請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96174完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鍾嘉綾 | zh_TW |
| dc.contributor.advisor | Chia-Lin Chung | en |
| dc.contributor.author | 莊唯廷 | zh_TW |
| dc.contributor.author | Wei-Ting Chuang | en |
| dc.date.accessioned | 2024-11-19T16:10:03Z | - |
| dc.date.available | 2024-11-20 | - |
| dc.date.copyright | 2024-11-19 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-11-12 | - |
| dc.identifier.citation | Aćimović, S. G., Zeng, Q., McGhee, G. C., Sundin, G. W., and Wise, J. C. 2015. Control of fire blight (Erwinia amylovora) on apple trees with trunk-injected plant resistance inducers and antibiotics and assessment of induction of pathogenesis-related protein genes. Frontiers in Plant Science 6:16.
Aćimović, S. G., VanWoerkom, A. H., Reeb, P. D., Vandervoort, C., Garavaglia, T., Cregg, B. M., and Wise, J. C. 2014. Spatial and temporal distribution of trunk‐injected imidacloprid in apple tree canopies. Pest Management Science 70:1751-1760. Akesson, N. B., and Yates, W. E. 1964. Problems relating to application of agricultural chemicals and resulting drift residues. Annual Review of Entomology 9:285-318. Aluthmuhandiram, J. V., Chethana, K., Zhang, W., Peng, J., Zhao, E., Li, X. H., N, S., and Yan, J. 2021. Impact of temperature variation on the phytotoxic secondary metabolite production by Lasiodiplodia theobromae. Journal of Phytopathology 169:716-723. Amiri, A., Bussey, K. E., Riley, M. B., and Schnabel, G. 2008. Propiconazole inhibits Armillaria tabescens in vitro and translocates into peach roots following trunk infusion. Plant Disease 92:1293-1298. Amponsah, N., Jones, E., Ridgway, H., and Jaspers, M. 2008. Production of Botryosphaeria species conidia using grapevine green shoots. New Zealand Plant Protection 61:301-305. Archer, L., Crane, J. H., and Albrecht, U. 2022. Trunk injection as a tool to deliver plant protection materials—An overview of basic principles and practical considerations. Horticulturae 8:552. Avenot, H. F., Vega, D., Arpaia, M. L., and Michailides, T. J. 2023. Prevalence, identity, pathogenicity, and infection dynamics of Botryosphaeriaceae causing avocado branch canker in California. Phytopathology 113:1034-1047. Begoude, B. D., Slippers, B., Wingfield, M. J., and Roux, J. 2010. Botryosphaeriaceae associated with Terminalia catappa in Cameroon, South Africa and Madagascar. Mycological Progress 9:101-123. Berger, C., and Laurent, F. 2019. Trunk injection of plant protection products to protect trees from pests and diseases. Crop Protection 124:104831. Bock, C. H., and Hotchkiss, M. W. 2021. Effect of tractor speed and spray application volume on spray coverage at different heights in the canopy of tall pecan trees. Plant Disease 105:2509-2520. Cardoso, J., Vidal, J., Santos, A. d., Freire, F., and Viana, F. 2002. First report of black branch dieback of cashew caused by Lasiodiplodia theobromae in Brazil. Plant Disease 86:558-558. Chen, F., Zheng, X., Zhao, X., and Chen, F. 2019. First report of Lasiodiplodia theobromae causing stem canker of Fraxinus americana. Plant Disease 103:3276. Chen, Z., Bertin, R., and Froldi, G. 2013. EC50 estimation of antioxidant activity in DPPH assay using several statistical programs. Food Chemistry 138:414-420. Christiano, R., Reilly, C., Miller, W., and Scherm, H. 2010. Oxytetracycline dynamics on peach leaves in relation to temperature, sunlight, and simulated rain. Plant Disease 94:1213-1218. Chuang, W. C., Chen, J. W., Huang, C. H., Shyu, T. H., and Lin, S. K. 2019. FaPEx® multipesticide residues extraction kit for minimizing sample preparation time in agricultural produce. Journal of AOAC International 1026: 1864-1876. da Silva Pereira, A. V., Martins, R. B., Michereff, S. J., Da Silva, M. B., and Câmara, M. P. S. 2012. Sensitivity of Lasiodiplodia theobromae from Brazilian papaya orchards to MBC and DMI fungicides. European Journal of Plant Pathology 132:489-498. Dai, D., Wang, H., Wang, Y., and Zhang, C. 2017. Management of Chinese hickory (Carya cathayensis) trunk canker through effective fungicide application programs and baseline sensitivity of Botryosphaeria dothidea to trifloxystrobin. Australasian Plant Pathology 46:75-82. Dal Maso, E., Cocking, J., and Montecchio, L. 2014. Efficacy tests on commercial fungicides against ash dieback in vitro and by trunk injection. Urban Forestry and Urban Greening 13:697-703. de Silva, N. I., Phillips, A. J., Liu, J.-K., Lumyong, S., and Hyde, K. D. 2019. Phylogeny and morphology of Lasiodiplodia species associated with Magnolia forest plants. Scientific Reports 9:14355. Dietz, J., and Winter, C. 2019. Recently introduced powdery mildew fungicides. Modern Crop Protection Compounds 2:933-947. Doick, K. J., Peace, A., and Hutchings, T. R. 2014. The role of one large greenspace in mitigating London's nocturnal urban heat island. Science of the Total Environment 493:662-671. Dong, X. L., Cheng, Z. Z., Leng, W. F., Li, B. H., Xu, X. M., Lian, S., and Wang, C. X. 2021. Progression of symptoms caused by Botryosphaeria dothidea on apple branches. Phytopathology 111:1551-1559. Doyle, J. J., and Doyle, J. L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical bulletin. 19:11-15. Dwiastuti, M., and Aji, T. 2021. Citrus stem rot disease (Lasiodiplodia theobromae (Pat.) Griff. & Maubl) problem and their control strategy in Indonesia. Page 012030 in: IOP Conference Series: Earth and Environmental Science IOP Publishing. El-Ganainy, S. M., Ismail, A. M., Iqbal, Z., Elshewy, E. S., Alhudaib, K. A., Almaghasla, M. I., and Magistà, D. 2022. Diversity among Lasiodiplodia species causing dieback, root rot and leaf spot on fruit trees in Egypt, and a description of Lasiodiplodia newvalleyensis sp. nov. Journal of Fungi 8:1203. Fan, K., Wang, J., Fu, L., Zhang, G. F., Wu, H. B., Feng, C., and Qu, J. L. 2019. Baseline sensitivity and control efficacy of pyraclostrobin against Botryosphaeria dothidea isolates in China. Plant Disease 103:1458-1463. Fan, K., Fu, L., Liu, H., Qu, J., Zhang, G., Zhang, S., and Qiao, K. 2022. Reduced sensitivity to tebuconazole in Botryosphaeria dothidea isolates collected from major apple production areas of China. Plant Disease 106:2817-2822. Felsot, A. S., Unsworth, J. B., Linders, J. B., Roberts, G., Rautman, D., Harris, C., and Carazo, E. 2010. Agrochemical spray drift; assessment and mitigation—A review. Journal of Environmental Science and Health Part B 46:1-23. Fernández-Ortuño, D., Torés, J. A., De Vicente, A., and Pérez-García, A. 2010. The QoI fungicides, the rise and fall of a successful class of agricultural fungicides. InTech Rijeka, Croatia. Hattori, Y., Ando, Y., Sasaki, A., Uechi, N., and Nakashima, C. 2021. Taxonomical study of noteworthy species of Botryosphaeria in Japan. Mycobiology 49:122-132. He, L. M., Cui, K. D., Ma, D. C., Shen, R. P., Huang, X. P., Jiang, J. G., Mu, W., and Liu, F. 2017. Activity, translocation, and persistence of isopyrazam for controlling cucumber powdery mildew. Plant Disease 101:1139-1144. Heo, Y. J., Kwak, S. Y., Sarker, A., Lee, S. H., Choi, J. W., Oh, J. E., Abdulkareem, L., and Kim, J. E. 2023. Uptake and translocation of fungicide picarbutrazox in greenhouse cabbage: the significance of translocation factors and home processing. Environmental Science and Pollution Research 30:40919-40930. Hilbert, D. R., Roman, L. A., Koeser, A. K., Vogt, J., and van Doorn, N. S. 2019. Urban tree mortality: A literature review. Arboriculture & Urban Forestry (AUF) 45:167-200. Hu, J., and Wang, N. 2016. Evaluation of the spatiotemporal dynamics of oxytetracycline and its control effect against citrus Huanglongbing via trunk injection. Phytopathology 106:1495-1503. Huang, K. F., Wen, C. H., Wang, C. T., and Chu, F. H. 2020. Transcriptome and flower genes analysis of Prunus campanulata Maxim. The Journal of Horticultural Science and Biotechnology 95:44-52. Huang, Y., Hung, T., Chen, C., Wu, M., Wang, L., and Liu, T. 2016. The probable pathogens cause canker disease of Bombax ceiba and gummosis of Melia azedarach belong to Botryosphaeria spp. in Taiwan. Journal of Plant Medicine 58:39-44. Huda-Shakirah, A. R., Mohamed Nor, N. M. I., Zakaria, L., Leong, Y.-H., and Mohd, M. H. 2022. Lasiodiplodia theobromae as a causal pathogen of leaf blight, stem canker, and pod rot of Theobroma cacao in Malaysia. Scientific Reports 12:8966. Ju, C., Zhang, H., Yao, S., Dong, S., Cao, D., Wang, F., Fang, H., and Yu, Y. 2019. Uptake, translocation, and subcellular distribution of azoxystrobin in wheat plant (Triticum aestivum L.). Journal of Agricultural and Food Chemistry 67:6691-6699. Kato, S., Matsumoto, A., Yoshimura, K., Katsuki, T., Iwamoto, K., Tsuda, Y., Ishio, S., Nakamura, K., Moriwaki, K., and Shiroishi, T. 2012. Clone identification in Japanese flowering cherry (Prunus subgenus Cerasus) cultivars using nuclear SSR markers. Breeding Science 62:248-255. Klittich, C. J., and Ray, S. L. 2013. Effects of physical properties on the translaminar activity of fungicides. Pesticide Biochemistry and Physiology 107:351-359. Ko, Y., and Sun, S. K. 1992. Peach gummosis disease caused by Botryosphaeria dothidea in Taiwan. Plant Pathology Bulletin 1:70-78. Kozlowski, T. T., and Pallardy, S. G. 1996. Physiology of woody plants. Elsevier. Kubicki, M., Lamshöft, M., Lagojda, A., and Spiteller, M. 2019. Metabolism and spatial distribution of metalaxyl in tomato plants grown under hydroponic conditions. Chemosphere 218:36-41. Kulman, H. M. 1964. Defects in black cherry caused by barkbeetles and Agromizid cambium miners. Forest Science, 10: 258-266. Liao, T. Z., Chen, Y. H., Tsai, J. N., Chao, C., Huang, T. P., Hong, C. F., Wu, Z. C., Tsai, I. J., Lee, H. H., and Klopfenstein, N. B. 2023. Translocation of fungicides and their efficacy in controlling Phellinus noxius, the cause of Brown root rot disease. Plant Disease 107:2039-2053. Lee, H. K., Jeong, Y. H., and Han, K. H. 1982. Persistence of IBP and isoprothiolane in rice plant. Korean Journal of Environmental Agriculture 1:93-98. Li, Z., Wang, Y. T., Gao, L., Wang, F., Ye, J. L., and Li, G. H. 2014. Biochemical changes and defence responses during the development of peach gummosis caused by Lasiodiplodia theobromae. European Journal of Plant Pathology 138:195-207. Liu, J., Zhang, L. Y., Wang, H. Y., Liu, N., Lian, S., Xu, X. M., and Li, B. H. 2022. The effect of temperature and moisture on colonization of apple fruit and branches by Botryosphaeria dothidea. Phytopathology 112:1698-1709. Ma, Z., Morgan, D. P., and Michailides, T. J. 2001. Effects of water stress on Botryosphaeria blight of pistachio caused by Botryosphaeria dothidea. Plant Disease 85:745-749. Marsberg, A., Kemler, M., Jami, F., Nagel, J. H., Postma‐Smidt, A., Naidoo, S., Wingfield, M. J., Crous, P. W., Spatafora, J. W., and Hesse, C. N. 2017. Botryosphaeria dothidea: a latent pathogen of global importance to woody plant health. Molecular Plant Pathology 18:477-488. Mohamed, H. I., El-Beltagi, H. S., Aly, A. A., and Latif, H. H. 2018. The role of systemic and non-systemic fungicides on the physiological and biochemical parameters in plant: implications for defense responses. FEB Fres Environ Bull 27:8585. Mullen, J., Gilliam, C., Hagan, A., and Morgan-Jones, G. 1991. Canker of dogwood caused by Lasiodiplodia theobromae, a disease influenced by drought stress or cultivar selection. Plant Disease 75:886-889. Müller, F., and Jiang, S. 1990. Uptake, distribution and metabolism of ¹⁴C-labelled carbendazim in Gossypium hirsutum. Journal of Plant Diseases and Protection:216-229. Mushtaq, R., Jan, S., Sharma, M., and Raja, R. 2022. Gummosis of stone fruit. Pages 581-596 in: Biodiversity, Conservation and Sustainability in Asia: Volume 2: Prospects and Challenges in South and Middle Asia. Springer. Ni, H., Liou, R., Hung, T., Chen, R., and Yang, H. 2010. First report of fruit rot disease of mango caused by Botryosphaeria dothidea and Neofusicoccum mangiferae in Taiwan. Plant Disease 94:128-128. Nowak, D. J., Hirabayashi, S., Bodine, A., and Greenfield, E. 2014. Tree and forest effects on air quality and human health in the United States. Environmental Pollution 193:119-129. Ocampo-Padilla, C., Malonzo, M. A. C., Grospe, R. A. F., Bagsic, J. T. A., Nozawa, S., Tsurumi, Y., and Watanabe, K. 2024. Lasiodiplodia species isolated from Theobroma cacao in the Philippines and their pathogenicity. Journal of General Plant Pathology 90: 254-266. Ojo, I., Ampatzidis, Y., Neto, A. d. O. C., Bayabil, H. K., Schueller, J. K., and Batuman, O. 2024. The development and evolution of trunk injection mechanisms-a review. Biosystems Engineering 240:123-141. Olien, W. C., and Bukovac, M. J. 1982. Ethephon-induced gummosis in sour cherry (Prunus cerasus L.) I. Effect on xylem function and shoot water status. Plant Physiology 70(2): 547-555. Parmar, K. D., Chaudhary, N. N., Kalasariya, R. L., Chawla, S., Thakor, S. C., Patel, C. J., Patel, D. S., Akbari, L. F., and Kumawat, G. L. 2024. Dissipation kinetics and risk assessment of residues of combination product of two fungicides, fluxapyroxad, and pyraclostrobin in cumin. Food Additives and Contaminants: Part A:1-14. Pincetl, S., Gillespie, T., Pataki, D. E., Saatchi, S., and Saphores, J.-D. 2013. Urban tree planting programs, function or fashion? Los Angeles and urban tree planting campaigns. GeoJournal 78:475-493. Qiu, Y., Steel, C., Ash, G., and Savocchia, S. 2014. Effects of temperature and water stress on the virulence of Botryosphaeriaceae spp. causing dieback of grapevines and their predicted distribution using CLIMEX in Australia. Pages 171-182 in: XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014): IV 1115. Quimbita-Reyes, A. M., Cabrera-Asencio, I., Serrato-Diaz, L. M., and Rivera-Vargas, L. I. 2023. First report of Lasiodiplodia mahajangana causing canker of mango (Mangifera indica) in Puerto Rico. Plant Disease 107:554. Reichenberger, S., Bach, M., Skitschak, A., and Frede, H.-G. 2007. Mitigation strategies to reduce pesticide inputs into ground-and surface water and their effectiveness; a review. Science of the Total Environment 384:1-35. Remolif, G., Guarnaccia, V., and Spadaro, D. 2024. First report of nut rot caused by Botryosphaeria dothidea on almond in Italy. Plant Disease: https://doi.org/10.1094/PDIS-07-23-1260-SR Sachs, R., Nyland, G., Hackett, W., Coffelt, J., Debie, J., and Giannini, G. 1977. Pressurized injection of aqueous solutions into tree trunks. Scientia Horticulturae 6:297-310. Sanchez-Zamora, M., and Fernandez-Escobar, R. 2004. Uptake and distribution of trunk injections in conifers. Journal of Arboriculture 30:73-79. Saniewski, M., Ueda, J., Miyamoto, K., Horbowicz, M., and Puchalski, J. 2006. Hormonal control of gummosis in Rosaceae. Journal of Fruit and Ornamental Plant Research 14: 137. Sharma, S., Nayak, R. K., and Singh, J. 2023. Insect pests and diseases of temperate fruits and their management. Pests and Disease Management of Horticultural Crops: 41-62. Simko, I., and Piepho, H.-P. 2012. The area under the disease progress stairs: calculation, advantage, and application. Phytopathology 102:381-389. Slippers, B., and Wingfield, M. J. 2007. Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biology Reviews 21:90-106. Solel, Z., Schooley, J. M., and Edgington, L. V. 1973. Uptake and translocation of benomyl and carbendazim (methyl benzimidazol‐2‐yl carbamate) in the symplast. Pesticide Science 4:713-718. Stenström, E., and Arvidsson, B. 2001. Fungicidal control of Lophodermium seditiosum on Pinus sylvestris seedlings in Swedish forest nurseries. Scandinavian Journal of Forest Research 16:147-154. Sugawara, H., Shimizu, S., Takahashi, H., Hagiwara, S., Narita, K. i., Mikami, T., and Hirano, T. 2016. Thermal influence of a large green space on a hot urban environment. Journal of Environmental Quality 45:125-133. Sumalatha, N., Suresh, V., and Kiran, G. 2023. A review on mango gummosis incited by Lasiodiplodia theobromae. International Journal of Environment and Climate Change 13:2317-2330. Tanis, S. R., Cregg, B. M., Mota‐Sanchez, D., McCullough, D. G., and Poland, T. M. 2012. Spatial and temporal distribution of trunk‐injected 14C‐imidacloprid in Fraxinus trees. Pest Management Science 68:529-536. Trkulja, N. R., Milosavljević, A. G., Mitrović, M. S., Jović, J. B., Toševski, I. T., Khan, M. F., and Secor, G. A. 2017. Molecular and experimental evidence of multi-resistance of Cercospora beticola field populations to MBC, DMI and QoI fungicides. European Journal of Plant Pathology 149: 895-910. Tsai, J. N., Ann, P. J., and Hsieh, W. H. 2005. Evaluation of fungicides for suppression of three major wood-decay fungi Phellinus noxius, Rosellinia necatrix and Ganoderma australe. Plant Pathology Bulletin 14:115-124. Turco, E., Marianelli, L., Vizzuso, C., Ragazzi, A., Gini, R., Selleri, B., and Tucci, R. 2006. First report of Botryosphaeria dothidea on sycamore, red oak, and English oak in northwestern Italy. Plant Disease 90:1106-1106. Úrbez-Torres, J., Battany, M., Bettiga, L., Gispert, C., McGourty, G., Roncoroni, J., Smith, R., Verdegaal, P., and Gubler, W. 2010. Botryosphaeriaceae species spore-trapping studies in California vineyards. Plant Disease 94:717-724. Wang, L., Tu, H., Hou, H., Zhou, Z., Yuan, H., Luo, C., and Gu, Q. 2022. Occurrence and detection of carbendazim resistance in Botryosphaeria dothidea from apple orchards in China. Plant Disease 106:207-214 Wang, T. S., Tung, G. S., Yang, E. C., and Yang, M. M. 2011. A preliminary study if controlling Quadrastichus erythrinae Kim. on heritage coral trees with trunk injection. Formosan Entomologist 31:281-286. Wang, W., and Song, X. 2021. First report of Lasiodiplodia theobromae and L. pseudotheobromae causing canker disease of sacha inchi (Plukenetia volubilis) in Hainan, China. Plant Disease 105:3757. Wang, Y., Lin, S., Zhao, L., Sun, X., He, W., Zhang, Y., and Dai, Y. C. 2019. Lasiodiplodia spp. associated with Aquilaria crassna in Laos. Mycological Progress 18:683-701. Wang, Y., Song, X., Xie, S., Geng, Y., Xu, C., Yin, X., Zang, R., Guo, L., Zhang, M., and Guo, Y. 2024. Diversity of Lasiodiplodia species associated with canker and dieback in fruit trees in the Henan and Shandong Provinces of China. Plant Disease 108:563-575. Wise, J., VanWoerkom, A., Acimovic, S., Sundin, G., Cregg, B., and Vandervoort, C. 2014. Trunk injection: a discriminating delivering system for horticulture crop IPM. Entomology, Ornithology and Herpetology 3:1. Wu, N., Dissanayake, A. J., Chethana, K. T., Hyde, K. D., and Liu, J. K. 2021. Morpho-phylogenetic evidence reveals Lasiodiplodia chiangraiensis sp. nov. (Botryosphaeriaceae) associated with woody hosts in northern Thailand. Phytotaxa 508:142–154. Wolf, K. L., Lam, S. T., McKeen, J. K., Richardson, G. R., van Den Bosch, M., and Bardekjian, A. C. 2020. Urban trees and human health: A scoping review. International Journal of Environmental Research and Public Health 17:4371. Xu, L., Lan, X., Chen, Y., He, R., Wang, M., Zhang, Y., Liang, X., and Yang, Y. 2024. Identity, pathogenicity and genetic diversity of Lasiodiplodia associated with stem-end rot of avocado in China. Plant Disease 208:2630-2644. Xue, D. S., Liu, J., Li, B. H., Xu, X. M., Liu, N., Lian, S., Dong, X. L., and Wang, C. X. 2021. Effect of rainfall and temperature on perithecium production of Botryosphaeria dothidea on cankered apple branches. Phytopathology 111:982-989. Yan, Y., Zhang, Z., Song, Y., Deng, D., and Liu, Z. 2016. First report of Prunus serrulata stem canker caused by Botryosphaeria dothidea in China. Plant Disease 100:858-858. Yang, Y., Dong, G., Wang, M., Xian, X., Wang, J., and Liang, X. 2021. Multifungicide resistance profiles and biocontrol in Lasiodiplodia theobromae from mango fields. Crop Protection 145:105611. Yumita, T., Shoji, A., and Yamamoto, I. 1981. Metabolism of mepronil (Basitac (R)) in rice plants [by tracer technique]. Journal of Pesticide Science (Japan) 6:347-349. Zhang, L., Zhang, Q., Yang, P., Niu, Y., and Niu, W. 2019. First report of gummosis disease of sweet cherry caused by Botryosphaeria dothidea in China. Plant Disease 103:3283-3283. Zhang, R., Wang, H. Y., Xv, H., Wang, J., and Wang, K. Y. 2014. Uptake and transportation behavior of a new fungicidal agent LH-2010A in cucumber plants. Journal of Pesticide Science 39:43-47. Zhang, W., Groenewald, J., Lombard, L., Schumacher, R., Phillips, A., and Crous, P. W. 2021. Evaluating species in Botryosphaeriales. Persoonia-Molecular Phylogeny and Evolution of Fungi 46:63-115. Zwieniecki, M. A., Melcher, P. J., and Michele Holbrook, N. 2001. Hydrogel control of xylem hydraulic resistance in plants. Science 291:1059-1062. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96174 | - |
| dc.description.abstract | 櫻花為薔薇科 (Rosaceae) 李屬 (Prunus) 樹木,具有超過 200 種以上之品種,為臺灣主要之行道樹和園藝景觀樹種。病蟲害、機械傷害、水分逆境皆可能造成櫻花枝幹上的流膠病徵,其中真菌性流膠病為常見病害,罹病處呈現潰瘍流膠、內部木材組織褐化,面臨逆境時可能導致病情加劇,造成枝條枯死甚至全株萎凋死亡。櫻花流膠病的病原菌種類尚未有詳細報導,目前認為與造成其他樹木流膠病或潰瘍病之菌種相同,為葡萄座腔菌科 (Botryosphaeriaceae) 之真菌。本研究針對臺北地區三處罹病櫻花及一處罹患潰瘍病的木棉進行病原菌分離,並以 internal transcribed spacer (ITS)、elongation factor 1-α 及 β-tubulin 序列進行親緣分析鑑定至種,共獲得兩株 Lasiodiplodia chiangraiensis (TP02、TY01),及 Lasiodiplodia macroconidia (TP01)、Lasiodiplodia theobromae (TP03)、Botryosphaeria dothidea (TY02) 各一株。以菌絲塊創傷接種法建立穩定接種系統,將 5 菌株接種於山櫻花苗皆造成流膠病徵,且組織分離可重新獲得病原菌,完成柯霍氏法則。櫻花流膠病並無登記的藥劑防治方法,本研究選用 7 種作用機制之 9 種殺菌劑,於含藥培養基上檢測對 5 菌株菌絲生長之抑制能力,發現貝芬替、百克敏及得克利的抑制效果最佳。殺菌劑在木本植物上之系統移行性資訊向來較為缺乏,本研究使用實驗室已建立之茄苳 (Bischofia javanica) 苗根部浸泡及莖部注射法,檢測藥劑之向上及向下移行性,發現所有藥劑皆有向上移行能力,以滅達樂於根部浸泡法和得克利、普克利於莖部注射法中之向上移行效率最佳;百克敏、得克利和普克利則可檢測出低濃度向下移行。綜合藥劑之敏感性和移行性試驗結果,選用得克利為溫室防治試驗藥劑。將 L. theobromae TP03 和 B. dothidea TY02 接種於山櫻花樹苗上,並以預防性/治療性澆灌、預防性/治療性莖部注射、莖部塗抹等 5 種方式施藥,每週觀察罹病度並計算病害發展階梯下面積,6 週後進行組織分離。預防性注射能顯著降低病害發展階梯下面積和回分率,顯示具有抑制病原菌侵染拓殖的能力,防治效果最佳;莖部塗抹則能降低病害發展階梯下面積,顯示有助於減緩外部病徵,然而回分率結果說明未能抑制內部病原菌之拓殖。 | zh_TW |
| dc.description.abstract | Ornamental cherry trees (Prunus spp., Rosaceae), with more than 200 varieties, are major street and ornamental trees in Taiwan. Pests, mechanical injury, and water stress can cause gummosis on the stem and branches of cherry trees. Among these, fungal gummosis is a common disease, characterized by canker, gum oozing, and internal wood tissue browning. Under stressful environment, the disease will become more severe, causing branches or even the entire plant to wither and die. The pathogens of ornamental cherry gummosis disease are not yet fully investigated, but they are believed to be the fungi belonging to Botryosphaeriaceae family that cause gummosis and canker disease on trees. In this study, pathogens were collected from diseased ornamental cherry trees at three locations and from a cotton tree with canker disease at one location of Taipei. Isolates were identified to the species level by multi-locus phylogenetic analysis using internal transcribed spacer (ITS), elongation factor 1-α, and β-tubulin gene analysis. Two isolates of Lasiodiplodia chiangraiensis (TP02, TY01), as well as one each of Lasiodiplodia macroconidia (TP01), Lasiodiplodia theobromae (TP03), and Botryosphaeria dothidea (TY02), were obtained. A stable inoculation system, wounded inoculation with a mycelial disc, was established. Koch’s postulates were fulfilled for all five isolates: inoculation on Prunus campanulata Maxim seedlings caused gummosis disease symptoms, and the pathogen could be re-isolated from infected tissues. At present, there are no fungicides recommended for ornamental cherry gummosis disease. Nine fungicides with seven modes of action were selected to assess their efficacy in inhibiting the in vitro mycelial growth of the five isolates. The fungicide sensitivity tests showed that carbendazim, pyraclostrobin, and tebuconazole were the most effective. Information on the systemic activity and translocation of fungicides in woody plants has been limited. In this study, previously developed root-tip immersion and stem-injection methods on Bischofia javanica seedling were used to evaluate the acropetal and basipetal translocation ability of fungicides. Translocation tests indicated that all fungicides exhibited acropetal translocation, with metalaxyl by the root-tip immersion method and tebuconazole and propiconazole by the stem-injection method showing the highest acropetal translocation efficiency. Additionally, basipetal translocation of low concentrations of pyraclostrobin, tebuconazole, and propiconazole was detected. Based on the results of fungicide sensitivity and translocation assays, tebuconazole was selected for greenhouse control assay. L. theobromae TP03 and B. dothidea TY02 were inoculated on P. campanulata seedlings, and five treatment methods including preventive/curative drenching, preventive/curative stem injection, and stem painting were tested. Disease severity was rated every week and the area under the disease progress stairs (AUDPS) was calculated. Tissue isolation was conducted six weeks after inoculation. Preventive injection significantly reduced AUDPS and re-isolation rate, indicating its best control efficacy in inhibiting pathogen colonization. Stem painting helped reduce AUDPS, suggesting it alleviated external symptoms, but the re-isolation rate indicated that it did not effectively inhibit internal pathogen colonization. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-19T16:10:03Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-11-19T16:10:03Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審訂書 I
誌謝 II 中文摘要 III Abstract V 目 次 VII 表目次 X 圖目次 XII 附錄目次 XIII 第一章、 前言 1 1.1 都市林簡介 1 1.2 櫻花流膠病 1 1.3 葡萄座腔菌科造成之樹木病害 2 1.4 化學藥劑於樹木病害應用之限制因子 3 1.5 化學藥劑之系統性 4 1.6 樹幹注射 5 1.7 研究動機 6 第二章、 材料與方法 8 2.1 病原菌採集與分離 8 2.2 病原菌鑑定 8 2.3 病原性測定及建立接種系統 9 2.4 殺菌劑敏感性試驗 10 2.5 殺菌劑於木本植物之系統性評估 12 2.5.1 向上移行性測試 (根部浸泡法) 12 2.5.2 向上向下移行性測試 (莖部注射法) 12 2.5.3 殺菌劑之萃取與淨化 13 2.5.4 樣本配製及檢量線製作 13 2.5.5 統計分析 14 2.6 溫室防治試驗 14 第三章、 結果 17 3.1 病原菌採集及鑑定 17 3.2 接種系統建立 17 3.3 殺菌劑敏感性試驗 18 3.4 殺菌劑以根部浸泡法施用後之系統性移行 19 3.5 殺菌劑以莖部注射法施用後之系統性移行 20 3.6 溫室防治試驗 20 3.6.1 AUDPS 21 3.6.2 莖部變色面積比 22 3.6.3 回分率 22 第四章、 討論 24 4.1 病原菌採集及鑑定 24 4.2 防治藥劑篩選 25 4.3 殺菌劑於木本植物之移行性 26 4.4 流膠病防治 28 4.5 樹幹注射 31 4.6 結論 33 第五章、 參考文獻 35 表 43 圖 65 附錄 84 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | Lasiodiplodia | zh_TW |
| dc.subject | 移行性 | zh_TW |
| dc.subject | 殺菌劑系統性 | zh_TW |
| dc.subject | 流膠病 | zh_TW |
| dc.subject | 櫻花 | zh_TW |
| dc.subject | 化學防治 | zh_TW |
| dc.subject | Botryosphaeria | zh_TW |
| dc.subject | 葡萄座腔菌科 | zh_TW |
| dc.subject | translocation | en |
| dc.subject | Botryosphaeriaceae | en |
| dc.subject | Lasiodiplodia | en |
| dc.subject | Botryosphaeria | en |
| dc.subject | chemical control | en |
| dc.subject | ornamental cherry trees | en |
| dc.subject | gummosis disease | en |
| dc.subject | systemic activity of fungicides | en |
| dc.title | 櫻花流膠病藥劑防治之探討 | zh_TW |
| dc.title | Fungicide control of the ornamental cherry gummosis disease | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡志濃;吳孟玲;洪爭坊 | zh_TW |
| dc.contributor.oralexamcommittee | Jyh-Nong Tsai;Meng-Ling Wu;Cheng-Fang Hong | en |
| dc.subject.keyword | 葡萄座腔菌科,Lasiodiplodia,Botryosphaeria,化學防治,櫻花,流膠病,殺菌劑系統性,移行性, | zh_TW |
| dc.subject.keyword | Botryosphaeriaceae,Lasiodiplodia,Botryosphaeria,chemical control,ornamental cherry trees,gummosis disease,systemic activity of fungicides,translocation, | en |
| dc.relation.page | 94 | - |
| dc.identifier.doi | 10.6342/NTU202404570 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-11-12 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 植物醫學碩士學位學程 | - |
| dc.date.embargo-lift | 2029-11-11 | - |
| 顯示於系所單位: | 植物醫學碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 1.92 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
