請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96159完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇國棟 | zh_TW |
| dc.contributor.advisor | Guo-Dung Su | en |
| dc.contributor.author | 張又方 | zh_TW |
| dc.contributor.author | Yu-Fang Chang | en |
| dc.date.accessioned | 2024-11-18T16:06:59Z | - |
| dc.date.available | 2024-11-19 | - |
| dc.date.copyright | 2024-11-18 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-10-08 | - |
| dc.identifier.citation | 1. Padgilwar, S., Sanghai, D., Patond, V., Pundkar, S., Jadhao, M., Wankhade, M., & Bhise, M. (2023). Recent drug advances in the management of diabetes complications: An overview. Tuijin Jishu/Journal of Propulsion Technology, 44(5), 4196-4217.
2. Ben-Haroush, A., Yogev, Y., & Hod, M. (2013). Ross and Wilson anatomy and pathophysiology in health and illness (11th ed., pp. 227-229). Churchill Livingstone Elsevier. 3. Chamnan, P., Simmons, R. K., Forouhi, N. G., Luben, R. N., Khaw, K. T., Wareham, N. J., & Griffin, S. J. (2011). Incidence of type 2 diabetes using proposed HbA1c diagnostic criteria in the European Prospective Investigation of Cancer–Norfolk cohort: Implications for preventive strategies. Diabetes Care, 34(4), 950-956. 4. Mohan, H. (2018). Textbook of pathology and microbiology (p. 843-847). Gupta. 5. Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., Colagiuri, S., Guariguata, L., Motala, A. A., Ogurtsova, K., Shaw, J. E., Bright, D., & Williams, R.; IDF Diabetes Atlas Committee. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Research and Clinical Practice, 157, 107843. 6. Willcox, M. L., Elugbaju, C., Al-Anbaki, M., Lown, M., & Graz, B. (2021). Effectiveness of medicinal plants for glycaemic control in Type 2 Diabetes: An overview of meta-analyses of clinical trials. Frontiers in Pharmacology, 12, 777561. 7. Centers for Disease Control and Prevention. (2022). Prevalence of both diagnosed and undiagnosed diabetes. National diabetes statistics report, 2022. 8. Centers for Disease Control and Prevention. (2022). Methods. National diabetes statistics report, 2022. 9. World Health Organization. (2006). Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia: Report of a WHO/IDF consultation (p. 21). 10. Vijan, S. (2010, March). In the clinic: Type 2 diabetes. Annals of Internal Medicine, 152(5), ITC31-15. 11. Daly, M. E., Vale, C., Walker, M., Littlefield, A., Alberti, K. G., & Mathers, J. C. (1998, June). Acute effects on insulin sensitivity and diurnal metabolic profiles of a high-sucrose compared with a high-starch diet. The American Journal of Clinical Nutrition, 67(6), 1186-1196. 12. Renard, E. (2005). Monitoring glycemic control: The importance of self-monitoring of blood glucose. American Journal of Medicine, 118(12), 12-19. 13. Clarke, S. F., & Foster, J. R. (2012). A history of blood glucose meters and their role in self-monitoring of diabetes mellitus. British Journal of Biomedical Science, 69(2), 83-93. 14. Dziergowska, K., Łabowska, M. B., Gąsior-Głogowska, M., Kmiecik, B., & Detyna, J. (2019). Modern noninvasive methods for monitoring glucose levels in patients: A review. Bio-Algorithms and Med-Systems, 15(4), Article 20190052. 15. Susana, E., Ramli, K., Purnamasari, P. D., & Apriantoro, N. H. (2023). Non-invasive classification of blood glucose level based on photoplethysmography using time–frequency analysis. Information, 14(3), Article 145. 16. Villena Gonzales, W., Mobashsher, A. T., & Abbosh, A. (2019). The progress of glucose monitoring—A review of invasive to minimally and non-invasive techniques, devices, and sensors. Sensors, 19(4), 800. 17. Alsunaidi, B., Althobaiti, M., Tamal, M., Albaker, W., & Al-Naib, I. (2021). A review of non-invasive optical systems for continuous blood glucose monitoring. Sensors, 21(20), 6820. 18. Villena Gonzales, W., Mobashsher, A. T., & Abbosh, A. (2019). The progress of glucose monitoring—A review of invasive to minimally and non-invasive techniques, devices, and sensors. Sensors, 19(4), 800. 19. Susana, E., Ramli, K., Murfi, H., & Apriantoro, N. H. (2022). Non-invasive classification of blood glucose level for early detection of diabetes based on photoplethysmography signal. Information, 13(2), 59. 20. Todaro, B., Begarani, F., Sartori, F., & Luin, S. (2022). Is Raman the best strategy towards the development of noninvasive continuous glucose monitoring devices for diabetes management? Frontiers in Chemistry, 10, Article 994272. 21. Challoner, A. (1979). Photoelectric plethysmography for estimating cutaneous blood flow. Non-Invasive Physiology Measurements, 1, 125-151. 22. Alnaeb, M. E., Alobaid, N., Seifalian, A. M., Mikhailidis, D. P., & Hamilton, G. (2007). Optical techniques in the assessment of peripheral arterial disease. Current Vascular Pharmacology, 5(1), 53-59. 23. Hertzman, A. B. (1937). Observations on the finger volume pulse recorded photoelectrically. American Journal of Physiology, 119(2), 334-335. 24. Hertzman, A. B. (1938). The blood supply of various skin areas as estimated by the photoelectric plethysmograph. American Journal of Physiology - Legacy Content, 124(2), 328-340. 25. Beer, A. (1851). Versuch der absorptions-verhältnisse des cordierites für rothes licht zu bestimmen. Annalen der Physik und Chemie, 84(1), 37-52. 26. Park, J., Seok, H. S., Kim, S.-S., & Shin, H. (2022). Photoplethysmogram analysis and applications: An integrative review. Frontiers in Physiology, 12, 808451. 27. Venema, B., Blanik, N., Blazek, V., Gehring, H., Opp, A., & Leonhardt, S. (2012). Advances in reflective oxygen saturation monitoring with a novel in-ear sensor system: Results of a human hypoxia study. IEEE Transactions on Biomedical Engineering, 59(7), 2003-2010. 28. Pintavirooj, C., Ni, B., Chatkobkool, C., & Pinijkij, K. (2021). Noninvasive portable hemoglobin concentration monitoring system using optical sensor for anemia disease. Healthcare, 9(6), 647. 29. Kohl, M., Essenpreis, M., & Cope, M. (1995). The influence of glucose concentration upon the transport of light in tissue-simulating phantoms. Physics in Medicine and Biology, 40(7), 1267-1287. 30. Ruulsema, J. T., Hayward, J. E., Farrell, T. J., Patterson, M. S., Heinemann, L., Berger, M., Koschinsky, T., Sandahl-Christiansen, J., Orskov, H., Essenpreis, M., Schmelzeisen-Redeker, G., & Bäcker, D. (1997). Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient. Optics Letters, 22(3), 190-192. 31. Monte-Moreno, E. (2011). Non-invasive estimate of blood glucose and blood pressure from a photoplethysmograph by means of machine learning techniques. Artificial Intelligence in Medicine, 53(2), 127-138. 32. Gupta, S. S., Kwon, T.-H., Hossain, S., & Kim, K.-D. (2021). Towards non-invasive blood glucose measurement using machine learning: An all-purpose PPG system design. Biomedical Signal Processing and Control, 68, Article 102706. 