請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96189
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 莊振義 | zh_TW |
dc.contributor.advisor | Jehn-Yih Juang | en |
dc.contributor.author | 林承恩 | zh_TW |
dc.contributor.author | Cheng-En Lin | en |
dc.date.accessioned | 2024-11-20T16:09:59Z | - |
dc.date.available | 2024-11-21 | - |
dc.date.copyright | 2024-11-20 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-11-04 | - |
dc.identifier.citation | Ainsworth, B. E., Haskell, W. L., Herrmann, S. D., Meckes, N., Bassett, D. R., Tudor-Locke, C., Greer, J. L., Vezina, J., Whitt-Glover, M. C., & Leon, A. S. (2011). 2011 Compendium of Physical Activities: A second update of codes and MET values. Medicine and Science in Sports and Exercise, 43(8), 1575–1581. https://doi.org/10.1249/MSS.0b013e31821ece12
Asayama, M. (2009). Guideline for the Prevention of Heat Disorder in Japan. Global Environmental Research, 13. Bai, Y., Juang, J.-Y., & Kondoh, A. (2011). Urban Warming and Urban Heat Islands in Taipei, Taiwan. In M. Taniguchi (Ed.), Groundwater and Subsurface Environments: Human Impacts in Asian Coastal Cities (pp. 231–246). Springer Japan. https://doi.org/10.1007/978-4-431-53904-9_12 Banfi, A., Tatti, A., Ferrando, M., Fustinoni, D., Zanghirella, F., & Causone, F. (2022). An experimental technique based on globe thermometers for the measurement of mean radiant temperature in urban settings. Building and Environment, 222, 109373. https://doi.org/10.1016/j.buildenv.2022.109373 Boano, C. A., Lasagni, M., & Römer, K. (2013). Non-invasive measurement of core body temperature in Marathon runners. 2013 IEEE International Conference on Body Sensor Networks, 1–6. https://doi.org/10.1109/BSN.2013.6575484 Buscail, C., Upegui, E., & Viel, J.-F. (2012). Mapping heatwave health risk at the community level for public health action. International Journal of Health Geographics, 11(1), 38. https://doi.org/10.1186/1476-072X-11-38 Carlström, E., Borjesson, M., Palm, G., Khorram-Manesh, A., Lindberg, F., Holmer, B., Berner, A., Örninge, P., Luning, H., Nilson, F., Gelang, C., & Thorsson, S. (2019). Medical Emergencies During a Half Marathon Race – The Influence of Weather. International Journal of Sports Medicine, 40(05), 312–316. https://doi.org/10.1055/a-0835-6063 Chan J. L., Constantinou V., Fokas J., Phillips S. V. D., & Chiampas G. (2019). An Overview of Chicago (Illinois USA) Marathon Prehospital Care Demographics, Patient Care Operations, and Injury Patterns. Prehospital and Disaster Medicine, 34(3), 308–316. https://doi.org/10.1017/S1049023X19004345 DuBois, J. T., & Mathews, G. S. (1917). Galusha A. Grow: Father of the Homestead Law. Houghton Mifflin. Ebi, K. L., Capon, A., Berry, P., Broderick, C., de Dear, R., Havenith, G., Honda, Y., Kovats, R. S., Ma, W., Malik, A., Morris, N. B., Nybo, L., Seneviratne, S. I., Vanos, J., & Jay, O. (2021). Hot weather and heat extremes: Health risks. The Lancet, 398(10301), 698–708. https://doi.org/10.1016/S0140-6736(21)01208-3 Eliasson, I. (1996). Urban nocturnal temperatures, street geometry and land use. Atmospheric Environment, 30(3), 379–392. https://doi.org/10.1016/1352-2310(95)00033-X Heat Stress Guide | Occupational Safety and Health Administration. (2024). Retrieved September 5, 2024, from https://www.osha.gov/emergency-preparedness/guides/heat-stress Helou, N. E., Tafflet, M., Berthelot, G., Tolaini, J., Marc, A., Guillaume, M., Hausswirth, C., & Toussaint, J.-F. (2012). Impact of Environmental Parameters on Marathon Running Performance. PLOS ONE, 7(5), e37407. https://doi.org/10.1371/journal.pone.0037407 Hodgson, J. R., Chapman, L., & Pope, F. D. (2022). Amateur runners more influenced than elite runners by temperature and air pollution during the UK’s Great North Run half marathon. Science of The Total Environment, 842, 156825. https://doi.org/10.1016/j.scitotenv.2022.156825 Honjo, T., Seo, Y., Yamasaki, Y., Tsunematsu, N., Yokoyama, H., Yamato, H., & Mikami, T. (2018). Thermal comfort along the marathon course of the 2020 Tokyo Olympics. International Journal of Biometeorology, 62(8), 1407–1419. https://doi.org/10.1007/s00484-018-1539-x Howe, A. S., & Boden, B. P. (2007). Heat-related illness in athletes. The American Journal of Sports Medicine, 35(8), 1384–1395. https://doi.org/10.1177/0363546507305013 Kántor, N., Kovács, A., & Lin, T.-P. (2015). Looking for simple correction functions between the mean radiant temperature from the “standard black globe” and the “six-directional” techniques in Taiwan. Theoretical and Applied Climatology, 121(1), 99–111. https://doi.org/10.1007/s00704-014-1211-2 Khorram-Manesh, A., Löf, T., Börjesson, M., Nilson, F., Thorsson, S., Lindberg, F., & Carlström, E. (2020). Profiling Collapsing Half Marathon Runners—Emerging Risk Factors: Results from Gothenburg Half Marathon. Sports, 8(1), Article 1. https://doi.org/10.3390/sports8010002 Kosaka, E., Iida, A., Vanos, J., Middel, A., Yokohari, M., & Brown, R. (2018). Microclimate Variation and Estimated Heat Stress of Runners in the 2020 Tokyo Olympic Marathon. Atmosphere, 9(5), Article 5. https://doi.org/10.3390/atmos9050192 Li, X., & Wang, G. (2021). Examining runner’s outdoor heat exposure using urban microclimate modeling and GPS trajectory mining. Computers, Environment and Urban Systems, 89, 101678. https://doi.org/10.1016/j.compenvurbsys.2021.101678 Lindberg, F., & Grimmond, C. S. B. (2011). The influence of vegetation and building morphology on shadow patterns and mean radiant temperatures in urban areas: Model development and evaluation. Theoretical and Applied Climatology, 105(3), 311–323. https://doi.org/10.1007/s00704-010-0382-8 Lindberg, F., Grimmond, C. S. B., Gabey, A., Huang, B., Kent, C. W., Sun, T., Theeuwes, N. E., Järvi, L., Ward, H. C., Capel-Timms, I., Chang, Y., Jonsson, P., Krave, N., Liu, D., Meyer, D., Olofson, K. F. G., Tan, J., Wästberg, D., Xue, L., & Zhang, Z. (2018). Urban Multi-scale Environmental Predictor (UMEP): An integrated tool for city-based climate services. Environmental Modelling & Software, 99, 70–87. https://doi.org/10.1016/j.envsoft.2017.09.020 Liu, Y., Zhang, G., & Yang, W. (2024). Dynamic estimation of urban heat exposure for outdoor jogging: Combining individual trajectory and mean radiant temperature. Urban Climate, 55, 101871. https://doi.org/10.1016/j.uclim.2024.101871 Mac, V., Elon, L., Mix, J., Tovar-Aguilar, A., Flocks, J., Economos, E., Hertzberg, V., & McCauley, L. (2021). Risk Factors for Reaching Core Body Temperature Thresholds in Florida Agricultural Workers. Journal of Occupational and Environmental Medicine, 63(5), 395–402. https://doi.org/10.1097/JOM.0000000000002150 Naserikia, M., Asadi Shamsabadi, E., Rafieian, M., & Leal Filho, W. (2019). The Urban Heat Island in an Urban Context: A Case Study of Mashhad, Iran. International Journal of Environmental Research and Public Health, 16(3), Article 3. https://doi.org/10.3390/ijerph16030313 Potter, A. W., Blanchard, L. A., Friedl, K. E., Cadarette, B. S., & Hoyt, R. W. (2017). Mathematical prediction of core body temperature from environment, activity, and clothing: The heat strain decision aid (HSDA). Journal of Thermal Biology, 64, 78–85. https://doi.org/10.1016/j.jtherbio.2017.01.003 Potter, A. W., Hunt, A. P., Cadarette, B. S., Fogarty, A., Srinivasan, S., Santee, W. R., Blanchard, L. A., & Looney, D. P. (2019). Heat Strain Decision Aid (HSDA) accurately predicts individual-based core body temperature rise while wearing chemical protective clothing. Computers in Biology and Medicine, 107, 131–136. https://doi.org/10.1016/j.compbiomed.2019.02.004 Repositório da Universidade de Lisboa: Comparison of measured and simulated Mean Radiant Temperature: Case study in Lisbon (Portugal). (2023). Retrieved July 24, 2023, from https://repositorio.ul.pt/handle/10451/35586 Roberts, W. O. (2010). Determining a “do not start” temperature for a marathon on the basis of adverse outcomes. Medicine and Science in Sports and Exercise, 42(2), 226–232. https://doi.org/10.1249/MSS.0b013e3181b1cdcf Saaroni, H., Ben-Dor, E., Bitan, A., & Potchter, O. (2000). Spatial distribution and microscale characteristics of the urban heat island in Tel-Aviv, Israel. Landscape and Urban Planning, 48(1), 1–18. https://doi.org/10.1016/S0169-2046(99)00075-4 Smith, K. R., Woodward, A., Lemke, B., Otto, M., Chang, C. J., Mance, A. A., Balmes, J., & Kjellstrom, T. (2016). The last Summer Olympics? Climate change, health, and work outdoors. The Lancet, 388(10045), 642–644. https://doi.org/10.1016/S0140-6736(16)31335-6 Szűcs, Á., Gál, T., & Andrade, H. (2014). Comparison of measured and simulated Mean Radiant Temperature. Case Study In Lisbon (Portugal). Finisterra, 49(98), Article 98. https://doi.org/10.18055/Finis6469 Thorsson, S., Lindberg, F., Eliasson, I., & Holmer, B. (2007). Different methods for estimating the mean radiant temperature in an outdoor urban setting. International Journal of Climatology, 27(14), 1983–1993. https://doi.org/10.1002/joc.1537 Tyler, C. J., Reeve, T., Hodges, G. J., & Cheung, S. S. (2016). The Effects of Heat Adaptation on Physiology, Perception and Exercise Performance in the Heat: A Meta-Analysis. Sports Medicine, 46(11), 1699–1724. https://doi.org/10.1007/s40279-016-0538-5 Vanos, J. K., Kosaka, E., Iida, A., Yokohari, M., Middel, A., Scott-Fleming, I., & Brown, R. D. (2019). Planning for spectator thermal comfort and health in the face of extreme heat: The Tokyo 2020 Olympic marathons. Science of The Total Environment, 657, 904–917. https://doi.org/10.1016/j.scitotenv.2018.11.447 修生樫村, 和広南, & 秋夫星. (2016). 2020 年東京オリンピックマラソン時の Wbgt の予測. 日本生気象学会雑誌, 53(4), 139–144. https://doi.org/10.11227/seikisho.53.139 政府資料開放平臺. (2022). 臺北市行道樹分布圖. Retrieved September 7, 2022, from https://data.gov.tw/dataset/128274 熱中症予防研究委員会. (2024). 日本生気象学会. Retrieved September 3, 2024, from https://seikishou.jp/committee/ 職業安全衛生法-全國法規資料庫. (2024). Retrieved September 3, 2024, from https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=N0060001 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96189 | - |
dc.description.abstract | 近年來,半程馬拉松、馬拉松等長距離耐力跑之城市馬拉松在台灣越來越流行。 然而台灣氣候炎熱潮濕,使參加馬拉松比賽的選手經常面臨高風險的熱危害。本研究主要目的是識別馬拉松路線中熱環境以及量化運動員熱危害的風險,並以世界田徑精英標籤賽事台北馬拉松的半程馬拉松路線,透過移動監測採集沿線環境參數,使用熱應變決策輔助模型 (HSDA) 所推算的身體核心溫度 (CBT) 和綜合溫度熱指數 (WBGT) 來評估賽道沿線之熱應力。為了量化熱壓力對從新手跑者、一般跑者到精英跑步者的不同群體的影響,進一步估計了沿途 WBGT 和 CBT 的時空變化。研究結果顯示,以2021 年台北半程馬拉松七點起跑情境為例,冬季氣溫較低,所有跑者的 WBGT 與 CBT 均維持在安全範圍;然而在夏季高溫條件下,賽道中的 WBGT 指標對菁英跑者達到警示程度,對一般與新手跑者則達到高度警示,尚未到達危險等級。然而另一方面,在身體核心溫度的模擬中可以發現到,菁英、一般以及新手跑者分別在賽道 14 公里、 14.3 公里以及15公里處,跑者其身體核心溫度就有超過40℃之可能,有熱中暑風險。若起跑時間不變,建議在14 公里處之後,增加補給站和醫療資源的密度以減輕熱負荷。起跑時間調整分析表明,若改為 04:00 起跑,以身體核心溫度所評估的熱危害超標路段比例可降至 3%;而 05:00 起跑情境下,路段超標比例降至 16%,更符合實際需求。本研究亦發現 CBT 與 WBGT在夏季高溫情境下,顯示的熱危害程度差異甚大,因此需要更多後續研究進行探討。 | zh_TW |
dc.description.abstract | In the recent years, the long-distance endurance running races, such as half-marathon or marathon, are becoming much more popular in Taiwan. However, due to the frequent hot and humid weather in this low-latitude country, runners in these races usually face the risk of thermal hazards. In order to analyze the heat stress for the runners in such environment, the main objectives of this study are to characterize the thermal environment in road race events and to quantify the risk of thermal hazard for athletes. This study chose the route of half-marathon of Taipei Marathon, a World Athletics Elite Label race, as the research object. The necessary environmental parameters for risk of thermal hazards along the route were collected by means of mobile monitoring, and the heat stress on the route was evaluated through core body temperature (CBT) simulated by the Heat Strain Decision Aid model (HSDA) and the thermal index, Wet Bulb Globe Temperature (WBGT). To quantify the impact of heat stress on different groups from beginner to elite runners, the spatiotemporal variations of WBGT and core body temperature along the route were further estimated. The study results indicate that, based on the 2021 Taipei Half Marathon with a 7:00 a.m. start time, the winter scenario with cooler temperatures keeps both WBGT and CBT values within safe limits for all runners. However, in summer’s high-temperature conditions, WBGT levels for elite runners reach a "warning" level and a "high warning" level for general and novice runners, without reaching the dangerous threshold. On the other hand, body core temperature simulations show that elite, general, and novice runners are at risk of exceeding 40°C at the 14 km, 14.3 km, and 15 km marks, respectively, indicating heat stroke risk. If the start time remains unchanged, it is recommended to increase the density of aid and medical stations after the 14 km point to help reduce heat strain. Start time adjustment analysis reveals that a 4:00 a.m. start could reduce the proportion of core temperature hazard sections to 3%, while a 5:00 a.m. start reduces this proportion to 16%, which may be more practical. This study also finds significant discrepancies between CBT and WBGT in evaluating heat hazard levels under high summer temperatures. Therefore, further research is needed for exploration. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-20T16:09:58Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-11-20T16:09:59Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目次 v 圖次 vii 表次 ix 第一章、前言 1 1.1 研究背景與動機 1 1.2 研究目的 4 第二章、文獻回顧 5 2.1 半程馬拉松跑者路線之熱環境監測 5 2.2 熱環境與熱指標 8 2.2.1 綜合溫度熱指數 8 2.2.2身體核心溫度 11 2.3 Solar and LongWave Environmental Irradiance Geometry model (SOLWEIG)文獻回顧 15 2.4 量測方法文獻 17 第三章、研究方法 19 3.1 研究範圍 19 3.2 研究流程圖 21 3.3 研究資料 23 3.3.1氣溫與相對濕度資料 23 3.3.2 數值建成資料 (Digitized building data) 25 3.3.3 植被資料 26 3.4 研究方法 26 3.4.1 街道輻射溫度計算---以SOLWEIG數值模擬方法 26 3.4.2 氣溫、相對濕度與平均輻射溫度資料驗證 30 3.4.3 馬拉松跑者程度情境模擬設定---菁英、一般、新手跑者 34 第四章、結果與討論 39 4.1 台北半程馬拉松路線氣溫、相對濕度與平均輻射溫度結果 39 4.1.1 台北馬拉松模擬日之大氣狀況 39 4.1.2 台北半程馬拉松路線與鄰近區域氣溫與相對濕度 42 4.1.3 台北半程馬拉松路線與鄰近區域平均輻射溫度 46 4.2馬拉松路線氣溫、相對濕度與輻射溫度監測資料驗證結果 48 4.2.1 半程馬拉松賽道氣溫與相對濕度驗證 48 4.2.2 平均輻射溫度資料驗證 53 4.3 半程馬拉松賽道路線熱環境與跑者情境分析 55 4.3.1 氣溫與相對濕度跑者情境分析 55 4.3.2 平均輻射溫度跑者情境分析 62 4.3.3 台北半程馬拉松賽道之核心溫度與綜合溫度熱指數變化圖 67 4.3.4以WBGT與CBT評估不同情境熱危害路段比例 75 第五章、結論與建議 79 5.1 結論 79 5.2 研究限制與未來建議 81 參考文獻 82 | - |
dc.language.iso | zh_TW | - |
dc.title | 定量分析台北馬拉松半程賽道熱危害潛在風險 | zh_TW |
dc.title | Investigating Potential Risk of Thermal Hazards Along Race Routes of Taipei Half Marathon By Quantitative Analysis | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 簡旭伸 | zh_TW |
dc.contributor.coadvisor | Shiuh-Shen Chien | en |
dc.contributor.oralexamcommittee | 林博雄;謝宜桓 | zh_TW |
dc.contributor.oralexamcommittee | Po-Hsiung Lin;Yi-Huan Hsieh | en |
dc.subject.keyword | 馬拉松熱環境,跑者熱危害,台北馬拉松,熱疲勞決策模型,身體核心溫度,熱累積,綜合溫度熱指數, | zh_TW |
dc.subject.keyword | Marathon Thermal Environment,Runner Thermal Hazard,Taipei Marathon,Heat Strain Decision Aid,Core Body Temperature,Hear Accumulation,Wet Bulb Globe Temperature, | en |
dc.relation.page | 90 | - |
dc.identifier.doi | 10.6342/NTU202404527 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-11-04 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 地理環境資源學系 | - |
顯示於系所單位: | 地理環境資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf | 19.83 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。