Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96190
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂東武zh_TW
dc.contributor.advisorTung-Wu Luen
dc.contributor.author王羿晴zh_TW
dc.contributor.authorYi-Ching Wangen
dc.date.accessioned2024-11-28T16:05:51Z-
dc.date.available2024-11-29-
dc.date.copyright2024-11-28-
dc.date.issued2024-
dc.date.submitted2024-09-05-
dc.identifier.citationYoussef, M. A., Teima, A. H., Abduo, Y. E., & Salem, L. N. (2013). Ultrasonographic and MR diagnosis of rotator cuff disorders & shoulder joint instability. The Egyptian Journal of Radiology and Nuclear Medicine, 44(4), 835-844. doi:https://doi.org/10.1016/j.ejrnm.2013.09.002
Charbonnier, C., Lädermann, A., Chagué, S., & Holzer, N. (2016). Evaluation of the potentially harmful effects of shoulder exercises depending on the pathologies encountered. Journal of Orthopedic and Trauma Surgery, 102(8, Supplement), S307. doi:https://doi.org/10.1016/j.rcot.2016.10.088
Bongers, P. M. (2001). The cost of shoulder pain at work. Variation in work tasks and good job opportunities are essential for prevention, 322(7278), 64-65. doi:10.1136/bmj.322.7278.64
Viswanath, A., Bale, S., & Trail, I. (2021). Reverse total shoulder arthroplasty for irreparable rotator cuff tears without arthritis: a systematic review. Journal of Clinical Orthopaedics and Trauma, 17, 267-272.
Grammont, P. M., & Baulot, E. (1993). Delta shoulder prosthesis for rotator cuff rupture. Orthopedics, 16(1), 65-68. doi:10.3928/0147-7447-19930101-11
Como, C., LeVasseur, C., Kane, G., Rai, A., Munsch, M., Gabrielli, A., . . . Lin, A. (2022). Implant characteristics affect in vivo shoulder kinematics during multiplanar functional motions after reverse shoulder arthroplasty. Journal of biomechanics, 135, 111050. doi:https://doi.org/10.1016/j.jbiomech.2022.111050
Van de Kleut, M. L., Nair, C., Milner, J. S., Holdsworth, D. W., Athwal, G. S., & Teeter, M. G. (2021). In vivo reverse total shoulder arthroplasty contact mechanics. Journal of Shoulder and Elbow Surgery, 30(2), 421-429. doi:https://doi.org/10.1016/j.jse.2020.05.036
Roche, C. P. (2022). Reverse Shoulder Arthroplasty Biomechanics. Journal of Functional Morphology and Kinesiology, 7(1), 13.
Jauregui, J. J., Nadarajah, V., Shield, W. P. I., Henn, R. F. I., Gilotra, M., & Hasan, S. A. (2018). Reverse Shoulder Arthroplasty: Perioperative Considerations and Complications. JBJS Reviews, 6(8), e3. doi:10.2106/jbjs.Rvw.17.00152
Wellmann, M., Struck, M., Pastor, M. F., Gettmann, A., Windhagen, H., & Smith, T. (2013). Short and midterm results of reverse shoulder arthroplasty according to the preoperative etiology. Archives of Orthopaedic and Trauma Surgery, 133(4), 463-471. doi:10.1007/s00402-013-1688-7
Griswold, B. G., Steflik, M. J., Paré, D. W., Twibell, H. B., Threeths, J., Crosby, L. A., & Parada, S. A. (2023). Does severe preoperative shoulder pain affect postoperative outcomes after reverse total shoulder arthroplasty. Seminars in Arthroplasty: JSES, 33(2), 385-391. doi:https://doi.org/10.1053/j.sart.2023.01.004
Toutoungy, M., Venishetty, N., Mounasamy, V., Khazzam, M., & Sambandam, S. (2023). Reverse Shoulder Arthroplasty in Nonagenarians - NIS-based study of perioperative and postoperative complications. Journal of Orthopaedics, 42, 40-44. doi:https://doi.org/10.1016/j.jor.2023.07.003
Petrillo, S., Longo, U. G., Gulotta, L. V., Berton, A., Kontaxis, A., Wright, T., & Denaro, V. (2016). Reverse total shoulder arthroplasty: research models. Joints, 4(4), 236-246. doi:10.11138/jts/2016.4.4.236
Kim, E., Jang, T., Park, H. J., Ikemoto, S., Murase, T., Sugamoto, K., & Hong, S. W. (2020). In vivo three-dimensional scapular kinematic alterations after reverse total shoulder arthroplasty. J Orthop Surg (Hong Kong), 28(2), 2309499020921979. doi:10.1177/2309499020921979
Van de Kleut, M. L., Yuan, X., Athwal, G. S., & Teeter, M. G. (2019). Validation of In Vivo Linear and Volumetric Wear Measurement for Reverse Total Shoulder Arthroplasty Using Model-Based Radiostereometric Analysis. J Orthop Res, 37(7), 1620-1627. doi:10.1002/jor.24294
Huish, E. G., Jr., Athwal, G. S., Neyton, L., & Walch, G. (2021). Adjusting Implant Size and Position Can Improve Internal Rotation After Reverse Total Shoulder Arthroplasty in a Three-dimensional Computational Model. Clinical Orthopaedics and Related Research®, 479(1). Retrieved from https://journals.lww.com/clinorthop/fulltext/2021/01000/adjusting_implant_size_and_position_can_improve.34.aspx
Kennedy, J. S., Reinke, E. K., Friedman, L. G. M., Cook, C., Forsythe, B., Gillespie, R., . . . Sprengel, K. (2021). Protocol for a multicenter, randomised controlled trial of surgeon-directed home therapy vs. outpatient rehabilitation by physical therapists for reverse total shoulder arthroplasty: the SHORT trial. Arch Physiother, 11(1), 28. doi:10.1186/s40945-021-00121-2
Pelet, S., & Ratte-Larouche, M. (2017). ELECTROMYOGRAPHIC AND KINETIC FUNCTION OF REVERSE TOTAL SHOULDER ARTHROPLASTY. Orthopaedic Proceedings, 99-B(SUPP_5), 81-81. doi:10.1302/1358-992x.99bsupp_5.Ista2016-081
Miniato, M. A., Anand, P., & Varacallo, M. (2019). Anatomy, shoulder and upper limb, shoulder.
McCausland, C., Sawyer, E., Eovaldi, B. J., & Varacallo, M. (2024). Anatomy, Shoulder and Upper Limb, Shoulder Muscles. In StatPearls. Treasure Island (FL) ineligible companies. Disclosure: Ethan Sawyer declares no relevant financial relationships with ineligible companies. Disclosure: Benjamin Eovaldi declares no relevant financial relationships with ineligible companies. Disclosure: Matthew Varacallo declares no relevant financial relationships with ineligible companies.: StatPearls Publishing
Chang, L.-R., Anand, P., & Varacallo, M. (2023). Anatomy, shoulder and upper limb, glenohumeral joint. In StatPearls [Internet]: StatPearls Publishing.
Inman, V. T., deC. M. Saunders, J. B., & Abbott, L. C. (1944). OBSERVATIONS ON THE FUNCTION OF THE SHOULDER JOINT. JBJS, 26(1), 1-30.
Garofalo, P., et al., Inter-operator reliability and prediction bands of a novel protocol to measure the coordinated movements of shoulder-girdle and humerus in clinical settings. Medical & Biological Engineering & Computing, 2009. 47(5): p. 475-486.
Caputo, F. et al. IMU-Based Motion Capture Wearable System for Ergonomic Assessment in Industrial Environment. 2019. Cham: Springer International Publishing.
Pierrart J, Lefèvre-Colau MM, Skalli W, Vuillemin V, Masmejean EH, Cuénod CA, Gregory TM. New dynamic three-dimensional MRI technique for shoulder kinematic analysis. J Magn Reson Imaging. 2014 Mar;39(3):729-34. doi: 10.1002/jmri.24204. Epub 2013 May 30. PMID: 23723138.
Tempelaere C, Pierrart J, Lefèvre-Colau MM, Vuillemin V, Cuénod CA, et al. (2016) Dynamic Three-Dimensional Shoulder Mri during Active Motion for Investigation of Rotator Cuff Diseases. PLOS ONE, 11(7): e0158563.
Bey MJ, Zauel R, Brock SK, Tashman S. Validation of a new model-based tracking technique for measuring three-dimensional, in vivo glenohumeral joint kinematics. J Biomech Eng. 2006 Aug;128(4):604-9. doi: 10.1115/1.2206199. PMID: 16813452; PMCID: PMC3072582.
Zhu, Zhonglin et al. "The accuracy and repeatability of an automatic 2D–3D fluoroscopic image-model registration technique for determining shoulder joint kinematics." Medical engineering & physics, 34.9 (2012): 1303-1309.
Peter J. Millett, J. Erik Giphart, Katharine J. Wilson, Kine Kagnes, Joshua A. Greenspoon, Alterations in Glenohumeral Kinematics in Patients With Rotator Cuff Tears Measured With Biplane Fluoroscopy, Arthroscopy: The Journal of Arthroscopic & Related Surgery, Volume 32, Issue 3, 2016, Pages 446-451
Lopez-Pascual, J., Page, Á., & Serra-Añó, P. (2017). Dynamic thoracohumeral kinematics are dependent upon the etiology of the shoulder injury. PLOS ONE, 12(8), e0183954.
Cappello, A., P.F. La Palombara, and A. Leardini, Optimization and smoothing techniques in movement analysis. International Journal of Bio-Medical Computing, 1996. 41(3): p. 137-151.
Lu, T.W. and J.J. O’Connor, Bone position estimation from skin marker co- ordinates using global optimisation with joint constraints. Journal of Biomechanics, 1999. 32(2): p. 129-134.
Cappello, A., et al., Multiple anatomical landmark calibration for optimal bone pose estimation. Human movement science, 1997. 16(2-3): p. 259-274.
Li, J.-D., et al., Soft tissue artefacts of skin markers on the lower limb during cycling: effects of joint angles and pedal resistance. Journal of Biomechanics, 2017. 62: p. 27-38.
Naaim, A., et al., Effect of various upper limb multibody models on soft tissue artefact correction: A case study. Journal of biomechanics, 2017. 62: p. 102-109.
Morrow, M. M. B., Lowndes, B., Fortune, E., Kaufman, K. R., & Hallbeck, M. S. (2017). Validation of Inertial Measurement Units for Upper Body Kinematics. Journal of Applied Biomechanics, 33(3), 227-232. doi:10.1123/jab.2016-0120
Charbonnier, C., et al., A patient-specific measurement technique to model shoulder joint kinematics. Orthopaedics & Traumatology: Surgery & Research, 2014. 100(7): p. 715-719.
Giphart, J. E., Brunkhorst, J. P., Horn, N. H., Shelburne, K. B., Torry, M. R., & Millett, P. J. (2013). Effect of plane of arm elevation on glenohumeral kinematics: a normative biplane fluoroscopy study. JBJS, 95(3), 238-245.
Akbari-Shandiz, M., Lawrence, R. L., Ellingson, A. M., Johnson, C. P., Zhao, K. D., & Ludewig, P. M. (2019). MRI vs CT-based 2D-3D auto-registration accuracy for quantifying shoulder motion using biplane video-radiography. Journal of biomechanics, 82, 375-380. doi:https://doi.org/10.1016/j.jbiomech.2018.09.019
Momma, D., et al., Four-dimensional computed tomography evaluation of the shoulder joint in baseball players. Journal of Shoulder and Elbow Surgery, 2021. 30(4): p. e182.
Beaulieu, C.F., et al., Glenohumeral relationships during physiologic shoulder motion and stress testing: initial experience with open MR imaging and active imaging-plane registration. Radiology, 1999. 212(3): p. 699-705.
Larreal, S., & Ann, L. (2011). In vivo measurement and objective classification of healthy, injured and pathological shoulder complex function.
Lin, C.C., et al., Measuring three-dimensional tibiofemoral kinematics using dual-slice real-time magnetic resonance imaging. Med Phys, 2019. 46(10): p. 4588-4599.
Zeller, I.M., et al., Customized versus Patient-Sized Cruciate-Retaining Total Knee Arthroplasty: An In Vivo Kinematics Study Using Mobile Fluoroscopy. The Journal of Arthroplasty, 2017. 32(4): p. 1344-1350.
Lawrence, R.L., A.M. Ellingson, and P.M. Ludewig, Validation of single-plane fluoroscopy and 2D/3D shape-matching for quantifying shoulder complex kinematics. Medical engineering & physics, 2018. 52: p. 69-75.
Lin, Cheng-Chung et al., "Comparisons of surface vs. volumetric model-based registration methods using single-plane vs. bi-plane fluoroscopy in measuring spinal kinematics." Medical engineering & physics, 36.2 (2014): 267-274.
Tashman, S. and W. Anderst, In-vivo measurement of dynamic joint motion using high speed biplane radiography and CT: application to canine ACL deficiency. J. Biomech. Eng., 2003. 125(2): p. 238-245.
Lin, C.-C., et al., In vivo three-dimensional intervertebral kinematics of the subaxial cervical spine during seated axial rotation and lateral bending via a fluoroscopy-to-CT registration approach. Journal of Biomechanics, 2014. 47(13): p. 3310-3317.
Fan, Chia-Ling. (2022). Development and Accuracy Assessment of 3D Model and 2D Fluoroscopy Registration Methods for Measuring Glenohumeral Kinematics During Motion (Master’s thesis). Available from NTU Theses and Dissertations Repository
Chung, S. W., Kim, J. Y., & Oh, J. H. (2011). Reverse Total Shoulder Arthroplasty: Techniques and Pitfalls. Clin Shoulder Elb, 14(1), 125-133. doi:10.5397/CiSE.2011.14.1.125
Rugg, C. M., Coughlan, M. J., & Lansdown, D. A. (2019). Reverse Total Shoulder Arthroplasty: Biomechanics and Indications. Current Reviews in Musculoskeletal Medicine, 12(4), 542-553. doi:10.1007/s12178-019-09586-y
Boutsiadis, A., Lenoir, H., Denard, P. J., Panisset, J.-C., Brossard, P., Delsol, P., Guichard, F., Barth, J. (2018). The lateralization and distalization shoulder angles are important determinants of clinical outcomes in reverse shoulder arthroplasty. Journal of Shoulder and Elbow Surgery, 27(7), 1226-1234. doi:https://doi.org/10.1016/j.jse.2018.02.036
Tashjian, R. Z., Burks, R. T., Zhang, Y., & Henninger, H. B. (2015). Reverse total shoulder arthroplasty: a biomechanical evaluation of humeral and glenosphere hardware configuration. Journal of Shoulder and Elbow Surgery, 24(3), e68-e77. doi:10.1016/j.jse.2014.08.017
Mahesh, M., Fluoroscopy: patient radiation exposure issues. Radiographics, 2001. 21(4): p. 1033-1045.
Van Lysel, M.S., The AAPM/RSNA physics tutorial for residents: Fluoroscopy: Optical coupling and the video system. Radiographics, 2000. 20(6): p. 1769- 1786.
Baltzopoulos, V., A videofluoroscopy method for optical distortion correction and measurement of knee-joint kinematics. Clinical Biomechanics, 1995. 10(2): p. 85-92.
Abdel-Aziz, Y.I., H.M. Karara, and M. Hauck, Direct Linear Transformation from Comparator Coordinates into Object Space Coordinates in Close-Range Photogrammetry*. Photogrammetric Engineering & Remote Sensing, 2015. 81(2): p. 103-107.
Lin, C.-C. et al., An Automated Three-Dimensional Bone Pose Tracking Method Using Clinical Interleaved Biplane Fluoroscopy Systems: Application to the Knee. Applied Sciences, 2020. 10(23): p. 8426.
Wu, G. et al., ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: shoulder, elbow, wrist and hand. Journal of biomechanics, 2005. 38(5): p. 981-992.
Blache, Y., Begon, M., Michaud, B., Desmoulins, L., Allard, P., & Dal Maso, F. (2017). Muscle function in glenohumeral joint stability during lifting task. PLOS ONE, 12(12), e0189406. doi:10.1371/journal.pone.0189406
Rabbi, M. E., Ito, N., Eto, M., Tomonaga, T., & Iwasaki, K. (1996). Clinical Experience of Bilateral Rotator Cuff Tear. Orthopedics & Traumatology, 45(4), 1135-1138. doi:10.5035/nishiseisai.45.1135
Holling, A. (2001). Sonography of the Rotator Cuff:An Overview. Journal of Diagnostic Medical Sonography, 17(3), 144-150. doi:10.1177/87564790122250336
Karas, V., Wang, V. M., Dhawan, A., & Cole, B. J. (2011). Biomechanical Factors in Rotator Cuff Pathology. Sports Medicine and Arthroscopy Review, 19(3), 202-206. doi:10.1097/JSA.0b013e318225cc99
Hacking C, Knipe H, Weerakkody Y, et al. Rotator cuff tear arthropathy. Reference article, Radiopaedia.org (Accessed on 27 Mar 2024) https://doi.org/10.53347/rID-39335.
Neer, C. S., 2nd, Craig, E. V., & Fukuda, H. (1983). Cuff-tear arthropathy. JBJS, 65(9).
Arslan, F. Z., ÖNcÜ, S., & KÖRez, M. K. (2022). Evaluation of anatomical variations with morphological measurements and their relationship with rotator cuff tear and acromion types. Journal of Health Sciences and Medicine, 5(3), 815-821. doi:10.32322/jhsm.1090241
Ecklund, K. J., Lee, T. Q., Tibone, J., & Gupta, R. (2007). Rotator Cuff Tear Arthropathy. JAAOS - Journal of the American Academy of Orthopaedic Surgeons, 15(6), 340-349.
Furuhata, R., Matsumura, N., Oki, S., Nishikawa, T., Kimura, H., Suzuki, T., . . . Iwamoto, T. (2022). Risk factors of radiographic severity of massive rotator cuff tear. Scientific Reports, 12(1), 13567. doi:10.1038/s41598-022-17624-y
Baltzopoulos, V., A videofluoroscopy method for optical distortion correction and measurement of knee-joint kinematics. Clinical Biomechanics, 1995. 10(2): p. 85-92.
Abdel-Aziz, Y.I., H.M. Karara, and M. Hauck, Direct Linear Transformation from Comparator Coordinates into Object Space Coordinates in Close-Range Photogrammetry*. Photogrammetric Engineering & Remote Sensing, 2015. 81(2): p. 103-107.
Joseph D. Mozingo, Mohsen Akbari-Shandiz, Meegan G. Van Straaten, Naveen S. Murthy, Beth A. Schueler, David R. Holmes, Cynthia H. McCollough, Kristin D. Zhao, Comparison of glenohumeral joint kinematics between manual wheelchair tasks and implications on the subacromial space: A biplane fluoroscopy study, Journal of Electromyography and Kinesiology, Volume 62, 2022, 102350, ISSN 1050-6411
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96190-
dc.description.abstract肩關節,或稱盂肱關節,是人體最靈活的關節之一,但也是穩定性最差且最容易受傷的關節之一。肩關節穩定性多仰賴於周圍的肌肉、肌腱及韌帶,尤其是旋轉肌群。許多運動和日常活動都會要求肩關節進行重複動作或承受高壓力。由於過度使用和年齡的增長,容易使這些軟組織受到磨損、撕裂或其他病變,使得肩關節退化,嚴重影響生活品質,而這樣的病人通常需要接受全人工肩關節置換術。在過去幾十年中,人工肩關節置換術由最初的半人工肩關節置換到全人工肩關節置換,再到現在的反置式全人工肩關節置換。反置式全人工肩關節置換的獨特設計,在提供了病人更好的肩關節穩定性的同時,更降低了周圍軟組織的負擔,大大提升了病人的生活品質。然而,即使有這些技術,肩關節置換後的病人仍常面臨疼痛、關節活動範圍受限及肩關節功能下降等問題,即使有認真執行復健,仍有部分病人的恢復狀況不甚良好。在過去研究中,由於肩關節的複雜性及量測方法限制,有關反置式全人工肩關節置換術對於肩關節之影響尚未有完整研究。
本研究旨在利用雙平面動態X光系統結合斷層掃描重建之骨頭模型對位方法,量測反置式全人工肩關節置換術前術後在功能性動作下盂肱關節的三維運動和關節接觸模式。術前病人將特聚焦在旋轉肌斷裂引起的肩關節退化患者,比較其術前術後之生物力學變化,並與健康人數據進行比較。研究結果顯示,術後患者在屈曲、外翻和肩胛面抬舉等動作中的運動範圍顯著增加,關節接觸壓力分佈更為均勻,這有助於降低肩關節脫位和疼痛等併發症的風險。此外,由於盂肱關節在影像上的重疊區域會影響量測的準確性,本研究透過結合紅外線動作捕捉系統之試體研究進行量測方法的準確性評估。結果表明,本研究方法提供了一種精確評估術後恢復效果的手段,並能幫助臨床醫生更精確地制定個性化的術後康復計劃。這些發現對於臨床實踐和未來研究均具有重要參考價值,為優化反置式全人工肩關節置換術的設計和應用提供了科學依據。
zh_TW
dc.description.abstractThe shoulder joint, also known as the glenohumeral joint, is one of the most flexible joints in the human body but also one of the least stable and most injury prone. The stability of the shoulder joint largely relies on surrounding muscles, tendons, and ligaments, especially the rotator cuff muscles. Many sports and daily activities require repetitive motions or high stress on the shoulder joint. Due to overuse and aging, these soft tissues are prone to wear, tear, or other pathologies, leading to shoulder joint degeneration and significantly affecting the quality of life. Patients with severe conditions often require total shoulder arthroplasty. Over the past decades, shoulder arthroplasty has evolved from hemiarthroplasty to total shoulder arthroplasty and now to reverse total shoulder arthroplasty (RSA). The unique design of RSA provides better joint stability and reduces the burden on surrounding soft tissues, greatly improving patients' quality of life. However, even with these advancements, patients undergoing shoulder arthroplasty still frequently experience pain, limited range of motion, and decreased shoulder function. Despite diligent rehabilitation, some patients do not recover satisfactorily. Previous studies, limited by the complexity of the shoulder joint and measurement techniques, have not comprehensively explored the impact of RSA on the shoulder joint.
This study aims to measure the three-dimensional kinematics and joint contact patterns of the glenohumeral joint before and after RSA during functional movements using a dual-plane fluoroscopy system combined with CT-based bone model registration. The study focused on patients with shoulder degeneration due to rotator cuff tears, comparing biomechanical changes before and after surgery and with healthy individuals. The results indicated significant increases in range of motion in flexion, abduction, and scapular plane elevation postoperatively, with more uniform distribution of joint contact pressure, reducing the risk of dislocation and pain. Additionally, to address the overlapping areas in glenohumeral joint imaging that may affect measurement accuracy, this study evaluated the accuracy of the measurement method through a phantom study combining an infrared motion capture system. The findings demonstrate that our method provides a precise means of assessing postoperative recovery and aids clinicians in developing personalized rehabilitation plans. These results are valuable for clinical practice and future research, providing scientific evidence for optimizing the design and application of RSA.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-28T16:05:50Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-11-28T16:05:51Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 I
中文摘要 II
ABSTRACT III
目 次 V
圖 次 VII
表 次 XI
第一章 緒論 1
第一節 研究背景與動機 1
第二節 肩關節功能與解剖構造 2
第三節 肩關節運動學 3
第四節 活體肩關節運動學量測 4
一、 光電立體攝影量測技術 4
二、 慣性量測單元動作捕捉系統 5
三、 動態三維X光系統 6
第五節 反置式全人工肩關節置換的生物力學和設計 8
第六節 研究目的與預期結果 10
第二章 材料與方法 11
第一節 受試者 11
第二節 反置式全人工肩關節品牌介紹 12
第三節 實驗設備與儀器 13
一、 動態X光系統成像原理 13
二、 雙平面動態X光校正流程 13
三、 動態X光校正方法 16
第四節 三維骨模型建立 19
第五節 活體影像資料蒐集 20
第六節 關節影像數據分析 22
一、 模擬定台X光投影介面 22
二、 數位化重建投影影像系統 23
三、 影像對位(Image Registration) 24
四、 肩關節運動學分析 27
第七節 肩關節對位準確性評估 29
第八節 資料分析 34
第九節 統計分析 36
第三章 結果 38
第一節 肩關節對位準確性評估 38
第二節 屈曲(Flexion)-肱骨矢狀面抬起 39
一、 無負重(Unloaded) 39
二、 有負重(Loaded) 44
第三節 外展(Abduction)-肱骨冠狀面抬起 50
一、 無負重(Unloaded) 50
二、 有負重(Loaded) 56
第四節 肩胛面抬舉(Scaption) 62
第一節 無負重(Unloaded) 62
第二節 有負重(Loaded) 68
第五節 內外旋(Internal/External Rotation) 74
第六節 水平內外旋(Internal/External Rotation with 90 Degree Abduction) 80
第七節 Apley摸背測試(上)-肩部屈曲+外旋(abduction+external rotation) 86
第八節 Apley摸背測試(下)-肩部屈曲+內旋(abduction+internal rotation) 92
第四章 討論 98
第一節 研究結果回顧與總結 98
第二節 與現有文獻的比較與研究創新性 98
第三節 研究臨床意義 99
第四節 方法學上的反思 99
第五節 未來研究建議 100
第五章 結論 101
參考文獻 102
-
dc.language.isozh_TW-
dc.subject動態X光zh_TW
dc.subject反置式人工肩關節置換zh_TW
dc.subject功能性動作zh_TW
dc.subject盂肱關節運動學zh_TW
dc.subject旋轉肌斷裂zh_TW
dc.subjectglenohumeral kinematicsen
dc.subjectdynamic fluoroscopyen
dc.subjectrotator cuff tearen
dc.subjectfunctional movementsen
dc.subjectReverse total shoulder arthroplastyen
dc.title利用雙平面動態X光量測並比較反置式全人工肩關節置換術前術後在功能性動作下盂肱關節之三維運動與關節接觸zh_TW
dc.titleIn vivo Three-Dimensional Kinematics and Contacts of the Glenohumeral Joint in Patients with Reverse Total Shoulder Replacement During Functional Activities Using Biplane Fluoroscopyen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.coadvisor林正忠zh_TW
dc.contributor.coadvisorCheng-Chung Linen
dc.contributor.oralexamcommittee陳文斌;陳祥和zh_TW
dc.contributor.oralexamcommitteeWeng-Pin Chen;Hsiang-Ho Chenen
dc.subject.keyword反置式人工肩關節置換,盂肱關節運動學,動態X光,旋轉肌斷裂,功能性動作,zh_TW
dc.subject.keywordReverse total shoulder arthroplasty,glenohumeral kinematics,dynamic fluoroscopy,rotator cuff tear,functional movements,en
dc.relation.page109-
dc.identifier.doi10.6342/NTU202404351-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-09-05-
dc.contributor.author-college工學院-
dc.contributor.author-dept醫學工程學系-
dc.date.embargo-lift2029-09-02-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
19.99 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved