請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96185
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳瑞北 | zh_TW |
dc.contributor.advisor | Ruey-Beei Wu | en |
dc.contributor.author | 林秉澤 | zh_TW |
dc.contributor.author | Ping Tse Lin | en |
dc.date.accessioned | 2024-11-20T16:08:47Z | - |
dc.date.available | 2024-11-21 | - |
dc.date.copyright | 2024-11-20 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-10-30 | - |
dc.identifier.citation | [1] Future of Drone Industry | Trends, Regional Overview and Major Developments. https://www.strategicmarketresearch.com/blogs/drone-industry-future
[2] J. Kim, S. Kim, C. Ju, and H. I. Son, "Unmanned aerial vehicles in agriculture: A review of perspective of platform, control, and applications," IEEE Access, vol. 7, pp. 105100-105115, 2019, doi: 10.1109/ACCESS.2019.2932119. [3] X. Dong, B. Yu, Z. Shi, and Y. Zhong, "Time-varying formation control for unmanned aerial vehicles: Theories and applications," IEEE Trans. Control Syst. Technol., vol. 23, no. 1, pp. 340-348, Jan. 2015, doi: 10.1109/TCST.2014.2314460. [4] Z. Han, A. L. Swindlehurst, and K. J. R. Liu, "Optimization of MANET connectivity via smart deployment/movement of unmanned air vehicles," IEEE Trans. Vehicular Technol., vol. 58, no. 7, pp. 3533-3546, Sept. 2009, doi: 10.1109/TVT.2009.2015953. [5] H. Shakhatreh, A. H. Sawalmeh, A. Al-Fuqaha, Z. Dou, E. Almaita, Issa Khalil, N. S. Othman, A. Khreishah, and M. Guizani , "Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges," IEEE Access, vol. 7, pp. 48572-48634, 2019, doi: 10.1109/ACCESS.2019.2909530. [6] O. Elmakis, T. Shaked, and A. Degani, "Vision-based UAV-UGV collaboration for autonomous construction site preparation," IEEE Access, vol. 10, pp. 51209-51220, 2022, doi: 10.1109/ACCESS.2022.3170408. [7] H. Zhou, C. Xu, X. Tang, S. Wang, and Z. Zhang, "A review of vision-laser-based civil infrastructure inspection and monitoring," Sensors, vol. 22, no. 15, p. 5882, 2022, doi: 10.3390/s22155882. [8] R. I. Mukhamediev, G. G. Mikishkin, S. A. Rakov, M. V. Osipov, and V. G. Miroshnichenko, "Coverage path planning optimization of heterogeneous UAVs group for precision agriculture," IEEE Access, vol. 11, pp. 5789-5803, 2023, doi: 10.1109/ACCESS.2023.3235207. [9] W. Boonpook, Y. Tan, K. Torsri, P. Kamsing, P. Torteeka, and A. Nardkulpat, "PCL–PTD net: Parallel cross-learning-based pixel transferred deconvolutional network for building extraction in dense building areas with shadow," IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens, vol. 16, pp. 773-786, 2023, doi: 10.1109/JSTARS.2022.3230149. [10] C. Zhao, Y. Wang, X. Zhang, S. Chen, C. Wu, and K. L. Teo, "UAV dispatch planning for a wireless rechargeable sensor network for bridge monitoring," IEEE Trans. Sustain. Computing, vol. 8, no. 2, pp. 293-309, Apr.-June 2023, doi: 10.1109/TSUSC.2022.3224442. [11] X. Chen, B. Hopkins, Hao Wang, and Leo O’Neill, "Wildland fire detection and monitoring using a drone-collected RGB/IR image dataset," IEEE Access, vol. 10, pp. 121301-121317, 2022, doi: 10.1109/ACCESS.2022.3222805. [12] 軍用無人機需求續升,2022~2025年估市場規模年複合成長率達27.6% (no date) Yahoo! News. Available at: https://tw.stock.yahoo.com/news/%E8%BB%8D%E7%94%A8%E7%84%A1%E4%BA%BA%E6%A9%9F%E9%9C%80%E6%B1%82%E7%BA%8C%E5%8D%87-2022-2025%E5%B9%B4%E4%BC%B0%E5%B8%82%E5%A0%B4%E8%A6%8F%E6%A8%A1%E5%B9%B4%E8%A4%87%E5%90%88%E6%88%90%E9%95%B7%E7%8E%87%E9%81%9427-6-034252431.html (Accessed: 05 June 2024). [13] W. Youn, H. Ko, H. Choi, I. Choi, J.-H. Baek and H. Myung, "Collision-free autonomous navigation of a small UAV using low-cost sensors in GPS-denied environments", Int. J. Control Autom. Syst., vol. 19, no. 2, pp. 953-968, Feb. 2021. [14] M. Zhou, Y. Wang, Y. Liu and Z. Tian, "An information-theoretic view of WLAN localization error bound in GPS-denied environment", IEEE Trans. Veh. Technol., vol. 68, no. 4, pp. 4089-4093, Apr. 2019. [15] Q Ouyang, Z Wu, Y Cong, Z Wang, "Formation control of unmanned aerial vehicle swarms: A comprehensive review," Asian Journal of Control, vol. 25, no. 1, pp. 570-593, 2023. [16] L. G. Takano De La Cruz, L. Amezquita-Brooks, O. Garcia-Salazar, F. Villarreal-Valderrama, C. Santana-Delgado, and D. Hernandez-Alcantara, "Formation control as a classical decentralized multivariable problem: Performance, robustness, cross-coupling and perturbation rejection," J. Franklin Institute, 2023. [17] X. Xu, et al., “A vision-only relative distance calculation method for multi-UAV systems,” Aerospace Sci. Technol., 142, p. 108665, 2023. doi:10.1016/j.ast.2023.108665. [18] R. Ming, et al., “Comparative analysis of different UAV swarm control methods on unmanned farms,” Agronomy, 13(10), p. 2499, 2023. doi:10.3390/agronomy13102499. [19] V. Walter, et al., “UVDAR system for visual relative localization with application to leader–follower formations of multirotor uavs,” IEEE Robotics Automat. Lett., 4(3), pp. 2637–2644, 2019. doi:10.1109/lra.2019.2901683. [20] Z. Gu, B. Song, Y. Fan, and X. Chen, "Design and verification of UAV formation controller based on leader-follower method," in 2022 7th Int. Conf. Automat., Control Robotics Eng. (CACRE), Xi'an, China, 2022, pp. 38-44, doi: 10.1109/CACRE54574.2022.9834161. [21] N. Ullah, Y. Mehmood, J. Aslam, A. Ali, and J. Iqbal, "UAVs-UGV leader follower formation using adaptive non-singular terminal super twisting sliding mode control," IEEE Access, vol. 9, pp. 74385-74405, 2021, doi: 10.1109/ACCESS.2021.3081483. [22] G. Xu and Y. Xu, GPS. Berlin, Heidelberg: Springer-Verlag, 2007. [23] “台灣地區二度分帶座標系統,” Available: http://140.121.160.124/GEO/ex1.htm (Accessed: 05 June 2024). [24] Seliao , “總算「對準了」!美國政府終止對 GPS 的訊號干擾,” 泛科技 PanX.asia, https://panx.asia/archives/48191, May. 2016 (Accessed: 05 June 2024). [25] Q. Zeng, “GPS衛星大解密:從運作到使用,” Sci-Tech Vista, https://scitechvista.nat.gov.tw/Article/C000003/detail?ID=90b69989-4fd9-424b-946e-29fd6f610b31, Nov. 2011 (Accessed: 05 June 2024). [26] F.-R. Chang, “淺談衛星導航系統,” What’s fun in EE台大電機科普系列, https://ee.ntu.edu.tw/upload/hischool/doc/2011.08.pdf, Aug. 2011 (Accessed: 05 June 2024). [27] A. Tara, P. Kaitlyn, and V. Gina, “The history of trigonometry”, History of Mathematics, Nov. 2005. [28] A.-V. Palacean, D.-C. Trancă, C. Contaşel, R. Tătăroiu, and C. Duţescu, "IoT enabled optimized architectures for GPS anti-theft tracking devices," in 2021 20th RoEduNet Conf.: Netw. Education Res. (RoEduNet), Iasi, Romania, 2021, pp. 1-6, doi: 10.1109/RoEduNet54112.2021.9638274. [29] Y. Siyuan, F. Tong, and Z. Yuxia, "Children's anti-lost alarm based on single chip computer," in 2023 IEEE Int. Conf. Sensors, Electron. Computer Eng. (ICSECE), Jinzhou, China, 2023, pp. 127-131, doi: 10.1109/ICSECE58870.2023.10263470. [30] D.-B. Park, D.-H. Shin, S.-H. Oh, and H.-S. Kim, "Development of a GPS/INS system for precision GPS guided bombs," IEEE Aerospace Electron. Syst. Mag., vol. 27, no. 3, pp. 31-39, Mar. 2012, doi: 10.1109/MAES.2012.6196255. [31] P. E. Ceruzzi, "GPS," in GPS, MIT Press, 2018, pp.1-8. [32] I. Oppermann, UWB Theory and Applications, John Wiley & Sons, vol. 2, pp. 98-153, 2004. [33] J. Gomes and B. K. Mishra, "High speed video transmission over hermite based UWB," in 2011 World Congress Information Comm. Technol., Mumbai, India, 2011, pp. 957-961, doi: 10.1109/WICT.2011.6141377. [34] Z. Liu, J. Li, A. Wang, X. Cheng, and A. Wang, "Design and implementation of UWB/MIMU tightly-coupled system for indoor positioning," in 2018 Ubiquitous Positioning, Indoor Navigat. Location-Based Services (UPINLBS), Wuhan, China, 2018, pp. 1-7, doi: 10.1109/UPINLBS.2018.8559945. [35] M. Taherzadeh et al., "UWB microwave breast screening with self-mixed baseband analog signal processing," in IEEE Sensors Journal, vol. 24, no. 7, pp. 11404-11413, 1 April1, 2024, doi: 10.1109/JSEN.2024.3364088. [36] Z. Wang, P. Spasojevic, B. W. Schlake, N. Mulay, A. F. Zaman, and X. Liu, "Development and testing of a UWB-based vehicle-to-vehicle (V2V) ranging system for self-propelled rail vehicles," IEEE Trans. Vehicular Technol., doi: 10.1109/TVT.2023.3327727. [37] Decawave, "DW1000 Datasheet," [Online] https://www.decawave.com [38] W. C. Ling, A. Gupta, A. Vashistha, M. Sharma, and C. L. Law, "High precision UWB-IR indoor positioning system for IoT applications," in 2018 IEEE 4th World Forum Internet Things (WF-IoT), Singapore, 2018, pp. 135-139, doi: 10.1109/WF-IoT.2018.8355162. [39] Y. Uomoto and A. Kajiwara, "Heartbeat monitoring UWB sensor robust to body movement," in 2018 IEEE 4th World Forum Internet Things (WF-IoT), Singapore, 2018, pp. 280-285, doi: 10.1109/WF-IoT.2018.8355194. [40] C. B. Low and D. Wang, "GPS-based path following control for a car-like wheeled mobile robot with skidding and slipping," IEEE Trans. Control Syst. Technol., vol. 16, no. 2, pp. 340-347, Mar. 2008, doi: 10.1109/TCST.2007.903100. [41] T. Qin, P. Li, and S. Shen, "Vins-mono: A robust and versatile monocular visual-inertial state estimator," IEEE Trans. Robotics, vol. 34, no. 4, pp. 1004-1020, 2018. [42] G. Xu and Y. Xu, GPS, Springer-Verlag Berlin Heidelberg, 2007. [43] Y.-E. Chen, H.-H. Liew, J.-C. Chao and R.-B. Wu, "Decimeter-accuracy positioning for drones using two-stage trilateration in a GPS-denied environment," IEEE Internet Things J., vol. 10, no. 9, pp. 8319-8326, May 2023, doi: 10.1109/JIOT.2022.3231704. [44] K. Thyagarajan and Ajoy Ghatak, "Carrier wave communication," IEEE Fiber Optic Essentials, pp.17-27, 2007. doi: 10.1002/9780470152560.ch3. [45] J. Kim, S. A. Gadsden, and S. A. Wilkerson, "A comprehensive survey of control strategies for autonomous quadrotors," Canadian J. Electr. Computer Eng., vol. 43, no. 1, pp. 3-16, Winter 2020, doi: 10.1109/CJECE.2019.2920938. [46] “無人機系統介紹,” 中華民國內政部國土測繪中心, https://www.nlsc.gov.tw/cp.aspx?n=13658 , Feb 2023. [47] J Pyrhonen, V. Hrabovcova; and R. S. Semken, "The fundamentals of electric machines," Electrical Machine Drives Control: An Introduction, Wiley, 2016, pp.36-65, doi: 10.1002/9781119260479.ch3. [48] “Holybro Durandal,” ArduPilot, https://ardupilot.org/copter/docs/common-durandal-overview.html , Jul 2022. [49] “Jupiter Plus 2,” 英諾飛科技InnoFlight, https://infuav.com/product/flightcontroller/jupiter-plus-ii/. [50] “SiK telemetry tadio,” ArduPilot, https://ardupilot.org/copter/docs/common-sik-telemetry-radio.html , Mar 2022. [51] R. Pintelon and J. Schoukens, "Frequency response function measurements in the presence of nonlinear distortions," IEEE Syst. Identification: A Freq. Domain Approach, pp.73-118, 2012. doi: 10.1002/9781118287422.ch3. [52] “ALIAS 保全巡檢無人機,” GEOSAT Aerospace & Technology Inc, https://www.geosat.com.tw/TW/product-uav-alias.aspx. [53] D. Wang, B. Lian, Y. Liu, and B. Gao, "A cooperative UAV swarm localization algorithm based on probabilistic data association for visual measurement," IEEE Sensors J., vol. 22, no. 20, pp. 19635-19644, Oct.15, 2022, doi: 10.1109/JSEN.2022.3202356. [54] S. Biswas, R. Muttangi, H. Patel, and S. Prince, "Edge AI based autonomous UAV for emergency network deployment: A study towards search and rescue Missions," in 2022 Int. Conf. Wireless Comm. Signal Processing Netw. (WiSPNET), Chennai, India, 2022, pp. 268-272, doi: 10.1109/WiSPNET54241.2022.9767139. [55] J. Guo, Y. Lu, and Z. Li, "PID parameter tuning algorithm of rotor UAV based on improved particle swarm optimization," in 2022 IEEE 6th Information Technol. Mechatron. Eng. Conf. (ITOEC), Chongqing, China, 2022, pp. 1251-1255, doi: 10.1109/ITOEC53115.2022.9734437. [56] Z. Peng, B. Li, X. Chen, and J. Wu, "Online route planning for UAV based on model predictive control and particle swarm optimization algorithm," in 10th World Congress Intelligent Control Automat., Beijing, China, 2012, pp. 397-401, doi: 10.1109/WCICA.2012.6357907. [57] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, "PID controllers," IEEE Feedback Control Computing Syst., pp. 293-335, 2004. doi: 10.1002/047166880X.ch9. [58] K. J. Åström and R. M. Murray, “Feedback systems: An introduction for scientists and engineers,” Princeton, NJ, USA: Princeton University Press, 2021. [59] P. Saraf, M. Gupta, and A. M. Parimi, "A comparative study between a classical and optimal controller for a quadrotor," in 2020 IEEE 17th India Council Int. Conf. (INDICON), New Delhi, India, 2020, pp. 1-6, doi: 10.1109/INDICON49873.2020.9342485. [60] G. M. Hoffmann, H. Huang, S. L. Waslander, and C. J. Tomlin, "Quadrotor helicopter flight dynamics and control: Theory and experiment," in Proc. AIAA Guidance, Navigat., Control Conf. Exhibit, Hilton Head, SC, USA, 2007, doi: 10.2514/6.2007-6461. [61] C. Amadi and W. Smit, “Design and implementation of model predictive control on pixhawk flight controller,” Stellenbosch University, Stellenbosch, Western Cape, South Africa, 2018. [62] Y. Zhou, B. Rao, and W. Wang, "UAV swarm intelligence: Recent advances and future trends," IEEE Access, vol. 8, pp. 183856-183878, 2020, doi: 10.1109/ACCESS.2020.3028865. [63] D. H. Choi, S. H. Kim, and D. K. Sung, "Energy-efficient maneuvering and communication of a single UAV-based relay," IEEE Trans. Aerospace Electron. Syst., vol. 50, no. 3, pp. 2320-2327, July 2014, doi: 10.1109/TAES.2013.130074. [64] P. Chandhar and E. G. Larsson, "Massive MIMO for connectivity with drones: Case studies and future directions," IEEE Access, vol. 7, pp. 94676-94691, 2019, doi: 10.1109/ACCESS.2019.2928764. [65] W. Luo, H. Jin, and H. Li, "Research on cooperative detection of UAV swarms based on MLE, in 2019 IEEE Int. Conf. Unmanned Syst. (ICUS), Beijing, China, 2019, pp. 200-204, doi: 10.1109/ICUS48101.2019.8996063. [66] D. J. Pack, P. DeLima, G. J. Toussaint, and G. York, "Cooperative control of UAVs for localization of intermittently emitting mobile targets," IEEE Trans. Syst., Man, Cybernetics, Part B (Cybernetics), vol. 39, no. 4, pp. 959-970, Aug. 2009, doi: 10.1109/TSMCB.2008.2010865. [67] L. Hong, H. Guo, J. Liu, and Y. Zhang, "Toward swarm coordination: Topology-aware inter-UAV routing optimization," IEEE Trans. Vehicular Technol., vol. 69, no. 9, pp. 10177-10187, Sept. 2020, doi: 10.1109/TVT.2020.3003356. [68] S. Lee, C. Park, S.-Y. Lee, J. H. Jeon, and D. Lee, "UWB based relative navigation and leader-follower formation for UAVs using maneuvering of a follower," in 2021 21st Int. Conf. Control, Automat. Syst. (ICCAS), Jeju, Korea, 2021, pp. 239-243, doi: 10.23919/ICCAS52745.2021.9649880. [69] “MAVLink Developer Guide,” MAVLINK, https://mavlink.io/en/messages/common.html. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96185 | - |
dc.description.abstract | 本論文提出了一套由三架無人機、Ultra-wide band (UWB)、GPS及Raspberry Pi 3B+ (RPi3) 所組成的無人機群協同飛行系統架構。 研究過程中嘗試以UWB來支援無人機編隊的相對定位,但因定位效果不如預期,所以仍採用GPS進行定位。此架構可自動控制僚機維持特定任務隊形,跟隨長機協同飛行。樹梅派透過Wi-Fi建立多架無人機之間的區域無線網路,並用UDP通訊協定讀取來自無人機飛控電腦中的空速計、氣壓計、陀螺儀等各項儀器的飛航資訊,後經由提出的PI自動控制器,可以將兩架跟隨無人機在飛行期間的水平、垂直誤差都控制在10 cm以內,再經由無人機之間的通訊管道,組織成Leader-Follower結構的無人機編隊控制系統,使無人機群跟隨誤差達到公分級的精準度。同時本論文提出一套模擬器,將無人機的各項相關數據以及相關環境參數納入考量,搭配前述所提出之PID控制方法,以三維立體動畫的方式預測無人機群的飛行,可從更多角度觀察無人機的模擬狀況,盡可能的避免實際飛行時的危險情況。 | zh_TW |
dc.description.abstract | The paper proposes a collaborative flight system architecture composed of three drones, Ultra-wide band (UWB), GPS, and Raspberry Pi 3B+ (RPi3). This architecture automatically controls the followers to maintain mission formations and fly with the leader. During the research process, UWB was tried to support the relative positioning of UAV formations, but because the positioning effect was not as good as expected, GPS was still used for positioning. Due to the high mobility of UAV, we can adjust the formation of the UAV swarm in GPS-denied environments using UWB positioning signals. During flight, the Raspberry Pi establishes a communication channel through a Wi-Fi local wireless network formed among UAV swarm. UDP communication protocol is used to allow UAVs to share their information with each other to determine and adjust their flight attitudes. The Raspberry Pi also reads flight information from the flight control computers of UAV. Through the proposed PI automatic control method, the horizontal and vertical errors of the two follower are controlled within 10 cm. Then, a Leader-Follower structured UAV formation control system is organized, achieving centimeter-level precision in following errors for the drone group.
Additionally, the paper proposes a simulator that takes into account various relevant data of UAV and environmental parameters before the actual flight of the UAV swarm. With the control method proposed above, the simulator predicts the flight of the UAV swarm and presents it with three-dimensional animations,allowing observation of UAV simulations from various perspectives, minimizing potential risks during actual flights. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-20T16:08:47Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-11-20T16:08:47Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 摘要 i
Abstract ii 目次 iii 圖次 v 表次 ix 第1章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 4 1.3 重要貢獻 7 1.4 章節內容概述 8 第2章 無人機的導航與定位技術 9 2.1 GPS原理與運作機制 9 2.2 UWB技術基礎 12 2.3 無人機定位技術的比較 16 第3章 無人機系統架構及自動控制方法 20 3.1 無人機系統架構 20 3.2 無人機自動控制方法 25 3.3 無人機PID自動控制邏輯設計 31 第4章 無人機群模擬系統 42 4.1 無人機群基本概念 42 4.2 無人機群模擬系統基礎架構 44 4.3 無人機群模擬系統 50 第5章 無人機結合UWB之戶外群體飛行 54 5.1 UWB在戶外群體飛行的應用案例 54 5.2 實驗情境描述 56 5.3 無人機群編隊控制實驗 60 第6章 結論及未來展望 79 參考資料 80 | - |
dc.language.iso | zh_TW | - |
dc.title | 基於UWB定位的啟發式無人機編隊控制設計 | zh_TW |
dc.title | UWB Positioning-Based Heuristic Design for UAV Formation Control | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 張時中;蔡坤諭;賴怡吉 | zh_TW |
dc.contributor.oralexamcommittee | Shi-Chung Chang;Kuen-Yu Tsai;I-Chi Lai | en |
dc.subject.keyword | 領導者-跟隨者架構,無人機編隊,無人機模擬,超寬頻測距儀, | zh_TW |
dc.subject.keyword | Leader-Follower Method,UAV Formation,UAV Emulate,UWB, | en |
dc.relation.page | 86 | - |
dc.identifier.doi | 10.6342/NTU202404528 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-11-01 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 電信工程學研究所 | - |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 5.19 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。