka D, Osakabe Y, Sakuma Y, Schöffl F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Molecular Genetics and Genomics 286: 321-332
Yuan F, Yang HM, Xue Y, Kong DD, Ye R, Li CJ, Zhang JY, Theprungsirikul L, Shrift T, Krichilsky B, Johnson DM, Swift GB, He YK, Siedow JN, Pei ZM (2015) OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514: 367-371
Zhang WX, Zhi WJ, Qiao H, Huang JJ, Li S, Lu Q, Wang N, Li Q, Zhou Q, Sun JQ, Bai YT, Zheng XJ, Bai MY, Van Breusegem F, Xiang FN (2024) H2O2-dependent oxidation of the transcription factor GmNTL1 promotes salt tolerance in soybean. Plant Cell 36: 2447-2447
Zhu JK (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124: 941-948
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96198-
dc.description.abstract氣候變遷對植物造成了各種的非生物性壓力,像是高溫、洪水和乾旱,而這些因素對植物的生長和作物的產量將會產生負面影響。植物的APYs (apyrase) 功能是水解細胞外的ATP (eATP),進而去抑制eATP所誘導的活性氧 (ROS) 訊號途徑並影響逆境反應。我們先前的研究顯示,APY對植物的鹽逆境反應有正向的影響,並可能與有穿膜區域的NAC轉錄因子──NAC78有交互作用。在本篇研究中,我使用Y2H、BiFC和Co-IP方法確認了NAC78與APY之間的交互作用。並且NAC78是利用其C端與APY有交互作用,而缺乏穿膜區域的N端則被發現位於細胞核中。NAC78在非生物性逆境中可能有正向的功能,因為在鹽分和乾旱環境下,nac78突變株表現出根伸長減少和綠葉比例降低的現象。而這些nac78突變株則有更高的逆境反應基因和ROS反應基因的表現量,顯示NAC78參與在非生物性的逆境反應,可能是透過與APY交互作用進而影響ROS訊息傳遞,而非直接調節逆境反應基因的表現。在高溫耐受性測試中,NAC78和APY1/2都對高溫耐受性有正向的影響,在不同的HSF和HSP基因的表現量則有所不同。另外,在NAC78剪切實驗中,APY2似乎影響了NAC78在熱逆境下的蛋白表現。未來的研究將進一步探討NAC78作為轉錄因子的作用,包括其轉錄活性、下游基因的調控,以及NAC78與APYs在非生物逆境環境下的交互作用功能。zh_TW
dc.description.abstract  Climate change causes a variety of abiotic pressures on plants, such as heat, floods, and droughts, reducing growth and agricultural production. Plant apyrases (APYs) degrade extracellular ATP (eATP), inducing ROS signaling and stress responses. Our recent study demonstrates that APYs favorably regulate plant responses to salt stress and may interact with the membrane-bound NAC transcription factor, NAC78.
  In this study, I confirmed the interaction between NAC78 and APYs using Y2H, BiFC, and Co-IP methods. The C-terminal region of NAC78 interacts with APYs, while the N-terminal region, lacking a transmembrane motif, localizes in the nucleus. NAC78 plays a positive role in stress responses, as nac78 mutants exhibited reduced root elongation and lower green leaf ratios under salt and drought conditions. The nac78 mutants also showed higher expression levels of stress-responsive and ROS-responsive genes, suggesting that NAC78 might be involved in abiotic stress response through interacting with APY, affecting ROS signaling, but not directly regulating stress-responsive genes expressions. In heat stress tolerance tests, both NAC78 and APY1/2 were found to contribute positively to heat stress tolerance, with varying expression levels of HSF and HSP genes. In the NAC78 cleavage test, APY2 appeared to influence NAC78 function under heat stress.
  Future research will further explore NAC78’s role as a transcription factor, including its transcriptional activity, regulation of downstream genes, and the significance of the NAC78-APYs interaction under abiotic stress conditions.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-28T16:08:53Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-11-28T16:08:53Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents序言 i
Content ii
List of Figures and Tables v
Abstract vi
中文摘要 vii
Chapter 1Introduction 1
1.1Plant Responses to Abiotic Stress: Drought, Salt, and Heat Stress 1
1.1.1 Drought Stress 1
1.1.2 Salt Stress 3
1.1.3 Heat Stress 4
1.2 Roles of Extracellular ATP and Reactive Oxygen Species in Plants 5
1.3 Roles of Apyrases (APY1/2) in Plant Growth and Abiotic Stress Responses 7
1.4 Roles of NAC with Transmembrane Motif 1-like (NTL) Proteins in Plant Stress Responses 8
1.5 The Role of the Transcription factor NAC78 (NTL11) in Stress Response 9
1.6 Research Strategies for Exploring the Interaction and Functional Roles of NAC78 and APY1/2 in Arabidopsis Response to Abiotic Stress 11
Chapter 2 Material and Method 13
2.1 Plant Materials 13
2.1.1 Arabidopsis Wild Type 13
2.1.2 Tobacco 13
2.1.3 nac78 Mutant Line 13
2.1.4 apy1apy2 Double Mutant Line 13
2.1.5 APY2 Overexpression Transgenic Line 14
2.1.6 Growth Conditions 14
2.2 Method 15
2.2.1 Yeast Two-Hybrid (Y2H) Assay 15
2.2.2 Bimolecular Fluorescence Complementation (BiFC) Assay 15
2.2.3 Co-Immunoprecipitation (Co-IP) 17
2.2.4 Subcellular Localization 18
2.2.5 Stress Tolerance Test 19
2.2.6 Quantitative Reverse-Transcription Polymerase Chain Reaction (qRT-PCR) 19
2.2.7 Heat Stress Cleavage Test 21
Chapter 3 Result 22
3.1 NAC78 Interacts with APY1/2 in vitro and in vivo 22
3.2 Interaction Domains of APY1/2 and NAC78 23
3.3 Subcellular Localization of NAC78 24
3.4 NAC78 Might Play a Positive Role in Salt and Drought Stress Response 25
3.5 NAC78 Might Play a Negative Role in ROS Response 27
3.6 The Function of NAC78 and APY1/2 in Heat Stress Response 28
3.7 Investigating the Function of APY1/2 in NAC78 Cleavage under Heat Stress 29
Chapter 4 Discussion 31
4.1 Subcellular Localization and Interaction of NAC78 and APY1/2 in Arabidopsis 31
4.2 NAC78’s Role in Abiotic Stress Response and ROS Regulation in Arabidopsis 32
4.3 Exploring the NAC78-APY1/2 Interaction in Regulating ROS signaling and Stress Response 34
4.4 Investigating the Role and Cleavage of NAC78 in Stress Responses 35
Reference 38
Figure 49
Table 63
Appendix 64
-
dc.language.isoen-
dc.subject非生物性逆境zh_TW
dc.subject穿膜轉錄因子zh_TW
dc.subject阿拉伯芥zh_TW
dc.subject蛋白間交互作用zh_TW
dc.subjectapyrasezh_TW
dc.subjectNAC家族zh_TW
dc.subjectprotein-protein interactionen
dc.subjectArabidopsis thalianaen
dc.subjectabiotic stressen
dc.subjectNAC familyen
dc.subjectAPYsen
dc.subjectmembrane-bond transcription factoren
dc.subjectapyraseen
dc.title阿拉伯芥中NAC78在非生物逆境反應及其與APYs交互作用的功能性研究zh_TW
dc.titleFunctional Study of NAC78 in Abiotic Stress Response and Its Interaction with APYs in Arabidopsisen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee楊健志;李金美zh_TW
dc.contributor.oralexamcommitteeChien-Chih Yang;Chin-Mei Leeen
dc.subject.keyword阿拉伯芥,非生物性逆境,穿膜轉錄因子,NAC家族,蛋白間交互作用,apyrase,zh_TW
dc.subject.keywordArabidopsis thaliana,abiotic stress,NAC family,APYs,membrane-bond transcription factor,apyrase,protein-protein interaction,en
dc.relation.page66-
dc.identifier.doi10.6342/NTU202404410-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-09-26-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生化科技學系-
dc.date.embargo-lift2029-09-25-
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
2.51 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved