Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96151
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林裕彬zh_TW
dc.contributor.advisorYu-Pin Linen
dc.contributor.author張宸瑄zh_TW
dc.contributor.authorChen-Hsuan Changen
dc.date.accessioned2024-11-15T16:11:29Z-
dc.date.available2024-11-16-
dc.date.copyright2024-11-15-
dc.date.issued2024-
dc.date.submitted2024-10-21-
dc.identifier.citation"Eggleston, H. S., "Buendia, L., "Miwa, K., "Ngara, T., & "Tanabe, K. (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. ; IPCC National Greenhouse Gas Inventories Programme, Intergovernmental Panel on Climate Change IPCC, c/o Institute for Global Environmental Strategies IGES, 2108 - 11, Kamiyamaguchi, Hayama, Kanagawa (Japan). https://doi.org/https://doi.org/ Other: ISBN 4-88788-032-4; TRN: JP07CC058 NLC
Abulibdeh, A., & Zaidan, E. (2020). Managing the water-energy-food nexus on an integrated geographical scale. Environmental Development, 33, 100498. https://doi.org/https://doi.org/10.1016/j.envdev.2020.100498
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), D05109.
ARCGIS_PRO3.2_handbook. An overview of the Spatial Statistics toolbox. ARCGIS PRO3.2. https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/an-overview-of-the-spatial-statistics-toolbox.htm
Artioli, F., Acuto, M., & McArthur, J. (2017). The water-energy-food nexus: An integration agenda and implications for urban governance. Political Geography, 61, 215-223. https://doi.org/https://doi.org/10.1016/j.polgeo.2017.08.009
Bahri, M. A. S., Sabri, S., Johar, F., Kararbassi, Z., Majid, M. R., & Ludin, A. N. M. (2014). Comparison of Spatial Autocorrelation Analysis Methods for Distribution Pattern of Diabetes Type II Patients in Iskandar Malaysia Neighbourhoods. International Conference on Urban and Regional Planning; Universiti Teknologi Malaysia: Johor Bahru, Malaysia,
Bian, Z., & Liu, D. (2021). A Comprehensive Review on Types, Methods and Different Regions Related to Water–Energy–Food Nexus. International Journal of Environmental Research and Public Health, 18(16), 8276. https://www.mdpi.com/1660-4601/18/16/8276
Carvalho, P. N., Finger, D. C., Masi, F., Cipolletta, G., Oral, H. V., Tóth, A., Regelsberger, M., & Exposito, A. (2022). Nature-based solutions addressing the water-energy-food nexus: Review of theoretical concepts and urban case studies. Journal of Cleaner Production, 338, 130652. https://doi.org/https://doi.org/10.1016/j.jclepro.2022.130652
Chaudhary, A., Gustafson, D., & Mathys, A. (2018). Multi-indicator sustainability assessment of global food systems. Nature Communications, 9(1), 848. https://doi.org/10.1038/s41467-018-03308-7
Chen, T.-T., Hsu, W.-L., & Chen, W.-K. (2020). An Assessment of Water Resources in the Taiwan Strait Island Using the Water Poverty Index. Sustainability, 12(6), 2351. https://www.mdpi.com/2071-1050/12/6/2351
Ding, T., & Chen, J. (2023). Evaluating supply-demand matching of ecosystem services considering water-energy-food nexus and synergies/trade-offs in the Hangzhou of China. Environmental Science and Pollution Research, 30(19), 54568-54585.
Ding, T., Chen, J., Fang, L., Ji, J., & Fang, Z. (2023). Urban ecosystem services supply-demand assessment from the perspective of the water-energy-food nexus. Sustainable Cities and Society, 90, 104401. https://doi.org/https://doi.org/10.1016/j.scs.2023.104401
Ding, T., Chen, J., Fang, Z., & Chen, J. (2021). Assessment of coordinative relationship between comprehensive ecosystem service and urbanization: A case study of Yangtze River Delta urban Agglomerations, China. Ecological Indicators, 133, 108454. https://doi.org/https://doi.org/10.1016/j.ecolind.2021.108454
Ding, T., Fang, L., Chen, J., Ji, J., & Fang, Z. (2023). Exploring the relationship between water-energy-food nexus sustainability and multiple ecosystem services at the urban agglomeration scale. Sustainable Production and Consumption, 35, 184-200. https://doi.org/https://doi.org/10.1016/j.spc.2022.10.028
Dou, H., Li, X., Li, S., Dang, D., Li, X., Lyu, X., Li, M., & Liu, S. (2020). Mapping ecosystem services bundles for analyzing spatial trade-offs in inner Mongolia, China. Journal of Cleaner Production, 256, 120444. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.120444
Droogers, P., & Allen, R. G. (2002). Estimating reference evapotranspiration under inaccurate data conditions. Irrigation and drainage systems, 16, 33-45.
Endo, A., Tsurita, I., Burnett, K., & Orencio, P. M. (2017). A review of the current state of research on the water, energy, and food nexus. Journal of Hydrology: Regional Studies, 11, 20-30. https://doi.org/https://doi.org/10.1016/j.ejrh.2015.11.010
Fang, Z., Chen, J., Liu, G., Wang, H., Alatalo, J. M., Yang, Z., Mu, E., & Bai, Y. (2021). Framework of basin eco-compensation standard valuation for cross-regional water supply – A case study in northern China. Journal of Cleaner Production, 279, 123630. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.123630
Hanes, R. J., Gopalakrishnan, V., & Bakshi, B. R. (2018). Including nature in the food-energy-water nexus can improve sustainability across multiple ecosystem services. Resources, Conservation and Recycling, 137, 214-228. https://doi.org/https://doi.org/10.1016/j.resconrec.2018.06.003
Hao, L., Wang, P., Yu, J., & Ruan, H. (2022). An integrative analytical framework of water-energy-food security for sustainable development at the country scale: A case study of five Central Asian countries. Journal of Hydrology, 607, 127530. https://doi.org/https://doi.org/10.1016/j.jhydrol.2022.127530
Hou, L., Wu, F., & Xie, X. (2020). The spatial characteristics and relationships between landscape pattern and ecosystem service value along an urban-rural gradient in Xi’an city, China. Ecological Indicators, 108, 105720. https://doi.org/https://doi.org/10.1016/j.ecolind.2019.105720
Hou, X., Lv, T., Xu, J., Deng, X., Liu, F., & Pi, D. (2021). Energy sustainability evaluation of 30 provinces in China using the improved entropy weight-cloud model. Ecological Indicators, 126, 107657. https://doi.org/https://doi.org/10.1016/j.ecolind.2021.107657
Hou, Y., Li, B., Müller, F., Fu, Q., & Chen, W. (2018). A conservation decision-making framework based on ecosystem service hotspot and interaction analyses on multiple scales. Science of The Total Environment, 643, 277-291. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.06.103
Hou, Y., Lü, Y., Chen, W., & Fu, B. (2017). Temporal variation and spatial scale dependency of ecosystem service interactions: a case study on the central Loess Plateau of China. Landscape Ecology, 32, 1201-1217.
Hu, X., Ma, C., Huang, P., & Guo, X. (2021). Ecological vulnerability assessment based on AHP-PSR method and analysis of its single parameter sensitivity and spatial autocorrelation for ecological protection–A case of Weifang City, China. Ecological Indicators, 125, 107464.
Ji, J., Wang, L., Xie, M., Lv, W., Yu, C., Liu, W., & Shifaw, E. (2023). Evaluation of Coupling Coordination Degree between Economy and Eco-Environment Systems in the Yangtze River Delta from 2000 to 2020. Systems, 11(10), 500. https://www.mdpi.com/2079-8954/11/10/500
Jia, Z., Cai, Y., Chen, Y., & Zeng, W. (2018). Regionalization of water environmental carrying capacity for supporting the sustainable water resources management and development in China. Resources, Conservation and Recycling, 134, 282-293. https://doi.org/https://doi.org/10.1016/j.resconrec.2018.03.030
Karabulut, A. A., Udias, A., & Vigiak, O. (2019). Assessing the policy scenarios for the Ecosystem Water Food Energy (EWFE) nexus in the Mediterranean region. Ecosystem Services, 35, 231-240. https://doi.org/https://doi.org/10.1016/j.ecoser.2018.12.013
Kasztelan, A., & Nowak, A. (2021). Construction and Empirical Verification of the Agri-Environmental Index (AEI) as a Tool for Assessing the Green Performance of Agriculture. Energies, 14(1), 45. https://www.mdpi.com/1996-1073/14/1/45
Legendre, P., & Fortin, M. J. (1989). Spatial pattern and ecological analysis. Vegetatio, 80, 107-138.
Li, W., Wang, Y., Xie, S., & Cheng, X. (2021). Coupling coordination analysis and spatiotemporal heterogeneity between urbanization and ecosystem health in Chongqing municipality, China. Science of The Total Environment, 791, 148311. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.148311
Li, Y., Zhan, J., Liu, Y., Zhang, F., & Zhang, M. (2018). Response of ecosystem services to land use and cover change: A case study in Chengdu City. Resources, Conservation and Recycling, 132, 291-300. https://doi.org/https://doi.org/10.1016/j.resconrec.2017.03.009
Liangshi, Z., Sijia, L. I. U., & Caizhi, S. U. N. (2021). Study on coupling and coordinated development of water-energy-food security system in the Yellow River Basin. Water Resources Protection, 37(1), 69-78. szybhen/article/abstract/bh20210110
Lin, S., Wu, R., Yang, F., Wang, J., & Wu, W. (2018). Spatial trade-offs and synergies among ecosystem services within a global biodiversity hotspot. Ecological Indicators, 84, 371-381. https://doi.org/https://doi.org/10.1016/j.ecolind.2017.09.007
Liu, Y., Hou, X., Li, X., Song, B., & Wang, C. (2020). Assessing and predicting changes in ecosystem service values based on land use/cover change in the Bohai Rim coastal zone. Ecological Indicators, 111, 106004. https://doi.org/https://doi.org/10.1016/j.ecolind.2019.106004
Lorilla, R. S., Poirazidis, K., Kalogirou, S., Detsis, V., & Martinis, A. (2018). Assessment of the Spatial Dynamics and Interactions among Multiple Ecosystem Services to Promote Effective Policy Making across Mediterranean Island Landscapes. Sustainability, 10(9), 3285. https://www.mdpi.com/2071-1050/10/9/3285
Lyu, R., Clarke, K. C., Zhang, J., Feng, J., Jia, X., & Li, J. (2019). Spatial correlations among ecosystem services and their socio-ecological driving factors: A case study in the city belt along the Yellow River in Ningxia, China. Applied Geography, 108, 64-73.
Mach, M. E., Martone, R. G., & Chan, K. M. A. (2015). Human impacts and ecosystem services: Insufficient research for trade-off evaluation. Ecosystem Services, 16, 112-120. https://doi.org/https://doi.org/10.1016/j.ecoser.2015.10.018
Nadaraja, D., Lu, C., & Islam, M. M. (2021). The sustainability assessment of plantation agriculture-a systematic review of sustainability indicators. Sustainable Production and Consumption, 26, 892-910.
O’Farrell, P. J., Reyers, B., Le Maitre, D. C., Milton, S. J., Egoh, B., Maherry, A., Colvin, C., Atkinson, D., De Lange, W., Blignaut, J. N., & Cowling, R. M. (2010). Multi-functional landscapes in semi arid environments: implications for biodiversity and ecosystem services. Landscape Ecology, 25(8), 1231-1246. https://doi.org/10.1007/s10980-010-9495-9
Orsi, F., Ciolli, M., Primmer, E., Varumo, L., & Geneletti, D. (2020). Mapping hotspots and bundles of forest ecosystem services across the European Union. Land Use Policy, 99, 104840. https://doi.org/https://doi.org/10.1016/j.landusepol.2020.104840
Premo, L. S. (2004). Local spatial autocorrelation statistics quantify multi-scale patterns in distributional data: an example from the Maya Lowlands. Journal of Archaeological Science, 31(7), 855-866. https://doi.org/https://doi.org/10.1016/j.jas.2003.12.002
Putra, M. P. I. F., Pradhan, P., & Kropp, J. P. (2020). A systematic analysis of Water-Energy-Food security nexus: A South Asian case study. Science of The Total Environment, 728, 138451. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.138451
Qian, X.-Y., & Liang, Q.-M. (2021). Sustainability evaluation of the provincial water-energy-food nexus in China: Evolutions, obstacles, and response strategies. Sustainable Cities and Society, 75, 103332. https://doi.org/https://doi.org/10.1016/j.scs.2021.103332
Qin, J., Duan, W., Chen, Y., Dukhovny, V. A., Sorokin, D., Li, Y., & Wang, X. (2022). Comprehensive evaluation and sustainable development of water–energy–food–ecology systems in Central Asia. Renewable and Sustainable Energy Reviews, 157, 112061. https://doi.org/https://doi.org/10.1016/j.rser.2021.112061
Renard, D., Rhemtulla, J. M., & Bennett, E. M. (2015). Historical dynamics in ecosystem service bundles. Proceedings of the National Academy of Sciences, 112(43), 13411-13416. https://doi.org/doi:10.1073/pnas.1502565112
Rezaei Kalvani, S., & Celico, F. (2023). The Water-Energy-Food Nexus in European Countries: A Review and Future Perspectives. Sustainability, 15(6), 4960. https://www.mdpi.com/2071-1050/15/6/4960
Sahle, M., Saito, O., Fürst, C., & Yeshitela, K. (2019). Quantifying and mapping of water-related ecosystem services for enhancing the security of the food-water-energy nexus in tropical data–sparse catchment. Science of The Total Environment, 646, 573-586. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.07.347
Schirpke, U., Candiago, S., Vigl, L. E., Jäger, H., Labadini, A., Marsoner, T., Meisch, C., Tasser, E., & Tappeiner, U. (2019). Integrating supply, flow and demand to enhance the understanding of interactions among multiple ecosystem services. Science of The Total Environment, 651, 928-941.
Schröter, M., & Remme, R. P. (2016). Spatial prioritisation for conserving ecosystem services: comparing hotspots with heuristic optimisation. Landscape Ecology, 31, 431-450.
Seto, K. C., Güneralp, B., & Hutyra, L. R. (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences, 109(40), 16083-16088. https://doi.org/doi:10.1073/pnas.1211658109
Silva, J. G. D. (2012). Feeding the World Sustainably.
Song, S., Chen, X., Liu, T., Zan, C., Hu, Z., Huang, S., De Maeyer, P., Wang, M., & Sun, Y. (2023). Indicator-based assessments of the coupling coordination degree and correlations of water-energy-food-ecology nexus in Uzbekistan. Journal of Environmental Management, 345, 118674. https://doi.org/https://doi.org/10.1016/j.jenvman.2023.118674
Sourmehi, C. (2021). EIA projects nearly 50% increase in world energy use by 2050, led by growth in renewables.
Sun, L., Niu, D., Yu, M., Li, M., Yang, X., & Ji, Z. (2022). Integrated assessment of the sustainable water-energy-food nexus in China: Case studies on multi-regional sustainability and multi-sectoral synergy. Journal of Cleaner Production, 334, 130235. https://doi.org/https://doi.org/10.1016/j.jclepro.2021.130235
van den Heuvel, L., Blicharska, M., Masia, S., Sušnik, J., & Teutschbein, C. (2020). Ecosystem services in the Swedish water-energy-food-land-climate nexus: Anthropogenic pressures and physical interactions. Ecosystem Services, 44, 101141. https://doi.org/https://doi.org/10.1016/j.ecoser.2020.101141
Vigiak, O., Borselli, L., Newham, L., McInnes, J., & Roberts, A. (2012). Comparison of conceptual landscape metrics to define hillslope-scale sediment delivery ratio. Geomorphology, 138(1), 74-88.