33. Mikroe. (n.d.). Heart rate 3 click. Retrieved from https://www.mikroe.com/heart-rate-3-click 34. Accu-Chek. (n.d.). 血糖測量儀. Retrieved from https://www.accu-chek.com.tw/meter 35. Li, H., & Huang, S. (2020). A high-efficiency and real-time method for quality evaluation of PPG signals. IOP Conference Series: Materials Science and Engineering, 711, 012010. 36. Hsu, P. C., Wu, H. T., & Sun, C. K. (2018). Assessment of subtle changes in diabetes-associated arteriosclerosis using photoplethysmographic pulse wave from index finger. Journal of Medical Systems, 42(3), 43. 37. Irace, C., Carallo, C., Scavelli, F., De Franceschi, M. S., Esposito, T., & Gnasso, A. (2014). Blood viscosity in subjects with normoglycemia and prediabetes. Diabetes Care, 37(2), 488-492. 38. Wu, H.-T., Liu, C.-C., Lin, P.-H., Chung, H.-M., Liu, M.-C., Yip, H.-K., Liu, A.-B., & Sun, C.-K. (2010). Novel application of parameters in waveform contour analysis for assessing arterial stiffness in aged and atherosclerotic subjects. Atherosclerosis, 213(1), 173-177. 39. Huff, S. E., Taylor, H. L., & Keys, A. (1950). Observations on the peripheral blood flow in chronic lupus erythematosus. Journal of Investigative Dermatology, 14(1), 21-36. 40. Dillon, J. B., & Hertzman, A. B. (1941). The form of the volume pulse in the finger pad in health, arteriosclerosis, and hypertension. American Heart Journal, 21(2), 172-190. 41. Kajisa, T., Kuroi, T., Hara, H., & Sakai, T. (2024). Correlation analysis of heart rate variations and glucose fluctuations during sleep. Sleep Medicine, 113, 180-187. 42. Pinto Lima, A., Beelen, P., & Bakker, J. (2002). Use of a peripheral perfusion index derived from the pulse oximetry signal as a noninvasive indicator of perfusion. Critical Care Medicine, 30(6), 1210-1213. 43. Argüello-Prada, E. J., & Bolaños, S. M. (2023). On the role of perfusion index for estimating blood glucose levels with ultrasound-assisted and conventional finger photoplethysmography in the near-infrared wavelength range. Biomedical Signal Processing and Control, 86, 105338. 44. Spigulis, J., Kukulis, I., Fridenberga, E., & Venckus, G. (2002). Potential of advanced photoplethysmography sensing for noninvasive vascular diagnostics and early screening. Proceedings of SPIE, 4625, Clinical Diagnostic Systems: Technologies and Instrumentation. 45. Wang, L., Pickwell-MacPherson, E., Liang, Y. P., & Zhang, Y. T. (2009). Noninvasive cardiac output estimation using a novel photoplethysmogram index. 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, pp. 1746-1749. 46. Sun, S., Bezemer, R., Long, X., Muehlstef, J., & Aarts, R. M. (2016). Systolic blood pressure estimation using PPG and ECG during physical exercise. Physiological Measurement, 37, 2154-2169. 47. Finnegan, E., Davidson, S., Harford, M., et al. (2023). Features from the photoplethysmogram and the electrocardiogram for estimating changes in blood pressure. Scientific Reports, 13, 986. 48. Takazawa, K., Tanaka, N., Fujita, M., Matsuoka, O., Saiki, T., Aikawa, M., Tamura, S., & Ibukiyama, C. (1998). Assessment of Vasoactive Agents and Vascular Aging by the Second Derivative of Photoplethysmogram Waveform. Hypertension, 32(2), 365-370. 49. Patel, B. J., Mehta, D. N., Vaghani, A., & Patel, K. (2023). Correlation of Body Mass Index (BMI) with Saliva and Blood Glucose Levels in Diabetic and Non-Diabetic Patients. Journal of Pharmacy and Bioallied Sciences, 15(Suppl 2), S1204-S1207. 50. Agrawall, N., Agrawal, M.K., Kumari, T.N., & Kumar, S. (2017). Correlation between Body Mass Index and Blood Glucose Levels in Jharkhand Population. International Journal of Contemporary Medical Research, 4(8). 51. Satter, S., Turja, M. S., Kwon, T.-H., & Kim, K.-D. (2024). EMD-based noninvasive blood glucose estimation from PPG signals using machine learning algorithms. Applied Sciences, 14, 1406. 52. Toh, A. M., Togneri, R., & Nordholm, S. (2005, January). Spectral entropy as speech features for speech recognition. In Proceedings of the PEECS (pp. 193-196). 53. Yingthawornsuk, T. (2016). Spectral entropy in speech for classification of depressed speakers. In Proceedings of the International Conference on Signal-Image Technology & Internet-Based Systems (pp. 679-682). 54. Boudraa, A.-O., & Salzenstein, F. (2018). Teager–Kaiser energy methods for signal and image analysis: A review. Digital Signal Processing, 78, 338-375. 55. Deng, H., Zhang, L., Xie, Y., & Mo, S. (2021). Research on estimation of blood glucose based on PPG and deep neural networks. IOP Conference Series: Earth and Environmental Science, 693(1), 012046. 56. Susana, E., Ramli, K., Purnamasari, P. D., & Apriyanto, N. H. (2022). Edge classification of non-invasive blood glucose levels based on photoplethysmography signals. 2022 5th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), Yogyakarta, Indonesia, pp. 711-716. 57. Luzi, L., Macrì, C., Ferrulli, A., Berra, C. C., Romano, C., & Massarini, S. (2023). 1400-P: Low blood oxygen saturation is associated with impaired glucose control in diabetes. Diabetes, 72(Supplement_1), 1400-P. 58. Hina, A., & Saadeh, W. (2020). A noninvasive glucose monitoring SoC based on single wavelength photoplethysmography. IEEE Transactions on Biomedical Circuits and Systems, 14(3), 504-515. 59. Walczak, S., & Cerpa, N. (2003). Artificial neural networks. In R. A. Meyers (Ed.), Encyclopedia of Physical Science and Technology (3rd ed., pp. 631-645). 60. McCulloch, W., & Pitts, W. (1943). A logical calculus of ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5(4), 115-133. 61. Olazaran, M. (1996). A sociological study of the official history of the perceptrons controversy. Social Studies of Science, 26(3), 611-659. 62. Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386-408. 63. Bonnington, C. (n.d.). What is an artificial neural network? Digital Trends. Retrieved from https://www.digitaltrends.com/computing/what-is-an-artificial-neural-network/ 64. Freckmann, G., Mende, J., Pleus, S., Waldenmaier, D., Baumstark, A., Jendrike, N., & Haug, C. (2022). Mean absolute relative difference of blood glucose monitoring systems and relationship to ISO 15197. Journal of Diabetes Science and Technology, 16(5), 1089-1095. 65. Clarke, W. L., Cox, D., Gonder-Frederick, L. A., Carter, W., & Pohl, S. L. (1987). Evaluating clinical accuracy of systems for self-monitoring of blood glucose. Diabetes Care, 10(5), 622-628. 66. Couceiro, R., Carvalho, P., Paiva, R. P., Henriques, J., Quintal, I., Antunes, M., Muehlsteff, J., Eickholt, C., Brinkmeyer, C., Kelm, M., & Meyer, C. (2015). Assessment of cardiovascular function from multi-Gaussian fitting of a finger photoplethysmogram. Physiological Measurement, 36(9), 1801-1825. 67. Abdullah, S., Hafid, A., Folke, M., Lindén, M., & Kristoffersson, A. (2023). PPGFeat: A novel MATLAB toolbox for extracting PPG fiducial points. Frontiers in Bioengineering and Biotechnology, 11, Article 1199604. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96159 | - |
| dc.description.abstract | 糖尿病是一種代謝失調的疾病,造成此疾病的主要特徵是長期血糖水平異常升高,如果未能有效管理,將會導致重大的健康危害。儘管目前尚未有治癒方法,但透過嚴密的血糖監控與管理,可以顯著降低長期併發症的發生風險。本研究提出並開發了一種創新輔助型的非侵入式人體血糖連續監測系統,該系統利用多波長光體積描記法(PPG)訊號,LED波長分別為紅外光950 nm、紅光660 nm和綠光525 nm,結合機器學習技術,開發出一組有效的輔助式連續血糖偵測儀器,減少傳統侵入式方法帶來的疼痛和感染風險,同時亦提升了量測便利性。
實驗中,我們的硬體系統是基於MIKROE 2036模組,整合了Arduino Nano,以有效捕捉高品質的PPG信號。為了確保模型預測的準確性,我們使用符合ISO 15197:2013標準的市售血糖儀Accu-Chek Guide作為血糖參考值。透過一系列資料預處理步驟,包括濾波、信號分段及SQI訊號優劣分類器,我們成功提取了高品質的PPG信號數據,並進行後續分析。所提取的特徵涵蓋了生理特徵、血糖相關特徵及統計特徵,這不僅提高了機器學習中模型的可解釋性,也縮短訓練時間並提升了預測精度。 強調了高品質數據對於訓練機器學習模型至關重要。我們從50名健康受試者中收集了數據,受試者平均年齡為24歲,平均BMI為22.7。研究結果顯示,當數據質量超過50%的門檻時,MAML模型顯著優於傳統的簡單人工神經網絡(Simple ANN)模型。MAML模型在測試任務中的平均絕對相對誤差(MARD)為14.98%,相較於簡單ANN模型的24.71%,提升了約40%。除此之外,MAML模型的預測標準差較低,表明其在穩定性上具有更大優勢。通過排除低質量數據(質量指數 < 30),我們進一步優化了訓練過程,進而提升了模型的整體性能。這些結果經由Clarke誤差網格分析驗證,顯示我們的MAML模型不僅符合臨床標準,且在各種任務中表現出穩定可靠的性能。 總結來說,本論文展示了結合PPG信號與先進機器學習應用的潛力,開發出一種可靠的個人化非侵入式血糖監測系統。這項研究也為未來非侵入式血糖監測創新奠定了堅實的基礎,其最終目標是提升患者的舒適度及健康管理效果。 | zh_TW |
| dc.description.abstract | Diabetes mellitus, a metabolic disorder marked by prolonged elevated blood glucose levels, poses significant health risks if not properly managed. While there is no cure, vigilant monitoring and management of blood glucose levels can mitigate long-term complications. In this study, we proposed and developed an innovative non-invasive blood glucose monitoring device that leverages multi-wavelength Photoplethysmography (PPG) signals at 525 nm, 660 nm, and 950 nm, combined with machine learning techniques. This device provides a convenient alternative to traditional invasive glucose measurement methods, reducing pain, infection risk, and improving usability.
Our hardware system, based on the MIKROE 2036 module integrated with an Arduino Nano, effectively captured high-quality PPG signals. The Accu-Chek Guide glucometer, compliant with ISO 15197:2013 standards, was used as a reference for blood glucose values to ensure the accuracy of our model's predictions. Comprehensive data preprocessing, including filtering, signal segmentation, and the application of an SQI classifier, was employed to refine raw PPG signals. This process ensured that only high-quality signals were analyzed. The extracted features—encompassing physiological, glucose-related, and statistical attributes—were fed into machine learning models, enhancing interpretability, reducing training time, and improving prediction accuracy. Our study also emphasized the importance of high-quality data in training machine learning models. We collected data from 50 healthy participants, with an average age of 24 years and an average BMI of 22.7. The findings demonstrated that the Model-Agnostic Meta-Learning (MAML) model significantly outperformed the Simple Artificial Neural Network (ANN) model, especially when data quality exceeded a threshold of 50. The MAML model achieved a Mean Absolute Relative Difference of 14.98% on testing tasks, compared to the Simple ANN’s 24.71%, marking a substantial improvement of approximately 40%. The standard deviation of the MAML model's predictions was also lower, indicating greater stability. By excluding lower-quality data, we optimized the training process, further enhancing the model’s overall performance. These results, validated through Clarke’s Error Grid Analysis, confirmed that our MAML implementation met clinical standards and consistently performed well across various tasks. In conclusion, this study demonstrates the potential of integrating PPG signals with advanced machine learning techniques to develop a reliable, non-invasive blood glucose monitoring system. This work lays the groundwork for future innovations in glucose monitoring, with the goal of improving patient comfort and health outcomes. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-18T16:06:59Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-11-18T16:06:59Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Contents
論文口試委員審定書 i 致謝 ii 中文摘要 iii Abstract v Contents vii List of Figures x List of Tables xv Chapter 1 Introduction 1 1.1 About Diabetes: A Comprehensive Overview 1 1.2 Blood Glucose Measurement Methods 5 1.3 Introduction to PPG Technology: Non-invasive Physiological Signal Detection Technology 10 1.3.1 Principle of Different Types PPG Signal Devices 11 1.3.2 Applications and advantages of PPG 15 1.3.3 Exploration of the Relationship between PPG Signals and BGL in Previous Studies 16 1.4 Research Objectives and Content of work 18 Chapter 2 System Design and Implementation 21 2.1 System Architecture 21 2.1.1 Hardware configuration 21 2.1.2 Software architecture 25 2.2 Signal Preprocessing 26 2.3 Feature Extraction 30 2.3.1 Single Pulse Features 30 2.3.2 Time-Domain Features 38 2.3.3 Frequency-Domain Features 39 2.3.4 Other Features 43 2.4 Advantages of Feature Extraction in Biomedical Signal Processing 46 2.5 Models 49 2.5.1 ANN 49 2.5.2 MAML 52 2.5.3 Model evaluation method 56 Chapter 3 Results and Discussion 60 3.1 Participant Data 60 3.1.1 Measurement Environment and Methods 60 3.1.2 Data Collection Statistics 62 3.2 Signal Preprocessing 64 3.3 Feature Extraction 67 3.3.1 Single-Pulse Features 67 3.3.2 Time-Domain Features 73 3.3.3 Frequency-Domain Features 75 3.3.4 Physiological Features 77 3.4 Model Results 78 3.4.1 Splitting Strategy 78 3.4.2 Artificial Neural Network (ANN) 80 3.4.3 Model-Agnostic Meta-Learning (MAML) 82 3.4.4 Results Discussion 87 Chapter 4 Conclusion and Future Prospects 90 4.1 Conclusion 90 4.2 Prospects 92 Reference 95 | - |
| dc.language.iso | en | - |
| dc.subject | 個人化血糖監測器 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 光體積變化描記圖法 | zh_TW |
| dc.subject | 人工神經網絡 | zh_TW |
| dc.subject | 模型無關元學習 | zh_TW |
| dc.subject | Photoplethysmography (PPG) | en |
| dc.subject | Machine Learning | en |
| dc.subject | Artificial Neural Network | en |
| dc.subject | MAML | en |
| dc.subject | Personalized Blood Glucose Monitoring | en |
| dc.title | 基於多波長PPG和MAML的個人化非侵入式血糖監測儀 | zh_TW |
| dc.title | Personalized Non-Invasive Glucometer Using Multi-Wavelength PPG and Model-Agnostic Meta-Learning | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡睿哲;林俊元 | zh_TW |
| dc.contributor.oralexamcommittee | Jui-che Tsai;Jiunn-Yuan Lin | en |
| dc.subject.keyword | 光體積變化描記圖法,個人化血糖監測器,模型無關元學習,人工神經網絡,機器學習, | zh_TW |
| dc.subject.keyword | Photoplethysmography (PPG),Personalized Blood Glucose Monitoring,MAML,Artificial Neural Network,Machine Learning, | en |
| dc.relation.page | 105 | - |
| dc.identifier.doi | 10.6342/NTU202404457 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-10-08 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | 2029-10-08 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 3.82 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
