Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96169
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 鄭光成 | zh_TW |
dc.contributor.advisor | Kuan-Chen Cheng | en |
dc.contributor.author | 林郁芸 | zh_TW |
dc.contributor.author | Yu-Yun Lin | en |
dc.date.accessioned | 2024-11-19T16:08:24Z | - |
dc.date.available | 2024-11-20 | - |
dc.date.copyright | 2024-11-19 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-11-11 | - |
dc.identifier.citation | 美國食品暨藥物管理署網站。 https://www.fda.gov/
食用天然色素衛生標準 (1993)。 https://www.fda.gov.tw/TC/index.aspx 歐盟環境總司網站 (1994)。Directive 94/62/EC and Directive 2018/852 (修訂版)。 https://environment.ec.europa.eu/topics/waste-and-recycling/packaging-waste_en 黃清吟 (2009)。木材燃燒面面觀。林業研究專訊,第16卷,第6期。農業部林業試驗所,臺北市。 李鑫, 羊梦诗, 叶志鹏, 陈亮, 徐灿, & 储修祥(2013). 甘氨酸色氨酸寡肽链的红外光谱的密度泛函研究. 物理学报, 62(15), 156103. 歐盟官方法律文件查詢平台 (2017)。Regulation (EU) 2017/745。 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32017R0745 食品安全衛生管理法 (2019)。 https://www.fda.gov.tw/TC/index.aspx 林欣平 (2017)。細菌性纖維之生產及其於傷口癒創之應用。臺灣大學生物資源暨農學院生物科技研究所博士學位論文,臺北市。 林宛樺 (2020)。以饋料批式法靜置培養 Komagataeibacter xylinus 提升細菌纖維素產量,中國文化大學化學工程與材料工程學系奈米材料碩士班學位論文,臺北市。 蕭翔駿 (2021)。甲酸誘導紫色幹菌之群體感應與其應用於紫色桿菌素生產。臺灣大學生物資源暨農學院食品科技研究所碩士學位論文,臺北市。 蕭蓉禎, & 洪宇酉. (2022). 不同的培養裝置對紫色桿菌素生產的效益評估. Journal of Science and Engineering Technology, 18(1), 15-23. 洪翎 (2023)。以幾丁聚醣修飾之泡沫培養基生產多孔性細菌纖維素作為活性包材之應用。臺灣大學生物資源暨農學院食品科技研究所碩士學位論文,臺北市。 林云心 (2024)。利用木質醋酸菌和基因工程之大腸桿菌共培養生合成多孔性細菌性纖維素/紫色桿菌素複合膜做為水中重金屬吸附之研究。臺灣大學生物資源暨農學院生物科技研究所碩士學位論文,臺北市。 顧子嵐 (2024)。利用共培養木質醋酸菌和基因工程大腸桿菌製備多孔性細菌性纖維素/黑色素複合膜及其重金屬離子吸附功能之研究。臺灣大學生物資源暨農學院生物科技研究所碩士學位論文,臺北市。 Abral, H., Pratama, A. B., Handayani, D., Mahardika, M., Aminah, I., Sandrawati, N., Sugiarti, E., Muslimin, A. N., Sapuan, S., & Ilyas, R. J. I. J. o. P. S. (2021). Antimicrobial edible film prepared from bacterial cellulose nanofibers/starch/chitosan for a food packaging alternative. International Journal of Polymer Science, 1-11. Ahmad, W. A., Venil, C. K., & Aruldass, C. A. (2015). Production of violacein by Chromobacterium violaceum grown in liquid pineapple waste: Current scenario. Beneficial microorganisms in agriculture, aquaculture and other areas, 45-58. Ahmad, W. A., Yusof, N. Z., Nordin, N., Zakaria, Z. A., & Rezali, M. F. J. A. (2012). Production and characterization of violacein by locally isolated Chromobacterium violaceum grown in agricultural wastes. Applied biochemistry and biotechnology, 167, 1220-1234. Almeida, I. F., Pereira, T., Silva, N. H. C. S., Gomes, F. P., Silvestre, A. J. D., Freire, C. S. R., ... & Costa, P. C. (2014). Bacterial cellulose membranes as drug delivery systems: An in vivo skin compatibility study. European Journal of Pharmaceutics and Biopharmaceutics, 86(3), 332-336. Alshehrei, F. (2020). Role of microorganisms in biodegradation of food additive Azo dyes: a review. African Journal of Biotechnology, 19(11), 799-805. Amnuaikit, T., Chusuit, T., Raknam, P., & Boonme, P. (2011). Effects of a cellulose mask synthesized by a bacterium on facial skin characteristics and user satisfaction. Medical Devices: Evidence and Research, 77-81. Andriani, D., Apriyana, A. Y., & Karina, M. (2020). The optimization of bacterial cellulose production and its applications: a review. Cellulose, 27(12), 6747-6766. Antonisamy, P., & Ignacimuthu, S. (2010). Immunomodulatory, analgesic and antipyretic effects of violacein isolated from Chromobacterium violaceum. Phytomedicine, 17(3-4), 300-304. Araújo, I. M., Silva, R. R., Pacheco, G., Lustri, W. R., Tercjak, A., Gutierrez, J., ... & Barud, H. S. (2018). Hydrothermal synthesis of bacterial cellulose–copper oxide nanocomposites and evaluation of their antimicrobial activity. Carbohydrate polymers, 179, 341-349. Aruldass, C. A., Rubiyatno, Venil, C. K., & Ahmad, W. A. (2015). Violet pigment production from liquid pineapple waste by Chromobacterium violaceum UTM5 and evaluation of its bioactivity. RSC Advances, 5(64), 51524-51536. Atkinson, S., Chang, C. Y., Sockett, R. E., Cámara, M., & Williams, P. (2006). Quorum sensing in Yersinia enterocolitica controls swimming and swarming motility. Journal of bacteriology, 188(4), 1451-1461. Atkinson, S., Throup, J. P., Stewart, G. S., & Williams, P. (1999). A hierarchical quorum‐sensing system in Yersinia pseudotuberculosis is involved in the regulation of motility and clumping. Molecular microbiology, 33(6), 1267-1277. Babitha, S. (2009). Microbial pigments. Biotechnology for Agro-Industrial Residues Utilisation: Utilisation of Agro-Residues, 147-162. Baldi, M., Morales, J. A., Hernández, G., Jiménez, M., Alfaro, A., & Barquero-Calvo, E. (2010). Chromobacterium violaceum infection in a free-ranging Howler monkey in Costa Rica. Journal of wildlife diseases, 46(1), 306-310. Barud, H. S., Regiani, T., Marques, R. F., Lustri, W. R., Messaddeq, Y., & Ribeiro, S. J. (2011). Antimicrobial bacterial cellulose‐silver nanoparticles composite membranes. Journal of Nanomaterials, 2011(1), 721631. Bergey, D. H. (1994). Bergey's manual of determinative bacteriology: Lippincott Williams & Wilkins. Cannon, R. E., & Anderson, S. M. (1991). Biogenesis of bacterial cellulose. Critical reviews in microbiology, 17(6), 435-447. Cauz, A. C., Carretero, G. P., Saraiva, G. K., Park, P., Mortara, L., Cuccovia, I. M., ... & Gueiros-Filho, F. J. (2019). Violacein targets the cytoplasmic membrane of bacteria. ACS infectious diseases, 5(4), 539-549. Chantereau, G., Sharma, M., Abednejad, A., Vilela, C., Costa, E. M., Veiga, M., ... & Silvestre, A. J. D. (2020). Bacterial nanocellulose membranes loaded with vitamin B-based ionic liquids for dermal care applications. Journal of Molecular Liquids, 302, 112547. Chatragadda, R., & Dufossé, L. (2021). Ecological and biotechnological aspects of pigmented microbes: A way forward in development of food and pharmaceutical grade pigments. Microorganisms, 9(3), 637. Chawla, P. R., Bajaj, I. B., Survase, S. A., & Singhal, R. S. (2009). Microbial cellulose: fermentative production and applications. Food Technology & Biotechnology, 47(2). Chen, T.-Y., Santoso, S. P., & Lin, S.-P. (2022). Using Formic Acid to Promote Bacterial Cellulose Production and Analysis of Its Material Properties for Food Packaging Applications. Fermentation, 8(11). 608 Chen, X., Yuan, F., Zhang, H., Huang, Y., Yang, J., & Sun, D. (2016). Recent approaches and future prospects of bacterial cellulose-based electroconductive materials. Journal of Materials Science, 51, 5573-5588. Cheng, K. C., Hsiao, H. C., Hou, Y. C., Hsieh, C. W., Hsu, H. Y., Chen, H. Y., & Lin, S. P. (2022). Improvement in violacein production by utilizing formic acid to induce quorum sensing in Chromobacterium violaceum. Antioxidants, 11(5), 849. Choudhury, A. K. R. (2018). Eco-friendly dyes and dyeing. Advanced Materials and Technologies for Environmental, 2, 145-76. Chou, Y. C., Lin, H. W., Wang, C. Y., Hsieh, C. C., Santoso, S. P., Lin, S. P., & Cheng, K. C. (2024). Enhancing Antioxidant Benefits of Kombucha Through Optimized Glucuronic Acid by Selected Symbiotic Fermentation Culture. Antioxidants, 13(11), 1323. Chyizhanska, N., & Beregova, T. (2009). Effect of melanin isolated from Antarctic yeasts on preservation of pig livestock after ablactation. Український антарктичний журнал. Couto, S. R. (2009). Dye removal by immobilised fungi. Biotechnology advances, 27(3), 227-235. Crosse, P. A., Soares, K., Wheeler, J. L., Cooke, K. L., Adin, C. A., O’Kelley, J. J., & Levy, J. K. J. J. o. t. A. A. H. A. (2006). Chromobacterium violaceum infection in two dogs. Journal of the American Animal Hospital Association, 42(2), 154-159. Czaja, W., Romanovicz, D., & Brown, R. M. (2004). Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose, 11, 403-411. Dahlem, C., Chanda, S., Hemmer, J., Schymik, H. S., Kohlstedt, M., Wittmann, C., & Kiemer, A. (2022). Characterization of anti-cancer activities of violacein: Actions on tumor cells and the tumor microenvironment. Frontiers in Oncology, 12, 872223 de Vasconcelos, A. T. R., De Almeida, D. F., Hungria, M., Guimaraes, C. T., Antônio, R. V., Almeida, F. C., ... & Simpson, A. J. G. (2003). The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability. Proceedings of the national academy of sciences of the United States of America, 11660-11665. Dike-Ndudim, J. N., Ugenyi, L. C., & Ndubueze, C. W. (2021). Assessment of antifungal potentials of violacein extract from Chromobacterium violaceum isolated from domestic and recreational water sources in Owerri, Imo State, Nigeria. World Journal of Advanced Research and Reviews, 10(3), 168-172. Dogancı, M. A., Ay Sal, F., Guler, H. I., Katı, H., Ceylan, E., Belduz, A. O., ... & Canakcı, S. (2022). Investigation of potential inhibitor properties of violacein against HIV-1 RT and CoV-2 Spike RBD: ACE-2. World Journal of Microbiology and Biotechnology, 38(9), 161. Durán, N., Castro, G. R., Portela, R. W. D., Fávaro, W. J., Durán, M., Tasic, L., & Nakazato, G. (2022). Violacein and its antifungal activity: comments and potentialities. Letters in applied microbiology, 75(4), 796-803. Eberhard, A., Burlingame, A. L., Eberhard, C., Kenyon, G. L., Nealson, K. H., & Oppenheimer, N. J. (1981). Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry, 20(9), 2444-2449. El-Fouly, M. Z., Sharaf, A. M., Shahin, A. A. M., El-Bialy, H. A., & Omara, A. M. A. (2015). Biosynthesis of pyocyanin pigment by Pseudomonas aeruginosa. Journal of Radiation Research and Applied Sciences, 8(1), 36-48. Fang, M. Y., Zhang, C., Yang, S., Cui, J. Y., Jiang, P. X., Lou, K., ... & Xing, X. H. (2015). High crude violacein production from glucose by Escherichia coli engineered with interactive control of tryptophan pathway and violacein biosynthetic pathway. Microbial cell factories, 14, 1-13. Feng, Y., Zhang, X., Shen, Y., Yoshino, K., & Feng, W. (2012). A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite. Carbohydrate Polymers, 87 (1), 644-649. Flores-Cotera, L. B., Chávez-Cabrera, C., Martínez-Cárdenas, A., Sánchez, S., & García-Flores, O. U. (2021). Deciphering the mechanism by which the yeast Phaffia rhodozyma responds adaptively to environmental, nutritional, and genetic cues. Journal of Industrial Microbiology and Biotechnology, 48(9-10), kuab048. Gao, H., Sun, Q., Han, Z., Li, J., Liao, B., Hu, L., ... & Jin, M. (2020). Comparison of bacterial nanocellulose produced by different strains under static and agitated culture conditions. Carbohydrate polymers, 227, 115323. Gedarawatte, S. T., Ravensdale, J. T., Al-Salami, H., Dykes, G. A., & Coorey, R. (2021). Antimicrobial efficacy of nisin-loaded bacterial cellulose nanocrystals against selected meat spoilage lactic acid bacteria. Carbohydrate Polymers, 251, 117096. Giri, A. V., Anandkumar, N., Muthukumaran, G., & Pennathur, G. (2004). A novel medium for the enhanced cell growth and production of prodigiosin from Serratia marcescens isolated from soil. BMC microbiology, 4, 1-10. Guo, X., Cavka, A., Jönsson, L. J., & Hong, F. (2013). Comparison of methods for detoxification of spruce hydrolysate for bacterial cellulose production. Microbial Cell Factories, 12, 1-14. Im, H., Choi, S. Y., Son, S., & Mitchell, R. J. (2017). Combined application of bacterial predation and violacein to kill polymicrobial pathogenic communities. Scientific Reports, 7(1), 14415. Jiang, P. X., Wang, H. S., Zhang, C., Lou, K., & Xing, X. H. (2010). Reconstruction of the violacein biosynthetic pathway from Duganella sp. B2 in different heterologous hosts. Applied microbiology and biotechnology, 86, 1077-1088. Jin, E. S., Polle, J. E., Lee, H. K., Hyun, S. M., & Chang, M. (2003). Xanthophylls in microalgae: from biosynthesis to biotechnological mass production and application. Journal of microbiology and biotechnology, 13(2), 165-174. Jin, K., Jin, C., & Wu, Y. (2022). Synthetic biology-powered microbial co-culture strategy and application of bacterial cellulose-based composite materials. Carbohydrate Polymers, 283, 119171. Jonas, R., & Farah, L. F. (1998). Production and application of microbial cellulose. Polymer degradation and stability, 59(1-3), 101-106. Joshi, V., Attri, D., Bala, A., & Bhushan, S. (2003). Microbial pigments. Kanelli, M., Mandic, M., Kalakona, M., Vasilakos, S., Kekos, D., Nikodinovic-Runic, J., & Topakas, E. (2018). Microbial production of violacein and process optimization for dyeing polyamide fabrics with acquired antimicrobial properties. Frontiers in microbiology, 9, 1495. Karahan, A. G., Kart, A., AKOĞLU, A., & ÇAKMAKÇı, M. L. (2011). Physicochemical properties of low‐fat soft cheese Turkish Beyaz made with bacterial cellulose as fat mimetic. International journal of dairy technology, 64(4), 502-508. KEGG Pathway. https://www.genome.jp/kegg/pathway.html. Keskin, Z., Urkmez, A. S., & Hames, E. E. (2017). Novel keratin modified bacterial cellulose nanocomposite production and characterization for skin tissue engineering. Materials Science and Engineering: C, 75, 1144-1153. Kothari, V., Sharma, S., & Padia, D. (2017). Recent research advances on Chromobacterium violaceum. Asian Pacific journal of tropical medicine, 10(8), 744-752. Kusuma, A. C., Chou, Y. C., Hsieh, C. C., Santoso, S. P., Go, A. W., Lin, H. T. V., ... & Lin, S. P. (2024). Agar-altered foaming bacterial cellulose with carvacrol for active food packaging applications. Food Packaging and Shelf Life, 42, 101269. Kusuma, A. C. (2023). Carvacrol-Loaded Agar Foaming Bacterial Cellulose for Active Food Packing Applications. Taipei Medical University Master’s Program in Food Safety. Taipei, Taiwan. Lazazzera, B. A. (2000). Quorum sensing and starvation: signals for entry into stationary phase. Current opinion in microbiology, 3(2), 177-182. Leitao, A. F., Faria, M. A., Faustino, A. M., Moreira, R., Mela, P., Loureiro, L., ... & Gama, M. (2016). A Novel Small‐Caliber Bacterial Cellulose Vascular Prosthesis: Production, Characterization, and Preliminary In Vivo Testing. Macromolecular Bioscience, 16(1), 139-150. Lichstein, H. C., & Van De Sand, V. F. (1945). Violacein, an antibiotic pigment produced by