Wang, Q., Li, S., He, G., Li, R., & Wang, X. (2018). Evaluating sustainability of water-energy-food (WEF) nexus using an improved matter-element extension model: A case study of China. Journal of Cleaner Production, 202, 1097-1106. https://doi.org/https://doi.org/10.1016/j.jclepro.2018.08.213
Wang, S.-H., Huang, S.-L., & Huang, P.-J. (2018). Can spatial planning really mitigate carbon dioxide emissions in urban areas? A case study in Taipei, Taiwan. Landscape and Urban Planning, 169, 22-36. https://doi.org/https://doi.org/10.1016/j.landurbplan.2017.08.001
Wang, Y., Wang, H., Liu, G., Zhang, J., & Fang, Z. (2022). Factors driving water yield ecosystem services in the Yellow River Economic Belt, China: Spatial heterogeneity and spatial spillover perspectives. Journal of Environmental Management, 317, 115477. https://doi.org/https://doi.org/10.1016/j.jenvman.2022.115477
Wang, Y., Xie, Y., Qi, L., He, Y., & Bo, H. (2022). Synergies evaluation and influencing factors analysis of the water–energy–food nexus from symbiosis perspective: A case study in the Beijing–Tianjin–Hebei region. Science of The Total Environment, 818, 151731. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.151731
Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses: a guide to conservation planning. Department of Agriculture, Science and Education Administration.
World Economic Forum, W. (2011). Water Security - The Water -Food -Energy- Climate Nexus.
Xiao, Y., Huang, M., Xie, G., & Zhen, L. (2022). Evaluating the impacts of land use change on ecosystem service values under multiple scenarios in the Hunshandake region of China. Science of The Total Environment, 850, 158067. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.158067
Xu, H., Wang, Y., Zhang, Z., Gao, Y., & Zhang, D. (2021). Coupling mechanism of water-energy-food and spatiotemporal evolution of coordinated development in the Yellow River Basin. Resources Science, 43(12), 2526-2537.
Yang, W.-C., Lee, Y.-M., & Hu, J.-L. (2016). Urban sustainability assessment of Taiwan based on data envelopment analysis. Renewable and Sustainable Energy Reviews, 61, 341-353. https://doi.org/https://doi.org/10.1016/j.rser.2016.04.015
Yang, Z., Zhan, J., Wang, C., & Twumasi-Ankrah, M. J. (2022). Coupling coordination analysis and spatiotemporal heterogeneity between sustainable development and ecosystem services in Shanxi Province, China. Science of The Total Environment, 836, 155625. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.155625
Yi, J., Guo, J., Ou, M., Pueppke, S. G., Ou, W., Tao, Y., & Qi, J. (2020). Sustainability assessment of the water-energy-food nexus in Jiangsu Province, China. Habitat International, 95, 102094. https://doi.org/https://doi.org/10.1016/j.habitatint.2019.102094
Yin, D., Yu, H., Shi, Y., Zhao, M., Zhang, J., & Li, X. (2023). Matching supply and demand for ecosystem services in the Yellow River Basin, China: A perspective of the water-energy-food nexus. Journal of Cleaner Production, 384, 135469. https://doi.org/https://doi.org/10.1016/j.jclepro.2022.135469
Yuan, M.-H., & Lo, S.-L. (2020). Ecosystem services and sustainable development: Perspectives from the food-energy-water Nexus. Ecosystem Services, 46, 101217. https://doi.org/https://doi.org/10.1016/j.ecoser.2020.101217
Zhang, J., Guo, W., Cheng, C., Tang, Z., & Qi, L. (2022). Trade-offs and driving factors of multiple ecosystem services and bundles under spatiotemporal changes in the Danjiangkou Basin, China. Ecological Indicators, 144, 109550.
Zhang, J., Wang, S., Pradhan, P., Zhao, W., & Fu, B. (2022). Mapping the complexity of the food-energy-water nexus from the lens of Sustainable Development Goals in China. Resources, Conservation and Recycling, 183, 106357.
