請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96181
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 趙福杉 | zh_TW |
dc.contributor.advisor | Fu-Shan Jaw | en |
dc.contributor.author | 彌勒潔仁 | zh_TW |
dc.contributor.author | Jie-Ren Mi Le | en |
dc.date.accessioned | 2024-11-20T16:07:34Z | - |
dc.date.available | 2024-11-21 | - |
dc.date.copyright | 2024-11-20 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-11-08 | - |
dc.identifier.citation | 1. Chatelain, L.S., A.L. Simon, M. Khalife, et al., Pediatric spinal alignment and spinal development. N Am Spine Soc J, 2024. 20: p. 100548.
2. Rawls, A.F., R. E. , Development and functional anatomy of the spine. The Genetics and Development of Scoliosis, ed. K.D. Kusumi, S.L. 2010, New York: Springer. 3. Oxland, T.R., Fundamental biomechanics of the spine--What we have learned in the past 25 years and future directions. J Biomech, 2016. 49(6): p. 817-832. 4. Diebo, B.G., J.J. Varghese, R. Lafage, et al., Sagittal alignment of the spine: What do you need to know? Clin Neurol Neurosurg, 2015. 139: p. 295-301. 5. Shirazi-Adl, A. and G. Drouin, Load-bearing role of facets in a lumbar segment under sagittal plane loadings. J Biomech, 1987. 20(6): p. 601-13. 6. Shirazi-Adl, A. and M. Parnianpour, Load-bearing and stress analysis of the human spine under a novel wrapping compression loading. Clin Biomech (Bristol, Avon), 2000. 15(10): p. 718-25. 7. Pope, M.H., Biomechanics of the lumbar spine. Ann Med, 1989. 21(5): p. 347-51. 8. Muller, A., R. Rockenfeller, N. Damm, et al., Load Distribution in the Lumbar Spine During Modeled Compression Depends on Lordosis. Front Bioeng Biotechnol, 2021. 9: p. 661258. 9. Pope, M.H., Biomechanics of the lumbar spine: A clinical approach. Handbook of Orthopaedic Trauma Implantology. Vol. 21. 1989: Ann. Med. 10. Roussouly, P. and J.L. Pinheiro-Franco, Biomechanical analysis of the spino-pelvic organization and adaptation in pathology. Eur Spine J, 2011. 20 Suppl 5: p. 609-18. 11. Waxenbaum, J.A., V. Reddy, C. Williams, et al., Anatomy, Back, Lumbar Vertebrae, in StatPearls. 2021: Treasure Island (FL). 12. Jentzsch, T., J. Geiger, M.A. Konig, et al., Hyperlordosis is associated with facet joint pathology at the lower lumbar spine. Clin Spine Surg, 2017. 30: p. 129-135. 13. Rajnics, P., A. Templier, W. Skalli, et al., The association of sagittal spinal and pelvic parameters in asymptomatic persons and patients with isthmic spondylolisthesis. J Spinal Disord Tech, 2002. 15: p. 24-30. 14. Vialle, R., N. Levassor, L. Rillardon, et al., Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. J Bone Joint Surg Am, 2005. 87(2): p. 260-7. 15. Baker, J.F. and P.A. Robertson, Segmental Contributions to Lumbar Lordosis: A Computed Tomography Study. Int J Spine Surg, 2020. 14(6): p. 949-955. 16. Been, E., A. Barash, A. Marom, et al., Vertebral bodies or discs: which contributes more to human-like lumbar lordosis? Clin Orthop Relat Res, 2010. 468: p. 1822-1829. 17. Vedantam, R., L.G. Lenke, J.A. Keeney, et al., Comparison of standing sagittal spinal alignment in asymptomatic adolescents and adults. Spine (Phila Pa 1976). 23: p. 211-215. 18. Pesenti, S., R. Lafage, D. Stein, et al., The Amount of Proximal Lumbar Lordosis Is Related to Pelvic Incidence. Clin Orthop Relat Res, 2018. 476(8): p. 1603-1611. 