Chromobacterium violaceum. The Journal of Infectious Diseases, 76(1), 47-51. Lin, K. W., & Lin, H. Y. (2004). Quality characteristics of chinese‐style meatball containing bacterial cellulose (Nata). Journal of food science, 69(3), SNQ107-SNQ111. Lin, S. P., Hong, L., Hsieh, C. C., Lin, Y. H., Chou, Y. C., Santoso, S. P., ... & Cheng, K. C. (2024). In situ modification of foaming bacterial cellulose with chitosan and its application to active food packaging. International Journal of Biological Macromolecules, 135114. Lin, S. P., Singajaya, S., Lo, T. Y., Santoso, S. P., Hsu, H. Y., & Cheng, K. C. (2023). Evaluation of porous bacterial cellulose produced from foam templating with different additives and its application in 3D cell culture. International Journal of Biological Macromolecules, 234, 123680. Lin, S. P., Kung, H. N., Tsai, Y. S., Tseng, T. N., Hsu, K. D., & Cheng, K. C. (2017). Novel dextran modified bacterial cellulose hydrogel accelerating cutaneous wound healing. Cellulose, 24, 4927-4937. Liu, D. X., Didier, P. J., & Plauche, G. B. (2012). Chromobacterium violaceum infections in 13 non‐human primates. Journal of medical primatology, 41(2), 107-114. Liu, X., Souzandeh, H., Zheng, Y., Xie, Y., Zhong, W. H., & Wang, C. (2017). Soy protein isolate/bacterial cellulose composite membranes for high efficiency particulate air filtration. Composites Science and Technology, 138, 124-133. Liyaskina, E. V., Revin, V. V., Paramonova, E. N., Revina, N. V., & Kolesnikova, S. G. (2018). Bacterial cellulose/alginate nanocomposite for antimicrobial wound dressing. KnE Energy, 202-211. Lizundia, E., & Kundu, D. (2021). Advances in natural biopolymer‐based electrolytes and separators for battery applications. Advanced Functional Materials, 31(3), 2005646. Lu, L., Zhao, M., Liang, S. C., Zhao, L. Y., Li, D. B., & Zhang, B. B. (2009). Production and synthetic dyes decolourization capacity of a recombinant laccase from Pichia pastoris. Journal of applied microbiology, 107(4), 1149-1156. Lyon, G. J., & Muir, T. W. (2003). Chemical signaling among bacteria and its inhibition. Chemistry & biology, 10(11), 1007-1021. Mantzouridou, F., & Tsimidou, M. Z. (2008). Lycopene formation in Blakeslea trispora. Chemical aspects of a bioprocess. Trends in food science & technology, 19(7), 363-371. Susilo, M. H. (2024). The sequential co-culture of Komagataeibacter xylinus and Lactococcus lactis on antimicrobial nisin/foaming bacterial cellulose composite production and its material properties analysis. National Taiwan University College of Bioresources and Agriculture Institute of Biotechnology Master’s Thesis. Taipei, Taiwan. Martin, A. M., Lu, C., & Patel, T. R. (1993). Growth parameters for the yeast Rhodotorula rubra grown in peat extracts. Journal of fermentation and bioengineering, 76(4), 321-325. Meyer, P. S., & Du Preez, J. C. (1994). Astaxanthin production by a Phaffia rhodozyma mutant on grape juice. World Journal of Microbiology and Biotechnology, 10, 178-183. Mirtalebi, S. S., Almasi, H., & Khaledabad, M. A. (2019). Physical, morphological, antimicrobial and release properties of novel MgO-bacterial cellulose nanohybrids prepared by in-situ and ex-situ methods. International journal of biological macromolecules, 128, 848-857 Moniri, M., Boroumand Moghaddam, A., Azizi, S., Abdul Rahim, R., Bin Ariff, A., Zuhainis Saad, W., ... & Mohamad, R. (2017). Production and status of bacterial cellulose in biomedical engineering. Nanomaterials, 7(9), 257. Morais, E. S., Silva, N. H., Sintra, T. E., Santos, S. A., Neves, B. M., Almeida, I. F., ... & Freire, C. S. (2019). Anti-inflammatory and antioxidant nanostructured cellulose membranes loaded with phenolic-based ionic liquids for cutaneous application. Carbohydrate polymers, 206, 187-197. Moritz, S., Wiegand, C., Wesarg, F., Hessler, N., Müller, F. A., Kralisch, D., ... & Fischer, D. (2014). Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine. International journal of pharmaceutics, 471(1-2), 45-55. Nakamura, Y., Asada, C., & Sawada, T. (2003). Production of antibacterial violet pigment by psychrotropic bacterium RT102 strain. Biotechnology and Bioprocess Engineering, 8, 37-40. Nandiyanto, A. B. D., Oktiani, R., & Ragadhita, R. (2019). How to read and interpret FTIR spectroscope of organic material. Indonesian Journal of Science and Technology, 4(1), 97-118. Ng, W. L., & Bassler, B. L. (2009). Bacterial quorum-sensing network architectures. Annual review of genetics, 43(1), 197-222. Numata, Y., Mazzarino, L., & Borsali, R. (2015). A slow-release system of bacterial cellulose gel and nanoparticles for hydrophobic active ingredients. International journal of pharmaceutics, 486(1-2), 217-225. Nurazzi, N., Asyraf, M. R. M., Rayung, M., Norrrahim, M. N. F., Shazleen, S. S., Rani, M. S. A., ... & Abdan, K. (2021). Thermogravimetric analysis properties of cellulosic natural fiber polymer composites: A review on influence of chemical treatments. Polymers, 13(16), 2710. O’Neill, C., Hawkes, F. R., Hawkes, D. L., Lourenço, N. D., Pinheiro, H. M., & Delée, W. (1999). Colour in textile effluents–sources, measurement, discharge consents and simulation: a review. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 74(11), 1009-1018. Pacheco, G., de Mello, C. V., Chiari‐Andréo, B. G., Isaac, V. L. B., Ribeiro, S. J. L., Pecoraro, É., & Trovatti, E. (2018). Bacterial cellulose skin masks—Properties and sensory tests. Journal of cosmetic dermatology, 17(5), 840-847. Padrao, J., Gonçalves, S., Silva, J. P., Sencadas, V., Lanceros-Méndez, S., Pinheiro, A. C., ... & Dourado, F. (2016). Bacterial cellulose-lactoferrin as an antimicrobial edible packaging. Food hydrocolloids, 58, 126-140. Paximada, P., Tsouko, E., Kopsahelis, N., Koutinas, A. A., & Mandala, I. (2016). Bacterial cellulose as stabilizer of o/w emulsions. Food Hydrocolloids, 53, 225-232. Pemberton, J. M., Vincent, K. M., & Penfold, R. J. (1991). Cloning and heterologous expression of the violacein biosynthesis gene cluster from Chromobacterium violaceum. Current Microbiology, 22, 355-358. Perugini, P., Bleve, M., Redondi, R., Cortinovis, F., & Colpani, A. (2020). In vivo evaluation of the effectiveness of biocellulose facial masks as active delivery systems to skin. Journal of Cosmetic Dermatology, 19(3), 725-735. PubMed website. https://pubmed.ncbi.nlm.nih.gov/. Puskas, A. G. N. E. S., Greenberg, E. Á., Kaplan, S. A. M. U. E. L., & Schaefer, A. Á. (1997). A quorum-sensing system in the free-living photosynthetic bacterium Rhodobacter sphaeroides. Journal of bacteriology, 179(23), 7530-7537. Qin, Z., Wang, X., Gao, S., Li, D., & Zhou, J. (2023). Production of natural pigments using microorganisms. Journal of Agricultural and Food Chemistry, 71(24), 9243-9254. Rettori, D., & Durán, N. (1998). Production, extraction and purificationof violacein: an antibiotic pigment producedby Chromobacterium violaceum. World Journal of Microbiology and Biotechnology, 14, 685-688. Rodrigues, A. L., Trachtmann, N., Becker, J., Lohanatha, A. F., Blotenberg, J., Bolten, C. J., ... & Wittmann, C. (2013). Systems metabolic engineering of Escherichia coli for production of the antitumor drugs violacein and deoxyviolacein. Metabolic engineering, 20, 29-41. Ross, P., Mayer, R., & Benziman, M. (1991). Cellulose biosynthesis and function in bacteria. Microbiological reviews, 55(1), 35-58. Sai, H., Fu, R., Xing, L., Xiang, J., Li, Z., Li, F., & Zhang, T. (2015). Surface modification of bacterial cellulose aerogels’ web-like skeleton for oil/water separation. ACS applied materials & interfaces, 7(13), 7373-7381. Sajjad, W., Din, G., Rafiq, M., Iqbal, A., Khan, S., Zada, S., ... & Kang, S. (2020). Pigment production by cold-adapted bacteria and fungi: colorful tale of cryosphere with wide range applications. Extremophiles, 24, 447-473. Shao, W., Liu, H., Liu, X., Wang, S., & Zhang, R. (2015). Anti-bacterial performances and biocompatibility of bacterial cellulose/graphene oxide composites. Rsc Advances, 5(7), 4795-4803. Shao, W., Liu, H., Wang, S., Wu, J., Huang, M., Min, H., & Liu, X. (2016). Controlled release and antibacterial activity of tetracycline hydrochloride-loaded bacterial cellulose composite membranes. Carbohydrate polymers, 145, 114-120. Shen, R., Wang, H., Wu, K., Gao, J., & Li, J. (2021). Characterization and antimicrobial properties of ferulic acid grafted self‐assembled bacterial cellulose‐chitosan membranes. Journal of Applied Polymer Science, 138(33), 50824. Shezad, O., Khan, S., Khan, T., & Park, J. K. (2010). Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohydrate Polymers, 82(1), 173-180. Shoda, M., & Sugano, Y. (2005). Recent advances in bacterial cellulose production. Biotechnology and Bioprocess Engineering, 10, 1-8. Silbir, S., & Goksungur, Y. (2019). Natural red pigment production by Monascus purpureus in submerged fermentation systems using a food industry waste: Brewer’s spent grain. Foods, 8(5), 161. Singajaya, S. (2022). Production of porous cellulose from foaming medium and its material property analysis. National Taiwan University College of Bioresources and Agriculture Institute of Biotechnology Master’s Thesis. Taipei, Taiwan. Sneath, P. H. A., Singh, R. B., Whelan, J. P. F., & Edwards, D. (1953). Fatal infection by Chromobacterium violaceum. The Lancet, 262(6780), 276-277. Sánchez, C., Braña, A. F., Méndez, C., & Salas, J. A. (2006). Reevaluation of the violacein biosynthetic pathway and its relationship to indolocarbazole biosynthesis. Chembiochem, 7(8), 1231-1240. Stasiak, N., Kukula-Koch, W., & Glowniak, K. (2014). Modern industrial and pharmacological applications of indigo dye and its derivatives-a review. Acta Poloniae Pharmaceutica, 71(71), 215-221. Subramaniam, S., Ravi, V., & Sivasubramanian, A. (2014). Synergistic antimicrobial profiling of violacein with commercial antibiotics against pathogenic micro-organisms. Pharmaceutical biology, 52(1), 86-90. Sun, H., Zhao, D., Xiong, B., Zhang, C., & Bi, C. (2016). Engineering Corynebacterium glutamicum for violacein hyper production. Microbial cell Factories, 15, 1-9. Suryawanshi, R. K., Patil, C. D., Borase, H. P., Narkhede, C. P., Stevenson, A., Hallsworth, J. E., & Patil, S. V. (2015). Towards an understanding of bacterial metabolites prodigiosin and violacein and their potential for use in commercial sunscreens. International journal of cosmetic science, 37(1), 98-107. Swingler, S., Gupta, A., Gibson, H., Kowalczuk, M., Heaselgrave, W., & Radecka, I. (2021). Recent advances and applications of bacterial cellulose in biomedicine. Polymers, 13(3), 412. Szymańska-Chargot, M., Chylińska, M., Cybulska, J., Kozioł, A., Pieczywek, P. M., & Zdunek, A. (2017). Simultaneous influence of pectin and xyloglucan on structure and mechanical properties of bacterial cellulose composites. Carbohydrate polymers, 174, 970-979. Tong, Y., Zhou, J., Zhang, L., & Xu, P. (2021). A golden-gate based cloning toolkit to build violacein pathway libraries in Yarrowia lipolytica. ACS Synthetic Biology, 10(1), 115-124. Torgbo, S., & Sukyai, P. (2019). Fabrication of microporous bacterial cellulose embedded with magnetite and hydroxyapatite nanocomposite scaffold for bone tissue engineering. Materials Chemistry and Physics, 237, 121868. Tuli, H. S., Chaudhary, P., Beniwal, V., & Sharma, A. K. (2015). Microbial pigments as natural color sources: current trends and future perspectives. Journal of food science and technology, 52, 4669-4678. Ul-Islam, M., Khan, T., Khattak, W. A., & Park, J. K. (2013). Bacterial cellulose-MMTs nanoreinforced composite films: novel wound dressing material with antibacterial properties. Cellulose, 20, 589-596. Usman, H. M., Abdulkadir, N., Gani, M., & Maiturare, H. M. (2017). Bacterial pigments and its significance. MOJ Bioequivalence & Bioavailability, 4(3), 00073. Venegas, F. A., Köllisch, G., Mark, K., Diederich, W. E., Kaufmann, A., Bauer, S., ... & García-Piñeres, A. J. (2019). The bacterial product violacein exerts an immunostimulatory effect via TLR8. Scientific Reports, 9(1), 13661. Venil, C. K., Aruldass, C. A., Abd Halim, M. H., Khasim, A. R., Zakaria, Z. A., & Ahmad, W. A. (2015). Spray drying of violet pigment from Chromobacterium violaceum UTM 5 and its application in food model systems. International Biodeterioration & Biodegradation, 102, 324-329. Vitta, S., Drillon, M., & Derory, A. (2010). Magnetically responsive bacterial cellulose: Synthesis and magnetic studies. Journal of Applied Physics, 108(5). Wahid, F., Zhao, X. J., Duan, Y. X., Zhao, X. Q., Jia, S. R., & Zhong, C. (2021). Designing of bacterial cellulose-based superhydrophilic/underwater superoleophobic membrane for oil/water separation. Carbohydrate Polymers, 257, 117611. Wang, H., Jiang, P., Lu, Y., Ruan, Z., Jiang, R., Xing, X. H., ... & Wei, D. (2009). Optimization of culture conditions for violacein production by a new strain of Duganella sp. B2. Biochemical Engineering Journal, 44(2-3), 119-124. Waters, C. M., & Bassler, B. L. (2005). Quorum sensing: cell-to-cell communication in bacteria. Annual Review of Cell and Developmental Biology, 21(1), 319-346. Wilkinson, M. D., Lai, H. E., Freemont, P. S., & Baum, J. (2020). A biosynthetic platform for antimalarial drug discovery. Antimicrobial Agents and Chemotherapy, 64(5), 10-1128. Williams, W. S., & Cannon, R. E. (1989). Alternative environmental roles for cellulose produced by Acetobacter xylinum. Applied and Environmental Microbiology, 55(10), 2448-2452. Wu, A., Hu, X., Ao, H., Chen, Z., Chu, Z., Jiang, T., ... & Wan, Y. (2022). Rational design of bacterial cellulose‐based air filter with antibacterial activity for highly efficient particulate matters removal. Nano Select, 3(1), 201-211. Wu, C. N., Fuh, S. C., Lin, S. P., Lin, Y. Y., Chen, H. Y., Liu, J. M., & Cheng, K. C. (2018). TEMPO-oxidized bacterial cellulose pellicle with silver nanoparticles for wound dressing. Biomacromolecules, 19(2), 544-554. Wu, J., Zheng, Y., Song, W., Luan, J., Wen, X., Wu, Z., ... & Guo, S. (2014). In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydrate polymers, 102, 762-771. Wu, S. C., & Lia, Y. K. (2008). Application of bacterial cellulose pellets in enzyme immobilization. Journal of Molecular Catalysis B: Enzymatic, 54(3-4), 103-108. Wu, Z., Duangmanee, P., Zhao, P., Juntawong, N., & Ma, C. (2016). The effects of light, temperature, and nutrition on growth and pigment accumulation of three Dunaliella salina strains isolated from saline soil. Jundishapur journal of microbiology, 9(1). Xia, S., Yu, H., Qiu, Y., Zhao, Y., Li, H., Zhang, J., & Zhu, J. (2024). A novel curdlan/methyl cellulose/walnut green husk polyphenol edible composite film for walnut packaging. International Journal of Biological Macromolecules, 261, 129505. Yamada, Y., Yukphan, P., Vu, H. T. L., Muramatsu, Y., Ochaikul, D., & Nakagawa, Y. (2012). Subdivision of the genus Gluconacetobacter Yamada, Hoshino and Ishikawa 1998: the proposal of Komagatabacter gen. nov., for strains accommodated to the Gluconacetobacter xylinus group in the α-Proteobacteria. Annals of microbiology, 62, 849-859. Yamamoto, H., Horii, F., & Hirai, A. (1996). In situ crystallization of bacterial cellulose II. Influences of different polymeric additives on the formation of celluloses I α and I β at the early stage of incubation. Cellulose, 3, 229-242. Yamanaka, S., Watanabe, K., Kitamura, N., Iguchi, M., Mitsuhashi, S., Nishi, Y., & Uryu, M. (1989). The structure and mechanical properties of sheets prepared from bacterial cellulose. Journal of materials science, 24, 3141-3145. Yang, C. H., & Li, Y. H. (2011). Chromobacterium violaceum infection: a clinical review of an important but neglected infection. Journal of the Chinese Medical Association, 74(10), 435-441. Yang, G., Xie, J., Hong, F., Cao, Z., & Yang, X. (2012). Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: effect of fermentation carbon sources of bacterial cellulose. Carbohydrate Polymers, 87(1), 839-845. Yin, N., Du, R., Zhao, F., Han, Y., & Zhou, Z. (2020). Characterization of antibacterial bacterial cellulose composite membranes modified with chitosan or chitooligosaccharide. Carbohydrate polymers, 229, 115520. Yin, N., Stilwell, M. D., Santos, T. M., Wang, H., & Weibel, D. B. (2015). Agarose particle-templated porous bacterial cellulose and its application in cartilage growth in vitro. Acta biomaterialia, 12, 129-138. Yoshinaga, F., Tonouchi, N., & Watanabe, K. (1997). Research progress in production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material. Bioscience, biotechnology, and biochemistry, 61(2), 219-224. Zaborowska, M., Bodin, A., Bäckdahl, H., Popp, J., Goldstein, A., & Gatenholm, P. (2010). Microporous bacterial cellulose as a potential scaffold for bone regeneration. Acta biomaterialia, 6(7), 2540-2547. Zhai, X., Lin, D., Liu, D., & Yang, X. (2018). Emulsions stabilized by nanofibers from bacterial cellulose: New potential food-grade Pickering emulsions. Food Research International, 103, 12-20. Zhang, Y., Chen, H., Zhang, Y., Yin, H., Zhou, C., & Wang, Y. (2021). Direct RBS Engineering of the biosynthetic gene cluster for efficient productivity of violaceins in E. coli. Microbial Cell Factories, 20, 1-13. Zhou, Y., Fang, M. Y., Li, G., Zhang, C., & Xing, X. H. (2018). Enhanced production of crude violacein from glucose in Escherichia coli by overexpression of rate-limiting key enzyme (s) involved in violacein biosynthesis. Applied biochemistry and biotechnology, 186, 909-916 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96169 | - |
dc.description.abstract | 紫色桿菌素 (violacein) 為一天然由紫色桿菌 (Chromobacterium violaceum) 所產之紫色色素,具有抗菌性、抗真菌、抗癌等生理活性,可望應用於多項產業,諸如食品業 (作為著色劑)、製藥業等,然而受限於產率供不應求。細菌纖維素 (Bacterial Cellulose, BC) 是一種由 Komagataeibacter xylinus 所產之聚合物,具有高水分含量、優良機械性質與生物相容性。近年來科學家發展了許多提升 violacein 的技術,而本篇研究期望能夠將 violacein 合成途經之基因 (violacein biosynthesis related gene cluster, vio gene) 轉殖進大腸桿菌 (Escherichia coli, E. coli) 質體 (plasmid) 進行異源基因表達並將產出之 violacein 以後位修飾法 (ex-situ modification) 修飾自 Komagataeibacter xylinus ATCC 700178 培養取得之 BC,以期製備含有 violacein 之功效性 BC 並附加 BC 抗菌性之價值。結果顯示,含有 vio gene 的 E. coli BL21(DE3) pSV004 可產生約 3.53 ± 1.58 mg/mL crude violacein。以孔洞擴散法測試 (agar diffusion method) 與紙錠擴散試驗 (disc-diffusion method) 測試其抗菌性,對於 Staphylococcus aureus (S. aureus) BCRC 10451 可分別產生 10.67、12.33 (濾紙)、12.17 (BC) mm 的抑菌環直徑。將 BC 浸泡於 crude violacein 並凍乾製備成 violacein/BC (VBC),VBC 在色澤分析中顯著地降低 b 值,顯示 violacein 使 VBCs 呈現藍色。在水含量上,VBC2 (75.8 %) 較低於一般 BC (96.5 %)。表面型態顯示 VBCs 除了相似的網狀纖維束之外,還含有短桿狀細菌顆粒。此外,VBCs 的熱穩定度較低於一般 BC,最大降解溫度 (tpeak) 由 325.95 降至 305.96oC。最後,於抗菌試驗中顯示顯示 VBCs 對 S. aureus 無顯著抗菌性。未來期望能夠提升 violacein 於 VBCs 中的含量,並結合抑制 Gram (-) 之機能性成分以獲得廣域抗菌性,藉以應用於食品包材或是傷口敷材。 | zh_TW |
dc.description.abstract | Violacein is a natural pigment produced by Chromobacterium violaceum. It has the potential to apply in many fields due to its biological properties, such as antibacterial, antifungal, anticancer, and so on. However, the low productivity of violacein limits its application in industry. Bacterial cellulose (BC) is a polymer produced by Komagataeibacter xylinus that provides many material properties such as high-water content, great mechanical property and great biocompatibility. Scientists have tried a lots to improve its productivity and this study’s purpose is to clone the violacein-synthesis gene cluster into Escherichia coli (E. coli) to increase violacein productivity. The BC was combined with violacein utilizing ex-situ modification and produce the violacein/BC (VBC) that contained antimicrobial properties. The result showed that E. coli BL21/pSV004 presented the violacein production that reached 3.53 mg/mL. Crude violacein could produce 10.67 - 12.33 mm diameters of inhibition zone toward Staphylococcus aureus in agar diffusion method or disc-diffusion method. The VBCs significantly reduced the b value in color analysis from -2.81 to -15.27 after immersed BC into crude violacein and freeze-dried. Besides that, the VBCs exhibited lower water content compared to BC (75.8 % v.s. 96.5 %). In the result of morphology, VBCs showed a similar network structure with BC and contained bacterial cell particles. Violacein lower the thermal stabilities of VBCs which resulted in a lower tpeak from 325.95oC to 305.96oC. The further study could increase the violacein content and combine with other Gram (-) inhibitors to produce an antimicrobial material for food packaging or wound dressing. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-19T16:08:24Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-11-19T16:08:24Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 論文口試委員會審定書 i
謝誌 ii 摘要 iii Abstract iv 圖次 ix 表次 x List of Figure xi List of Table xii 壹、 前言 1 貳、 文獻回顧 2 2.1. 微生物色素 2 2.2. 紫色桿菌素簡介 4 2.3. 紫色桿菌素的合成途徑 6 2.4. 紫色桿菌素具備之生物活性 7 2.4.1. 抗細菌 7 2.4.2. 抗真菌 7 2.4.3. 免疫調節 8 2.5. 提升紫色桿菌素產量 9 2.8.1. 培養基組成優化 9 2.8.2. 基因工程 10 2.8.3. 生理特性 1 2.6. 紫色桿菌素之未來潛力應用 4 2.7. 細菌纖維素簡介 4 2.8. 細菌纖維素的生物合成歷程 6 2.8.1. 原位修飾法 (in-situ modification) 6 2.8.2. 後位修飾法 (ex-situ modification) 8 2.8.3. 共培養法 (co-cultivation) 8 2.8.4. 序列培養法 (sequential cultivation) 9 2.9. 細菌纖維素的應用 9 2.9.1. 食品包材 9 2.9.2. 傷口敷材 10 2.9.3. 化妝品產業 13 2.10. 相關法規 15 參、 實驗目的與架構 16 3.1. 實驗目的 16 3.2. 實驗架構 16 肆、 材料與方法 18 4.1. 材料 18 4.1.1. 實驗菌株 18 4.1.2. 引子 (Primer) 18 4.1.3. 勝任細胞 (Competent cell) 18 4.1.4. 培養基藥品與抗生素 19 4.1.5. 試劑與套組 19 4.1.6. 酵素 20 4.1.7. 化學藥品 20 4.2. 設備 20 4.3. 方法 23 4.3.1. 微生物保存與活化 23 4.3.2. 重組表現系統建築 24 4.3.3. Violacein 定量 26 4.3.4. 以後位修飾法生產功能性細菌纖維素 26 4.3.5. 色澤分析 (Color analysis) 27 4.3.6. 含水率 (Water Content Analysis) 27 4.3.7. 掃描式電子顯微鏡 (Scanning Electron Microscope) 27 4.3.8. 傅立葉轉換紅外線光譜 (Fourier Transform Infrared Spectroscopy) 27 4.3.9. 熱重分析儀 (Thermogravimetric Analysis) 28 4.3.10. 抑菌效果分析 (Antibacterical analysis) 28 4.4. 統計分析 29 伍、 結果與討論 30 5.1 vio gene 的擴增 30 5.2 E. coli BL21(DE3) pSV004 培養結果 31 5.3 色澤分析 (Color analysis) 33 5.4 含水率 (Water Content Analysis) 34 5.5 掃描式電子顯微鏡 (Scanning Electron Microscope) 分析 35 5.6 傅立葉轉換紅外線光譜 (Fourier Transform Infrared Spectroscopy) 分析 38 5.7 熱重分析 (Thermogravimetric Analysis) 39 5.8 抑菌效果分析 (Antibacterical analysis) 41 陸、 結論與未來展望 43 柒、 參考文獻 44 捌、 附錄 x 附錄一、美國食藥署 (US FDA) 色素應用分類表 x 附錄二、本研究中所使用到的培養基配方表 xi 附錄三、天然食用色素衛生標準 xii 附錄四、各 vio 基因片段的長度與序列 xiv 附錄五、以不同試驗法測試 Crude violacein extract 對於不同微生物的抑菌效果 xxiv 附錄六、Indigo 與 Violacein 比較異同表 xxvi 附錄七、原創性論文比對結果 xxvii 附錄八、個人簡歷 xxviii | - |
dc.language.iso | zh_TW | - |
dc.title | 以大腸桿菌建立紫色桿菌素生產系統與功能性細菌纖維素製備 | zh_TW |
dc.title | Violacein secretion system construction utilizing heterologous plasmid expression in Escherichia coli and production of functional bacterial cellulose | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 林欣平 | zh_TW |
dc.contributor.coadvisor | Shin-Ping Lin | en |
dc.contributor.oralexamcommittee | 陳碩菲;謝承哲 | zh_TW |
dc.contributor.oralexamcommittee | Shuo-Fei Chen;Chen-Che Hsieh | en |
dc.subject.keyword | 紫色桿菌素,細菌纖維素,後位修飾法,材料分析,抗菌材料, | zh_TW |
dc.subject.keyword | Antimicrobial material,Bacterial cellulose,Ex situ modification,Material analysis,Violacein, | en |
dc.relation.page | 87 | - |
dc.identifier.doi | 10.6342/NTU202401030 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-11-12 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 生物科技研究所 | - |
Appears in Collections: | 生物科技研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-113-1.pdf Restricted Access | 4.04 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.