Zhang, P., Zhang, L., Chang, Y., Xu, M., Hao, Y., Liang, S., Liu, G., Yang, Z., & Wang, C. (2019). Food-energy-water (FEW) nexus for urban sustainability: A comprehensive review. Resources, Conservation and Recycling, 142, 215-224. https://doi.org/https://doi.org/10.1016/j.resconrec.2018.11.018
Zheng, H., Li, Y., Robinson, B. E., Liu, G., Ma, D., Wang, F., Lu, F., Ouyang, Z., & Daily, G. C. (2016). Using ecosystem service trade-offs to inform water conservation policies and management practices. Frontiers in Ecology and the Environment, 14(10), 527-532. https://doi.org/https://doi.org/10.1002/fee.1432
Zhi, Y., Chen, J., Wang, H., Liu, G., & Zhu, W. (2020). Assessment of water-energy-food nexus fitness in China from the perspective of symbiosis. China Popul. Resour. Environ, 30(1), 129-139.
汪中安. (2022). 氣候與土地利用變遷情境下的都市熱島效應—以桃園市區為例.
林裕彬. (2021). 整合永續發展目標之生態系服務與土地治理:以濁水溪流域為例–利害關係人參與之土地系統模擬與生態系服務資源決策平台建置(子計畫八). 國立臺灣大學生物環境系統工程學系暨研究所
葉春國, 莊永忠, & 廖學誠. (2013). 水里溪上游集水區檳榔園熱點空間分析之研究 [The Spatial Analysis of Betel Nut Plantation Hot Spots in the Upper Shui-Li Creek Watershed]. 中華水土保持學報, 44(3), 202-214. https://doi.org/10.29417/jcswc.201309_44(3).0002
蕭戎雯. (2013). 不同單元尺度對土地利用及生態系統服務模擬之影響-以大屯溪流域為例. 國立臺灣大學生物環境系統工程學系學位論文, 2013, 1-126.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96151-
dc.description.abstract糧食、能源與水(Food, Energy, Water, FEW)為人類生存之核心資源,而三者間形成糧食、能源與水鏈結(Food - Energy - Water Nexus, FEW Nexus),並彼此存在複雜之交互作用,近年在全球人口增長、城市化快速與氣候變遷下,人類對FEW等資源之需求急劇上升,因此提高FEW永續性成為重要議題。生態系服務(Ecosystem Service, ES)為生態系統提供給人類社會之資源、功能與服務,提供人類生存所需,然而當人類對自然環境的不當利用,將破壞生態系統並降低供給之ES。
本研究探討桃園市在2007年、2014年、2021年之ES及FEW永續性,同時分析ES與FEW Nexus之相關性,期望藉由降低競合及增強協同效應,改善FEW Nexus永續性。本研究使用ES綜合評估與權衡模型(Integrated Valuation of Ecosystem Services and Trade-offs model, InVEST)模式計算六項ES,包含糧食生產、碳儲存、都市降溫、沉積物保留、營養鹽保留、產水量,同時採用區域空間自相關之Local Moran's I對ES進行熱區分析,並將結果中High-High 聚集區域定義為該ES熱區,定義提供四種以上ES熱區之區域視為ES綜合熱區。
在計算FEW Nexus永續性上,本研究選取FEW系統中各五項永續性指標,以熵權重法(Entropy Weight Method)計算FEW指標永續性。並利用Pearson 相關係數分析FEW永續性與ES、FEW永續性內部與ES內部之權衡關係,另外藉由FEW永續性與各ES間之耦合協調度(Coupling Coordination Degree, CCD),協助探討FEW Nexus永續性與各ES間之空間分布。
ES熱區結果顯示桃園市歷年約23%之土地為ES綜合熱區,然而2014年ES熱區僅佔整體面積6.44%,推測為降水空間分布改變所致。ES中糧食生產、碳儲存、都市降溫、沉積物保留、營養鹽保留皆受土地利用變遷影響,僅產水量因降雨空間分佈而產生顯著時空變異性,進而導致產水量之權衡關係取決於當年降雨,糧食生產與多數ES則呈競合關係,其餘ES彼此為協同關係。FEW永續性結果中,歷年能源子系統永續性基本持平,能源及水系統永續性則呈下降趨勢,水與糧食鏈結(W-F)呈現協同、競合兩極化趨勢;水與能源(W-E)、糧食與能源(F-E)之未分類比例偏高,顯示能源與其他子系統相關性較低。
糧食子系統永續性歷年皆與糧食生產呈高度顯著、高度協同關係,糧食生產熱區之高耦合協調度驗證其協同關係;能源子系統與六項ES皆不顯著;水子系統永續性歷年與碳儲存、沉積物保留間存在高度顯著與高度協同關係;FEW永續性則與產水量權衡關係與顯著性歷年變動劇烈。將ES熱區結果結合FEW永續性研究,發現ES熱區與能源、水子系統高永續性區域高度重疊,與糧食子系統重疊區域永續性較低。
本研究為國內首篇以城市鄉鎮區為尺度討論ES與FEW永續性之研究,以ES為框架探討FEW Nexus永續性空間分佈,透過劃定熱區與權衡關係分析,強化ES與FEW Nexus管理,提供政府制定政策之依據,進而實踐ES與FEW Nexus永續經營目標。
zh_TW
dc.description.abstractFood, energy, and water(FEW)are essential resources for human survival, forming the Food-Energy-Water Nexus (FEW Nexus), characterized by complex interactions. In recent years, with rapid global population growth, urbanization and climate change, the demand for these resources has sharply increased. It makes enhancing the sustainability of the FEW Nexus a critical issue. Ecosystem Services (ES) refer to the resources, functions, and services provided by ecosystems to human society, fulfilling fundamental human needs. However, improper human exploitation of the natural environment can degrade ecosystems and diminish the provision of ES.
This study investigates the sustainability of ES and the FEW Nexus in Taoyuan City in 2007, 2014, and 2021. It also analyzes the correlation between ES and FEW Nexus, aiming to enhance sustainability by reducing competitions and promoting synergistic effects. The study utilizes InVEST(Integrated Valuation of Ecosystem Services and Trade-offs model)to calculate six ESs, including food production, carbon storage, urban cooling, sediment retention, nutrient retention, and water yield. Additionally, the study conducts hotspot analysis of ES using Local Moran's I spatial autocorrelation, defining regions with High-High clustering as ES hotspots and regions providing four or more ES as ES composite hotspots.
As for FEW sustainability, five sustainable indicators are selected for food, energy, water subsystem. Entropy Weight Method is applied to calculate the sustainability of FEW Nexus indicators. Pearson correlation coefficients are employed to analyze the relationships between FEW sustainability and ES, as well as the trade-offs within FEW sustainability and ES. Furthermore, the Coupling Coordination Degree (CCD) between FEW sustainability and each ES is utilized to explore the spatial distribution of FEW sustainability and ES coupling.
The results of ES hotspots indicate that approximately 23% of the land area in Taoyuan City is categorized as ES composite hotspots over the years. However, in 2014, ES hotspots only accounted for 6.44% of the total area, suggesting a change in precipitation spatial distribution. ES including food production, carbon storage, urban cooling, sediment retention, and nutrient retention are all influenced by land use changes. Only water yield exhibits significant spatiotemporal variability due to changes in rainfall spatial distribution, leading to the weighting relationship of water yield depending on the precipitation in a given year. Food production competes with most ES components, while the remaining ES components exhibit synergistic relationships with each other.
Regarding FEW sustainability, the sustainability of the energy subsystem has remained relatively stable over the years, while the sustainability of the food and water subsystems shows a declining trend. The water-food (W-F) nexus demonstrates a polarization trend of both synergy and competition, while the proportions of unclassified relationships between water-energy (W-E) and food-energy (F-E) are relatively high, indicating lower correlations between energy and other subsystems.
The sustainability of the food subsystem has consistently exhibited a highly significant and synergistic relationship with food production over the years, as evidenced by the high coupling coordination degree in the hotspots of food production. However, the energy subsystem has shown no significant relationship with the six ES. In contrast, the sustainability of the water subsystem has demonstrated a highly significant and synergistic relationship with carbon storage and sediment retention over the years, while the relationship between sustainability and water yield has varied significantly over time. Integrating the results of ES hotspots with FEW sustainability research, it was found that areas with high sustainability of energy and water subsystems highly overlap with ES hotspots, whereas the overlap with the food subsystem indicates lower sustainability.