19. Chevillotte, T., P. Coudert, D. Cawley, et al., Influence of posture on relationships between pelvic parameters and lumbar lordosis: Comparison of the standing, seated, and supine positions. A preliminary study. Orthop Traumatol Surg Res, 2018. 104: p. 565-568. 20. Lee, E.S., C.W. Ko, S.W. Suh, et al., The effect of age on sagittal plane profile of the lumbar spine according to standing, supine, and various sitting positions. J Orthop Surg Res, 2014. 9(1): p. 11. 21. Dubousset, J., Three-dimensional analysis of the scoliotic deformity. 1st ed. ed. Pediatric spine: principles and practice. 1994, New York: Raven Press. 22. Mi Le, J.R., K.T. Yeh, C.W. Chen, et al., Quantitative evaluation of correlation between lumbosacral lordosis and pelvic incidence in standing position among asymptomatic Asian adults: a prospective study. Sci Rep, 2022. 12(1): p. 18965. 23. Charles, Y.P. and Y. Ntilikina, Scoliosis surgery in adulthood: what challenges for what outcome? Ann Transl Med, 2020. 8(2): p. 34. 24. Cho, Y., D.J. Jo, S.J. Hyun, et al., From the Spinopelvic Parameters to Global Alignment and Proportion Scores in Adult Spinal Deformity. Neurospine, 2023. 20(2): p. 467-477. 25. Le Huec, J.C., W. Thompson, Y. Mohsinaly, et al., Sagittal balance of the spine. Eur Spine J, 2019. 28(9): p. 1889-1905. 26. Chen, H.F. and C.Q. Zhao, Pelvic incidence variation among individuals: functional influence versus genetic determinism. J Orthop Surg Res, 2018. 13(1): p. 59. 27. Vaz, G., P. Roussouly, E. Berthonnaud, et al., Sagittal morphology and equilibrium of pelvis and spine. Eur Spine J, 2002. 11: p. 80-87. 28. Zarate-Kalfopulos, B., S. Romero-Vargas, E. Otero-Camara, et al., Differences in pelvic parameters among Mexican, Caucasian, and Asian populations. J Neurosurg Spine, 2012. 16(5): p. 516-9. 29. Weinberg, D.S., W.Z. Morris, J.J. Gebhart, et al., Pelvic incidence: an anatomic investigation of 880 cadaveric specimens. Eur Spine J, 2016. 25(11): p. 3589-3595. 30. Arand, C., H. Noser, L. Kamer, et al., Is there a correlation between pelvic incidence and orientation of the acetabulum? An analysis based on a three-dimensional statistical model of the pelvic ring. 2022. 241: p. 756-764. 31. Le Huec, J.C., S. Aunoble, L. Philippe, et al., Pelvic parameters: origin and significance. Eur Spine J, 2011. 20 Suppl 5: p. 564-71. 32. Kobayashi, T., T. Morimoto, T. Yoshihara, et al., The significant relationship among the factors of pelvic incidence, standing lumbar lordosis, and lumbar flexibility in Japanese patients with hip osteoarthritis: A descriptive radiographic study. Orthop Traumatol Surg Res, 2022. 108: p. 103123. 33. Weinberg, D.S., R.W. Liu, K.K. Xie, et al., Increased and decreased pelvic incidence, sagittal facet joint orientations are associated with lumbar spine osteoarthritis in a large cadaveric collection. Int Orthop, 2017. 41(8): p. 1593-1600. 34. Jentzsch, T., J. Geiger, S. Bouaicha, et al., Increased pelvic incidence may lead to arthritis and sagittal orientation of the facet joints at the lower lumbar spine. BMC Med Imaging, 2013. 13: p. 34. 35. Murata, S., H. Hashizume, S. Tsutsui, et al., Pelvic compensation accompanying spinal malalignment and back pain-related factors in a general population: the Wakayama spine study. Sci Rep, 2023. 13(1): p. 11862. 36. Legaye, J., G. Duval-Beaupere, J. Hecquet, et al., Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J, 1998. 7(2): p. 99-103. 37. Bourghli, A., S. Aunoble, O. Reebye, et al., Correlation of clinical outcome and spinopelvic sagittal alignment after surgical treatment of low-grade isthmic spondylolisthesis. Eur Spine J, 2011. 20 Suppl 5: p. 663-8. 38. Ilharreborde, B., Sagittal balance and idiopathic scoliosis: does final sagittal alignment influence outcomes, degeneration rate or failure rate? Eur Spine J, 2018. 27(Suppl 1): p. 48-58. 39. Diebo, B.G., J. Henry, V. Lafage, et al., Sagittal deformities of the spine: factors influencing the outcomes and complications. Eur Spine J, 2015. 24 Suppl 1: p. S3-15. 40. Hasegawa, K., M. Okamoto, S. Hatsushikano, et al., Normative values of spino-pelvic sagittal alignment, balance, age, and health-related quality of life in a cohort of healthy adult subjects. Eur Spine J, 2016. 25(11): p. 3675-3686. 41. Takahashi, S., M. Hoshino, S. Ohyama, et al., Relationship of back muscle and knee extensors with the compensatory mechanism of sagittal alignment in a community-dwelling elderly population. Sci Rep, 2021. 11(1): p. 2179. 42. Savage, J.W. and A.A. Patel, Fixed sagittal plane imbalance. Global Spine J, 2014. 4(4): p. 287-96. 43. Lee, C.S.a.K., S. S., Spino-Pelvic Parameters in Adult Spinal Deformities. J Korean Orthop Assoc., 2016. 51(1): p. 9-29. 44. Barrey, C., P. Roussouly, J.C. Le Huec, et al., Compensatory mechanisms contributing to keep the sagittal balance of the spine. Eur Spine J, 2013. 22 Suppl 6(Suppl 6): p. S834-41. 45. Roussouly, P. and C. Nnadi, Sagittal plane deformity: an overview of interpretation and management. Eur Spine J, 2010. 19(11): p. 1824-36. 46. Kalichman, L., E. Carmeli, and E. Been, The Association between Imaging Parameters of the Paraspinal Muscles, Spinal Degeneration, and Low Back Pain. Biomed Res Int, 2017. 2017: p. 2562957. 47. Ferguson, S.J. and T. Steffen, Biomechanics of the aging spine. Eur Spine J, 2003. 12 Suppl 2(Suppl 2): p. S97-S103. 48. Xia, D.D., S.L. Lin, X.Y. Wang, et al., Effects of shear force on intervertebral disc: an in vivo rabbit study. Eur Spine J, 2015. 24(8): p. 1711-9. 49. Moroney, S.P., A.B. Schultz, J.A. Miller, et al., Load-displacement properties of lower cervical spine motion segments. J Biomech, 1988. 21(9): p. 769-79. 50. McFadden, K.D. and J.R. Taylor, Axial rotation in the lumbar spine and gaping of the zygapophyseal joints. Spine (Phila Pa 1976), 1990. 15(4): p. 295-9. 51. Kang, K.B., Y.J. Kim, N. Muzaffar, et al., Changes of Sagittal Spinopelvic Parameters in Normal Koreans with Age over 50. Asian Spine J, 2010. 4(2): p. 96-101. 52. Schwab, F., B. Ungar, B. Blondel, et al., Scoliosis Research Society-Schwab adult spinal deformity classification: a validation study. Spine (Phila Pa 1976), 2012. 37(12): p. 1077-82. 53. Schwab, F., A. Patel, B. Ungar, et al., Adult spinal deformity-postoperative standing imbalance: how much can you tolerate? An overview of key parameters in assessing alignment and planning corrective surgery. Spine (Phila Pa 1976), 2010. 35(25): p. 2224-31. 54. Inami, S., H. Moridaira, D. Takeuchi, et al., Optimum pelvic incidence minus lumbar lordosis value can be determined by individual pelvic incidence. Eur Spine J, 2016. 25(11): p. 3638-3643. 55. Schwab, F., V. Lafage, A. Patel, et al., Sagittal plane considerations and the pelvis in the adult patient. Spine (Phila Pa 1976), 2009. 34(17): p. 1828-33. 56. Li, Y., Sun, J. & Wang, G., Lumbar lordosis morphology correlates to pelvic incidence and erector spinae muscularity, in Scientific Reports. 2021. 57. Han, X., On statistical measures for data quality evaluation. J Geogr Inf Syst, 2020. 12: p. 178-187. 58. Liow, M.H.L., G.S. Goh, J.L. Chua, et al., Sagittally Balanced Degenerative Spondylolisthesis Patients With Increased Sacral Slope and Greater Lumbar Lordosis Experience Less Back Pain After Short-Segment Lumbar Fusion Surgery. Clin Spine Surg, 2020. 33(5): p. E231-E235. 59. Day, L.M., S. Ramchandran, C.M. Jalai, et al., Thoracolumbar Realignment Surgery Results in Simultaneous Reciprocal Changes in Lower Extremities and Cervical Spine. Spine (Phila Pa 1976), 2017. 42(11): p. 799-807. 60. Chen, I.H., J.T. Chien, and T.C. Yu, Transpedicular wedge osteotomy for correction of thoracolumbar kyphosis in ankylosing spondylitis: experience with 78 patients. Spine (Phila Pa 1976), 2001. 26(16): p. E354-60. 61. Makhni, M.C., J.N. Shillingford, J.L. Laratta, et al., Restoration of Sagittal Balance in Spinal Deformity Surgery. J Korean Neurosurg Soc, 2018. 61(2): p. 167-179. 62. Lee, C.S., S.S. Chung, K.C. Kang, et al., Normal patterns of sagittal alignment of the spine in young adults radiological analysis in a Korean population. Spine (Phila Pa 1976), 2011. 36(25): p. E1648-54. 63. Wang, W.J., F. Liu, Y.W. Zhu, et al., Sagittal alignment of the spine-pelvis-lower extremity axis in patients with severe knee osteoarthritis: A radiographic study. Bone Joint Res, 2016. 5(5): p. 198-205. 64. Jun, H.S., J.H. Kim, J.H. Ahn, et al., The Effect of Lumbar Spinal Muscle on Spinal Sagittal Alignment: Evaluating Muscle Quantity and Quality. Neurosurgery, 2016. 79(6): p. 847-855. 65. Wang, J., Q. Zhang, F. Liu, et al., Predicting the ideal apex of lumbar lordosis based on individual pelvic incidence and inflection point in asymptomatic adults. Front Surg, 2022. 9: p. 912357. 66. Patwardhan, A.G., R.M. Havey, K.P. Meade, et al., A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine (Phila Pa 1976), 1999. 24(10): p. 1003-9. 67. Friis, E.A., P.M. Arnold, and V.K. Goel, Mechanical testing of cervical, thoracolumbar, and lumbar spine implants. Mechanical Testing of Orthopaedic Implants, 2017: p. 161-180. 68. Schwab, F.J., B. Blondel, S. Bess, et al., Radiographical spinopelvic parameters and disability in the setting of adult spinal deformity: a prospective multicenter analysis. Spine (Phila Pa 1976), 2013. 38(13): p. E803-12. 69. Legaye, J. and G. Duval-Beaupere, Sagittal plane alignment of the spine and gravity: a radiological and clinical evaluation. Acta Orthop Belg, 2005. 71(2): p. 213-20. 70. Boulay, C., C. Tardieu, J. Hecquet, et al., Sagittal alignment of spine and pelvis regulated by pelvic incidence: standard values and prediction of lordosis. Eur Spine J, 2006. 15(4): p. 415-22. 71. Xu, L., X. Qin, W. Zhang, et al., Estimation of the Ideal Lumbar Lordosis to Be Restored From Spinal Fusion Surgery: A Predictive Formula for Chinese Population. Spine (Phila Pa 1976), 2015. 40(13): p. 1001-5. 72. Pan, C., G. Wang, X. Wang, et al., Predictive formulae of ideal lumbar lordosis determined by individual pelvic incidence and thoracic kyphosis in asymptomatic adults. J Orthop Sci, 2022. 27(1): p. 101-107. 73. Zuckerman, S.L., M. Cerpa, C.S. Lai, et al., Coronal Alignment in Adult Spinal Deformity Surgery: Definitions, Measurements, Treatment Algorithms, and Impact on Clinical Outcomes. Clin Spine Surg, 2022. 35(5): p. 196-203. 74. Cheung, J.P.Y., The importance of sagittal balance in adult scoliosis surgery. Ann Transl Med, 2020. 8(2): p. 35. 75. Asai, Y., S. Tsutsui, N. Yoshimura, et al., Relationship Between Age-Related Spinopelvic Sagittal Alignment and Low Back Pain in Adults of Population-Based Cohorts: The ROAD Study. J Pain Res, 2022. 15: p. 33-38. 76. Hira, K., K. Nagata, H. Hashizume, et al., Relationship of sagittal spinal alignment with low back pain and physical performance in the general population. Sci Rep, 2021. 11(1): p. 20604. 77. Scheer, J.K., J.A. Tang, J.S. Smith, et al., Cervical spine alignment, sagittal deformity, and clinical implications: a review. J Neurosurg Spine, 2013. 19(2): p. 141-59. 78. Hasegawa, K., M. Okamoto, S. Hatsushikano, et al., Compensation for standing posture by whole-body sagittal alignment in relation to health-related quality of life. Bone Joint J, 2020. 102-B(10): p. 1359-1367. 79. Saimon, Y., A.C. Goh, K. Momose, et al., Correlation between radiographic sagittal alignment, range of motion, muscle strength, and quality of life in adults with spinal deformities. J Phys Ther Sci, 2020. 32(2): p. 140-147. 80. Diebo, B.G., E. Ferrero, R. Lafage, et al., Recruitment of compensatory mechanisms in sagittal spinal malalignment is age and regional deformity dependent: a full-standing axis analysis of key radiographical parameters. Spine (Phila Pa 1976), 2015. 40(9): p. 642-9. 81. Savarese, L.G., R. Menezes-Reis, G.P. Bonugli, et al., Spinopelvic sagittal balance: what does the radiologist need to know? Radiol Bras, 2020. 53(3): p. 175-184. 82. Jia, J., Y. Zhao, and X. Liu, Impact of sagittal imbalance correction on clinical outcomes in patients undergoing MIS-TLIF for LSS. Clin Neurol Neurosurg, 2019. 181: p. 119-126. 83. Diebo, B.G., I. Gammal, Y. Ha, et al., Role of Ethnicity in Alignment Compensation: Propensity Matched Analysis of Differential Compensatory Mechanism Recruitment Patterns for Sagittal Malalignment in 288 ASD Patients From Japan, Korea, and United States. Spine (Phila Pa 1976), 2017. 42(4): p. E234-E240. 84. Lugue, M.K.T., K. Watanabe, A. Yamazaki, et al., Impact of L4/5 Posterior Interbody Fusion With or Without Decompression on Spinopelvic Alignment and Health-related Quality-of-Life Outcomes. Clin Spine Surg, 2020. 33(10): p. E504-E511. 85. Cawley, D.T., M. Takemoto, L. Boissiere, et al., The Impact of Corrective Surgery on Health-Related Quality of Life Subclasses in Adult Scoliosis: Will Degree of Correction Prognosticate Degree of Improvement? Eur Spine J, 2021. 30(7): p. 2033-2039. 86. Ay-Offor, O.D., C.M. Wachukwu, and C.C.B. Onubiyi, Intervertebral disc herniation: prevalence and association with clinical diagnosis. Niger J Med, 2016. 25(2): p. 107-12. 87. Weinstein, J.N., T.D. Tosteson, J.D. Lurie, et al., Surgical versus nonsurgical therapy for lumbar spinal stenosis. N Engl J Med, 2008. 358(8): p. 794-810. 88. He, D., Z.C. Li, T.Y. Zhang, et al., Prevalence of Lumbar Spondylolisthesis in Middle-Aged People in Beijing Community. Orthop Surg, 2021. 13(1): p. 202-206. 89. He, L.C., Y.X. Wang, J.S. Gong, et al., Prevalence and risk factors of lumbar spondylolisthesis in elderly Chinese men and women. Eur Radiol, 2014. 24(2): p. 441-8. 90. Denard, P.J., K.F. Holton, J. Miller, et al., Lumbar spondylolisthesis among elderly men: prevalence, correlates, and progression. Spine (Phila Pa 1976), 2010. 35(10): p. 1072-8. 91. Vogt, M.T., D. Rubin, R.S. Valentin, et al., Lumbar olisthesis and lower back symptoms in elderly white women. The Study of Osteoporotic Fractures. Spine (Phila Pa 1976), 1998. 23(23): p. 2640-7. 92. Roberts, S., C. Gardner, Z. Jiang, et al., Analysis of trends in lumbar disc degeneration using kinematic MRI. Clin Imaging, 2021. 79: p. 136-141. 93. Hanhivaara, J., J.H. Maatta, J. Niinimaki, et al., Lumbosacral transitional vertebrae are associated with lumbar degeneration: retrospective evaluation of 3855 consecutive abdominal CT scans. Eur Radiol, 2020. 30(6): p. 3409-3416. 94. Kim, S.J., T.H. Lee, and S.M. Lim, Prevalence of disc degeneration in asymptomatic korean subjects. Part 1 : lumbar spine. J Korean Neurosurg Soc, 2013. 53(1): p. 31-8. 95. Suthar, P., R. Patel, C. Mehta, et al., MRI evaluation of lumbar disc degenerative disease. J Clin Diagn Res, 2015. 9(4): p. TC04-9. 96. Laouissat, F., A. Sebaaly, M. Gehrchen, et al., Classification of normal sagittal spine alignment: refounding the Roussouly classification. Eur Spine J, 2018. 27(8): p. 2002-2011. 97. Roussouly, P., S. Gollogly, E. Berthonnaud, et al., Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine (Phila Pa 1976), 2005. 30(3): p. 346-53. 98. Chung, N.S., H.D. Lee, and C.H. Jeon, Differences in lumbar segment angle among Roussouly types of global sagittal alignment in asymptomatic adult subjects. Spine Deform, 2020. 8(2): p. 227-232. 99. Zhang, F., K. Zhang, H.J. Tian, et al., Correlation between lumbar intervertebral disc height and lumbar spine sagittal alignment among asymptomatic Asian young adults. J Orthop Surg Res, 2018. 13(1): p. 34. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96181 | - |
dc.description.abstract | 脊椎是人體的主要支撐結構,對健康扮演關鍵角色。儘管全球研究者已對骨盆與腰椎矢狀面排列的關係進行諸多研究,但因種族差異,這些數據並不能直接作為台灣的醫療參考依據。本研究提出三項主要創新:首次針對亞洲族群將骨盆入射角(PI)分為三組且各組人數接近1:1:1的全面性研究、首次確認腰椎關鍵分區位置,以及建立專屬亞洲族群的PI與腰椎前凸相關模型。
本研究包含兩個互補部份。首先,我們對324位無症狀亞洲成年人進行前瞻性分析,檢視腰椎矢狀面排列與PI的關係。其次,我們系統性回顧了四篇超過100位無症狀成年人的大型研究,透過腰椎矢狀排列與骨盆入射角的趨勢性變化,以確定最佳腰椎分區位置。 研究結果顯示PI分組(G1:小於45度;G2:介於45-55度之間;G3:大於55度)與腰椎節段性前凸具有明確相關性。近端前凸值在G1、G2、G3組分別為11.6° ± 6.7°、16° ± 7.7°與20.7° ± 8°,而遠端前凸值則分別為30.7° ± 8.1°、34.9° ± 7.9°與37° ± 9.3°。此外,我們發現L3-L4與L4-L5之間存在關鍵生物力學轉換區,並證實了亞洲族群特有的腰椎前凸分布模式。這些發現為脊椎手術之術前規劃、病理狀態之評估,以及族群特異性治療策略的發展提供重要參考依據。本研究結果對於理解亞洲族群特有的脊椎排列模式具有重要的臨床參考價值。 | zh_TW |
dc.description.abstract | The spine is the main structural support of the human body and plays a crucial role in overall health Although researchers worldwide have studied the relationship between the pelvis and lumbar sagittal alignment, ethnic differences prevent their data from being used directly as a medical reference in Taiwan. This study introduced three major innovations: the first comprehensive stratification of pelvic incidence (PI) into three evenly distributed groups within Asian populations, the novel identification of critical partition zones in the lumbar spine, and the development of an ethnicity-specific correlation model between PI and lumbar lordosis.
This study comprises two complementary parts. First, we conducted a prospective analysis of 324 asymptomatic Asian adults to examine the relationship between the lumbar sagittal alignment and PI. Second, we performed a systematic review incorporating four large-scale studies with over 100 participants each through a trend analysis of PI and lumbar lordosis to determine the optimal lumbar spine partition zones. Our analysis revealed distinct correlations between PI groups (G1, <45°; G2, 45-55°; G3, >55°) and segmental lordosis patterns. The proximal lordosis values were 11.6° ± 6.7°, 16° ± 7.7°, and 20.7° ± 8° for G1, G2, and G3, respectively, whereas the distal lordosis values were 30.7° ± 8.1°, 34.9° ± 7.9°, and 37° ± 9.3°, respectively. Furthermore, we identified a critical biomechanical transition zone between L3-L4 and L4-L5, demonstrating unique Asian-specific patterns of lumbar lordosis distribution. These findings provide essential reference values for preoperative planning of spinal surgery, assessment of pathological conditions, and development of population-specific treatment strategies. Our results contribute significantly to the understanding of Asian-specific spinal alignment patterns and offer valuable guidance for clinical practice. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-20T16:07:34Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-11-20T16:07:34Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii Table of Contents v List of Figures vii List of Tables viii List of Abbreviations ix Chapter 1. Quantitative evaluation of correlation between lumbosacral lordosis and pelvic incidence in standing position among asymptomatic Asian adults: a prospective study 1 1.1 Background 1 1.1.1 Research Motivation 1 1.1.2 Introduction of Spine 2 1.1.3 A detailed look of lumbar spine 4 1.1.4 Pelvic Incidence 5 1.1.5 Introduction of Pelvis Parameters 9 1.1.6 Three key indicators of harmonious spinopelvic alignment 12 1.1.7 Influence of Sagittal Malalignment 14 1.1.8 Biomechanical Forces on Vertebra 18 1.1.9 Correlation of Spinal Parameter 19 1.1.10 Objective of This Research 20 1.2 Materials and Methods 23 1.3 Results 29 1.4 Discussion 39 1.5 Clinical Implications 49 Chapter 2. A Reasonable Partition Zone for Sagittal Alignment Reference of Lumbar Spine Fusion Surgery 52 2.1 Introduction 52 2.2 Materials and Methods 55 2.3 Results 59 2.4 Discussion 67 Conclusion 74 References 75 | - |
dc.language.iso | en | - |
dc.title | 無症狀亞洲成年人腰椎矢狀排列及骨盆入射角的定量評估 | zh_TW |
dc.title | Quantitative Evaluation of Lumbar Sagittal Alignment and Pelvic Incidence in Asymptomatic Asian Adults | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 博士 | - |
dc.contributor.coadvisor | 楊曙華;葉光庭 | zh_TW |
dc.contributor.coadvisor | Shu-Hua Yang;Kuang-Ting Yeh | en |
dc.contributor.oralexamcommittee | 謝建興;施博仁 | zh_TW |
dc.contributor.oralexamcommittee | Jiann-Shing Shieh;Po-Jen Shih | en |
dc.subject.keyword | 矢狀排列,無症狀成年人,骨盆入射角,腰椎型態,劃分區間, | zh_TW |
dc.subject.keyword | sagittal alignment,asymptomatic adults,pelvic incidence,lumbar morphology,partition zone, | en |
dc.relation.page | 82 | - |
dc.identifier.doi | 10.6342/NTU202404556 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-11-08 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 醫學工程學系 | - |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 目前未授權公開取用 | 2.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。