This study represents the first attempt in Taiwan to discuss the sustainability of ES and FEW at the scale of district areas. By employing ES as a framework to analyze the spatial distribution of FEW Nexus sustainability, and through hotspot delineation and weighting relationship analysis, this research strengthens the management of ES and FEW Nexus. And it also provides a basis guideline for government policy to achieve the goals of sustainable management of ES and FEW Nexus.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-15T16:11:29Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-11-15T16:11:29Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭 i
摘要 ii
Abstract iv
目次 vi
圖次 ix
表次 xi
第一章 、前言 1
1.1 研究背景 1
1.2 研究目的 2
1.3 研究架構 3
第二章 、文獻回顧 5
2.1 糧食–能源–水鏈結 5
2.2 生態系服務 7
2.3 土地利用與土地覆蓋 9
2.4 生態系服務熱區 10
2.5 永續性指標 11
第三章 、研究方法與步驟 13
3.1 研究區簡介 13
3.2 生態系服務量化 19
3.2.1 糧食生產 20
3.2.2 沉積物保留 20
3.2.3 碳儲存 23
3.2.4 都市降溫 24
3.2.5 營養鹽遞移 25
3.2.6 產水量 28
3.2.7 區域空間自相關 29
3.3 糧食、能源與水系統永續性 32
3.3.1 糧食子系統 32
3.3.2 能源子系統 33
3.3.3 水子系統 35
3.3.4 永續性量化指標 38
3.4 協調度與權衡關係分析 41
3.4.1 耦合協調度 41
3.4.2 權衡關係 42
第四章 、結果與討論 44
4.1 生態系服務分布模擬 44
4.1.1 糧食生產 44
4.1.2 沉積物遞移 46
4.1.3 碳儲存與吸存 47
4.1.4 都市降溫 49
4.1.5 營養鹽遞移 50
4.1.6 產水量 52
4.1.7 ES熱區結果 53
4.1.8 ES熱區討論 58
4.1.9 ES權衡關係 59
4.2 FEW永續性指標評估 61
4.2.1 資料計算驗證 61
4.2.2 永續性指標 62
4.2.3 熱區內外之永續性 66
4.2.4 FEW永續性權衡關係 67
4.2.5 FEW永續性權衡關係討論 70
4.3 永續性與生態系服務之關係評估 72
4.3.1 耦合協調度結果 72
4.3.2 耦合協調度討論 75
4.3.3 權衡關係結果 77
4.3.4 權衡關係討論 78
第五章 、結論與建議 81
5.1 結論 81
5.2 建議 83
參考文獻 84
-
dc.language.isozh_TW-
dc.subject糧食能源與水鏈結zh_TW
dc.subject生態系服務zh_TW
dc.subjectInVEST模式zh_TW
dc.subject永續性指標zh_TW
dc.subject生態系服務熱點zh_TW
dc.subjectInVEST modelen
dc.subjectEcosystem Serviceen
dc.subjectSustainable Indicatoren
dc.subjectFooden
dc.subject Energy and Water Nexusen
dc.subjectEcosystem Service Hotspoten
dc.title生態系服務基礎之水-糧食-能源鏈結永續評估— 以桃園市為例zh_TW
dc.titleEvaluation on Ecosystem service based Food - Energy - Water Nexus sustainability – A case study of Taoyuan Cityen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王咏潔;江莉琦zh_TW
dc.contributor.oralexamcommitteeYung-Chieh Wang;Li-Chi Chiangen
dc.subject.keyword生態系服務,永續性指標,糧食能源與水鏈結,生態系服務熱點,InVEST模式,zh_TW
dc.subject.keywordEcosystem Service,Sustainable Indicator,Food, Energy and Water Nexus,Ecosystem Service Hotspot,InVEST model,en
dc.relation.page93-
dc.identifier.doi10.6342/NTU202404488-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-10-21-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物環境系統工程學系-
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf6.21 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved