請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96150完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝馬利歐 | zh_TW |
| dc.contributor.advisor | Mario Hofmann | en |
| dc.contributor.author | 周家榮 | zh_TW |
| dc.contributor.author | Ian Daniell Santos | en |
| dc.date.accessioned | 2024-11-15T16:11:09Z | - |
| dc.date.available | 2024-11-16 | - |
| dc.date.copyright | 2024-11-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-10-24 | - |
| dc.identifier.citation | [1] Xi Yang, Xiang Yu, and Xin Liu. Obtaining a sustainable competitive advantage from patent information: A patent analysis of the graphene industry. Sustainability, 10(12), 2018.
[2] H. P. Boehm, A. Clauss, G. O. Fischer, and U. Hofmann. Das adsorptionsver- halten sehr dünner kohlenstoff-folien. Zeitschrift für anorganische und allgemeine Chemie, 316(3-4):119–127, 1962. [3] L.C. Isett and J.M. Blakely. Segregation isosteres for carbon at the (100) surface of nickel. Surface Science, 58(2):397–414, 1976. [4] A.J. Van Bommel, J.E. Crombeen, and A. Van Tooren. Leed and auger electron observations of the sic(0001) surface. Surface Science, 48(2):463–472, 1975. [5] Richard P. Feynman. There’s plenty of room at the bottom. 1959. [6] G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett., 49:57–61, Jul 1982. [7] G. Binnig, C. F. Quate, and Ch. Gerber. Atomic force microscope. Phys. Rev. Lett., 56:930–933, Mar 1986. [8] Eric Drexler, editor. Engines of Creation. Fourth Estate, 1986. [9] H.P. Boehm, R. Setton, and E. Stumpp. Nomenclature and terminology of graphite intercalation compounds. report by a subgroup of the international committee for characterization and terminology of carbon and graphite on suggestions for rules for the nomenclature and terminology of graphite intercalation compounds. Synthetic Metals, 11(6):363–371, 1985. [10] M. Terai, N. Hasegawa, M. Okusawa, S. Otani, and C. Oshima. Electronic states of monolayer micrographite on tic(111)-faceted and tic(410) surfaces. Applied Surface Science, 130-132:876–882, 1998. [11] Xuekun Lu, Minfeng Yu, Hui Huang, and Rodney S Ruoff. Tailoring graphite with the goal of achieving single sheets. Nanotechnology, 10(3):269, sep 1999. [12] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. Electric field effect in atomically thin carbon films. Science, 306(5696):666–669, 2004. [13] Changgu Lee, Xiaoding Wei, Jeffrey W. Kysar, and James Hone. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887):385–388, 2008. [14] Yuanbo Zhang, Yan-Wen Tan, Horst L. Stormer, and Philip Kim. Experimental observation of the quantum hall effect and berry's phase in graphene. Nature, 438(7065):201–204, November 2005. [15] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim. Fine structure constant defines visual transparency of graphene. Science, 320(5881):1308–1308, 2008. [16] Andrea C. Ferrari, Francesco Bonaccorso, Vladimir Fal’ko, Konstantin S. Novoselov, Stephan Roche, Peter Bøggild, Stefano Borini, Frank H. L. Kop- pens, Vincenzo Palermo, Nicola Pugno, José A. Garrido, Roman Sordan, Alberto Bianco, Laura Ballerini, Maurizio Prato, Elefterios Lidorikis, Jani Kivioja, Clau- dio Marinelli, Tapani Ryhänen, Alberto Morpurgo, Jonathan N. Coleman, Valeria Nicolosi, Luigi Colombo, Albert Fert, Mar Garcia-Hernandez, Adrian Bachtold, Grégory F. Schneider, Francisco Guinea, Cees Dekker, Matteo Barbone, Zhipei Sun, Costas Galiotis, Alexander N. Grigorenko, Gerasimos Konstantatos, Andras Kis, Mikhail Katsnelson, Lieven Vandersypen, Annick Loiseau, Vittorio Morandi, Daniel Neumaier, Emanuele Treossi, Vittorio Pellegrini, Marco Polini, Alessandro Tredicucci, Gareth M. Williams, Byung Hee Hong, Jong-Hyun Ahn, Jong Min Kim, Herbert Zirath, Bart J. van Wees, Herre van der Zant, Luigi Occhipinti, Andrea Di Matteo, Ian A. Kinloch, Thomas Seyller, Etienne Quesnel, Xinliang Feng, Ken Teo, Nalin Rupesinghe, Pertti Hakonen, Simon R. T. Neil, Quentin Tannock, Tomas Löfwander, and Jari Kinaret. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 7:4598–4810, 2015. [17] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences, 102(30):10451–10453, 2005. [18] Mengqi Zeng, Yao Xiao, Jinxin Liu, Kena Yang, and Lei Fu. Exploring two- dimensional materials toward the next-generation circuits: From monomer de- sign to assembly control. Chemical Reviews, 118(13):6236–6296, 2018. PMID: 29381058. [19] Ababay Ketema Worku and Delele Worku Ayele. Recent advances of graphene-based materials for emerging technologies. Results in Chemistry, 5:100971, 2023. [20] Mohit Saraf, Kaushik Natarajan, and Shaikh M. Mobin. Emerging robust het- erostructure of mos2–rgo for high-performance supercapacitors. ACS Applied Materials & Interfaces, 10(19):16588–16595, 2018. PMID: 29697955. [21] Matěj Velický and Peter S. Toth. From two-dimensional materials to their het- erostructures: An electrochemist’s perspective. Applied Materials Today, 8:68– 103, 2017. 2D Materials in Electrochemistry. [22] Yajuan Cheng, Zheyong Fan, Tao Zhang, Masahiro Nomura, Sebastian Volz, Guimei Zhu, Baowen Li, and Shiyun Xiong. Magic angle in thermal conductiv- ity of twisted bilayer graphene. Materials Today Physics, 35:101093, 2023. [23] Marko Spasenović. Graphene Market Review, pages 177–187. 06 2016. [24] Xiao-Ye Wang, Akimitsu Narita, and Klaus Müllen. Precision synthesis versus bulk-scale fabrication of graphenes. 2018. [25] Jinming Cai, Pascal Ruffieux, Rached Jaafar, Marco Bieri, Thomas Braun, Stephan Blankenburg, Matthias Muoth, Ari Seitsonen, Moussa Saleh, Xinliang Feng, Klaus Müllen, and Roman Fasel. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature, 466:470–3, 07 2010. [26] Akimitsu Narita, Xinliang Feng, Yenny Hernandez, Søren Jensen, Mischa Bonn, Huafeng Yang, Ivan Verzhbitskiy, Cinzia Casiraghi, Michael Ryan Hansen, Amelie Koch, George Fytas, Oleksandr Ivasenko, Bing Li, Kunal Mali, Tatyana Baland- ina, Sankarapillai Mahesh, Steven Feyter, and Klaus Müllen. Synthesis of struc- turally well-defined and liquid-phase-processable graphene nanoribbons. Nature chemistry, 6:126–32, 02 2014. [27] Youfu Wang, Rulin Xiong, Luhua Dong, and Aiguo Hu. Synthesis of carbon nanomembranes through cross-linking of phenyl self-assembled monolayers for electrode materials in supercapacitors. J. Mater. Chem. A, 2:5212–5217, 2014. [28] Namra Abid, Aqib Muhammad Khan, Sara Shujait, Kainat Chaudhary, Muham- mad Ikram, Muhammad Imran, Junaid Haider, Maaz Khan, Qasim Khan, and Muhammad Maqbool. Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A re- view. Advances in Colloid and Interface Science, 300:102597, 2022. [29] Yasir Beeran Pottathara, Yves Grohens, Vanja Kokol, Nandakumar Kalarikkal, and Sabu Thomas. Chapter 1 - synthesis and processing of emerging two-dimensional nanomaterials. In Yasir Beeran Pottathara, Sabu Thomas, Nandakumar Kalarikkal, Yves Grohens, and Vanja Kokol, editors, Nanomaterials Synthesis, Micro and Nano Technologies, pages 1–25. Elsevier, 2019. [30] James M. Tour. Top-down versus bottom-up fabrication of graphene-based elec- tronics. Chemistry of Materials, 26(1):163–171, 2014. [31] Varrla Eswaraiah, Sasidharannair Sasikaladevi Jyothirmayee Aravind, and Sundara Ramaprabhu. Top down method for synthesis of highly conducting graphene by exfoliation of graphite oxide using focused solar radiation. Journal of Materials Chemistry, 21(19):6800–6803, 2011. [32] Kostya S Novoselov, Andre K Geim, Sergei V Morozov, De-eng Jiang, Yanshui Zhang, Sergey V Dubonos, Irina V Grigorieva, and Alexandr A Firsov. Electric field effect in atomically thin carbon films. science, 306(5696):666–669, 2004. [33] Jinfeng Chen, Miao Duan, and Guohua Chen. Continuous mechanical exfoliation of graphene sheets via three-roll mill. Journal of Materials Chemistry, 22(37):19625– 19628, 2012. [34] Weifeng Zhao, Ming Fang, Furong Wu, Hang Wu, Liwei Wang, and Guohua Chen. Preparation of graphene by exfoliation of graphite using wet ball milling. Journal of materials chemistry, 20(28):5817–5819, 2010. [35] I Janowska, F Vigneron, D Bégin, O Ersen, P Bernhardt, Th Romero, MJ Ledoux, and C Pham-Huu. Mechanical thinning to make few-layer graphene from pencil lead. Carbon, 50(8):3106–3110, 2012. [36] Yingchang Yang, Hongshuai Hou, Guoqiang Zou, Wei Shi, Honglei Shuai, Jiayang Li, and Xiaobo Ji. Electrochemical exfoliation of graphene-like two-dimensional nanomaterials. Nanoscale, 11(1):16–33, 2019. [37] Zhiyuan Zeng, Zongyou Yin, Xiao Huang, Hai Li, Qiyuan He, Gang Lu, Freddy Boey, and Hua Zhang. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angewandte Chemie International Edition, 47(50):11093–11097, 2011. [38] Intak Jeon, Bora Yoon, Maggie He, and Timothy M Swager. Hyperstage graphite: electrochemical synthesis and spontaneous reactive exfoliation. Advanced Materials, 30(3):1704538, 2018. [39] 金 文 婷 and Ella Agustin Dwi Kiswanti. 石 墨 烯 電 化 學 剝 離 法 之 探 討 = understanding the electrochemical exfoliation process for graphene production / 金 文婷 (ella agustin dwi kiswanti) 撰, 2017. [40] Dinh-Tuan Nguyen and 阮 停 遵. Scalable synthesis of 2d materials / dinh-tuan Nguyen [阮停遵] 撰, 2021. [41] 逸群. 秦. 二維材料於空氣-水界面之膜強度調控研究 / 秦逸群 [撰] = tuning of 2d materials'interactions at the water-air interface / yi-chun chin., 2018. [42] Chunlin Zhao, Li Xing, Junhui Xiang, Lijie Cui, Jianbin Jiao, Huazheng Sai, Zhenyou Li, and Fei Li. Formation of uniform reduced graphene oxide films on modified pet substrates using drop-casting method. Particuology, 17:66–73, 2014. [43] E Kymakis, E Stratakis, MM Stylianakis, E Koudoumas, and C Fotakis. Spin coated graphene films as the transparent electrode in organic photovoltaic devices. Thin Solid Films, 520(4):1238–1241, 2011. [44] Katharine B Blodgett. Monomolecular films of fatty acids on glass. Journal of the American Chemical Society, 56(2):495–495, 1934. [45] Katharine B Blodgett. Films built by depositing successive monomolecular layers on a solid surface. Journal of the American Chemical Society, 57(6):1007–1022, 1935. [46] Patrick Feicht, Johannes Biskupek, Tatiana E Gorelik, Julian Renner, Chris- tian E Halbig, Maria Maranska, Florian Puchtler, Ute Kaiser, and Siegfried Eigler. Brodie’s or hummers'method: Oxidation conditions determine the structure of graphene oxide. Chemistry–A European Journal, 25(38):8955–8959, 2019. [47] Bin Shen, Wentao Zhai, Mimi Tao, Dingding Lu, and Wen-Ge Zheng. Chemical functionalization of graphene oxide toward the tailoring of the interface in polymer composites. Composites Science and Technology, 77:87–94, 03 2013. [48] Biolin Scientific. Langmuir & langmuir-blodgett measurements, n.d. [Online; ac- cessed 4-September-2024]. [49] Wikimedia Commons. File:stearic-acid-3d-balls.png — wikimedia commons, the free media repository, 2023. [Online; accessed 4-September-2024]. [50] Yefeng Zhang, Luzhu Xu, Wesley R Walker, Collin M Tittle, Christopher J Back- house, and Michael A Pope. Langmuir films and uniform, large area, transpar- ent coatings of chemically exfoliated mos 2 single layers. Journal of Materials Chemistry C, 5(43):11275–11287, 2017. [51] Kenji Okuyama, Kenji Hoso, Nobuyuki Maki, and Hiromi Hamatsu. Liquid crys- tal structures of bilayer-forming synthetic amphiphiles, dialkyldimethylammonium bromides. Thin solid films, 203(1):161–171, 1991. [52] Wikimedia Commons. File:wassermoleküleintröpfchen.svg — wikimedia com- mons, the free media repository, 2023. [Online; accessed 5-September-2024]. [53] Wikimedia Commons. File:wilhelmy plate.svg — wikimedia commons, the free media repository, 2020. [Online; accessed 5-September-2024]. [54] Vladimir M. Kaganer, Helmuth Möhwald, and Pulak Dutta. Structure and phase transitions in langmuir monolayers. Rev. Mod. Phys., 71:779–819, Apr 1999. [55] Francesco Vita, Fabrizio Corrado Adamo, Mario Campana, Blake Bordokas, Fed- erica Ciuchi, Maria Penelope De Santo, Daniel Hermida-Merino, Angela Lisovsky, Michela Pisani, Diego Pontoni, et al. Macroscopic biaxial order in multilayer films of bent-core liquid crystals deposited by combined langmuir–blodgett/langmuir– schaefer technique. Nanomaterials, 14(4):357, 2024. [56] Ian Daniell Santos, Patrick Tjarks, Jeyavelan Muthu, You-Chen Lin, Zhi-Long Yen, Pradyumna Kumar Chand, Radha Raman, Dinh Tuan Nguyen, Mehdi Rouhani, Yeau-Ren Jeng, et al. Z-laminating assembly of graphene nanoflakes for super-strong membranes and functional coatings. ACS Applied Nano Materials, 7(13):14957–14963, 2024. [57] Kwanpyo Kim, Zonghoon Lee, Brad D Malone, Kevin T Chan, Benjamín Alemán, William Regan, Will Gannett, MF Crommie, Marvin L Cohen, and A Zettl. Mul- tiply folded graphene. Physical Review B—Condensed Matter and Materials Physics, 83(24):245433, 2011. [58] Shikai Deng and Vikas Berry. Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications. Materials Today, 19(4):197–212, 2016. [59] Manoj Tripathi, Frank Lee, Antonios Michail, Dimitris Anestopoulos, James G McHugh, Sean P Ogilvie, Matthew J Large, Aline Amorim Graf, Peter J Lynch, John Parthenios, et al. Structural defects modulate electronic and nanomechanical properties of 2d materials. ACS nano, 15(2):2520–2531, 2021. [60] Jun Cai, Ehsan Estakhrianhaghighi, and Abdolhamid Akbarzadeh. Functional- ized graphene origami metamaterials with tunable thermal conductivity. Carbon, 191:610–624, 2022. [61] Duc Tam Ho, Harold S Park, Sung Youb Kim, and Udo Schwingenschlögl. Graphene origami with highly tunable coefficient of thermal expansion. ACS nano, 14(7):8969–8974, 2020. [62] Robert J Young, Ian A Kinloch, Lei Gong, and Kostya S Novoselov. The mechan- ics of graphene nanocomposites: A review. Composites Science and Technology, 72(12):1459–1476, 2012. [63] Dimitrios G Papageorgiou, Ian A Kinloch, and Robert J Young. Mechanical prop- erties of graphene and graphene-based nanocomposites. Progress in materials science, 90:75–127, 2017. [64] Mark Fraser, Hatem Zurob, Peidong Wu, and Olivier Bouaziz. Increasing necking strain through corrugation: Identifying composite systems that can benefit from corrugated geometry. Materials, 13(22):5175, 2020. [65] Denis DR Cartie, Giuseppe Dell'Anno, Emilie Poulin, and Ivana K Partridge. 3d reinforcement of stiffener-to-skin t-joints by z-pinning and tufting. Engineering fracture mechanics, 73(16):2532–2540, 2006. [66] Beene M’membe, Sam Gannon, Mehdi Yasaee, Stephen R Hallett, and Ivana K Partridge. Mode ii delamination resistance of composites reinforced with inclined z-pins. Materials & Design, 94:565–572, 2016. [67] Wikimedia Commons. File:brewster angle microscope.jpg — wikimedia com- mons, the free media repository, 2023. [Online; accessed 9-September-2024]. [68] Rupali Khatavkar Bhagyashree Joshi and Neelima Iyer. Brewster angle micro- scope–an excellent tool for nanoscience researchers. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 36(2):227–229, 2006. [69] Jee Soo Chang, Sunghyun Kim, Ha-Jun Sung, Jegyeong Yeon, Kee Joo Chang, Xiaoqin Li, and Suenne Kim. Graphene nanoribbons with atomically sharp edges produced by afm induced self-folding. Small, 14(47):1803386, 2018. [70] Ch Androulidakis, EN Koukaras, MG Pastore Carbone, M Hadjinicolaou, and C Galiotis. Wrinkling formation in simply-supported graphenes under tension and compression loadings. Nanoscale, 9(46):18180–18188, 2017. [71] Gregory J Silverberg and Chad D Vecitis. Wrinkling and periodic folding of graphene oxide monolayers by langmuir–blodgett compression. Langmuir, 33(38):9880–9888, 2017. [72] Luka Pocivavsek, Robert Dellsy, Andrew Kern, Sebastián Johnson, Binhua Lin, Ka Yee C Lee, and Enrique Cerda. Stress and fold localization in thin elastic mem- branes. Science, 320(5878):912–916, 2008. [73] Dirk Hönig and Dietmar Möbius. Reflectometry at the brewster angle and brewster angle microscopy at the air-water interface. Thin solid films, 210:64–68, 1992. [74] Weiam Daear, Mark Mahadeo, and Elmar J Prenner. Applications of brewster angle microscopy from biological materials to biological systems. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1859(10):1749–1766, 2017. [75] TS Majmudar, M Sperl, Stefan Luding, and Robert P Behringer. Jamming transition in granular systems. Physical review letters, 98(5):058001, 2007. [76] Tianyue Zhao, Ran Wang, Lin Li, and Tifeng Jiao. Recent developments in the preparation and assembly of two-dimensional plate materials in langmuir–blodgett films: a review. Nano Futures, 7(2):022002, 2023. [77] Luzhu Xu, Adam R Tetreault, Hadi H Khaligh, Irene A Goldthorpe, Shawn D Wet- tig, and Michael A Pope. Continuous langmuir–blodgett deposition and transfer by controlled edge-to-edge assembly of floating 2d materials. Langmuir, 35(1):51–59, 2018. [78] Weixing Lu, Charles M Knobler, Robijn F Bruinsma, Michael Twardos, and Michael Dennin. Folding langmuir monolayers. Physical review letters, 89(14):146107, 2002. [79] Andrew Kozbial, Zhiting Li, Caitlyn Conaway, Rebecca McGinley, Shonali Dhin- gra, Vahid Vahdat, Feng Zhou, Brian D'Urso, Haitao Liu, and Lei Li. Study on the surface energy of graphene by contact angle measurements. Langmuir, 30(28):8598–8606, 2014. [80] Laura J Cote, Franklin Kim, and Jiaxing Huang. Langmuir- blodgett assem- bly of graphite oxide single layers. Journal of the American Chemical Society, 131(3):1043–1049, 2009. [81] Keith R Paton, Eswaraiah Varrla, Claudia Backes, Ronan J Smith, Umar Khan, Arlene O'Neill, Conor Boland, Mustafa Lotya, Oana M Istrate, Paul King, et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nature materials, 13(6):624–630, 2014. [82] Anna Kalosi, Maksym Demydenko, Michal Bodik, Jakub Hagara, Mario Kot- lar, Dmytro Kostiuk, Yuriy Halahovets, Karol Vegso, Alicia Marin Roldan, Gu- lab Singh Maurya, et al. Tailored langmuir–schaefer deposition of few-layer mos2 nanosheet films for electronic applications. Langmuir, 35(30):9802–9808, 2019. [83] María Mercedes Velázquez, Teresa Alejo, David López-Díaz, Beatriz Martin- Garcia, and María Dolores Merchán. Langmuir-blodgett methodology: A versa- tile technique to build 2d material films. Two-dimensional Materials-Synthesis, Characterization and Potential Applications, pages 22–42, 2016. [84] Liming Zheng, Yanan Chen, Ning Li, Jincan Zhang, Nan Liu, Junjie Liu, Wenhui Dang, Bing Deng, Yanbin Li, Xiaoyin Gao, et al. Robust ultraclean atomically thin membranes for atomic-resolution electron microscopy. Nature Communications, 11(1):541, 2020. [85] Jatin Kashyap, Eui-Hyeok Yang, and Dibakar Datta. Computational study of the water-driven graphene wrinkle life-cycle towards applications in flexible electron- ics. Scientific reports, 10(1):11315, 2020. [86] Aidan P Thompson, H Metin Aktulga, Richard Berger, Dan S Bolintineanu, W Michael Brown, Paul S Crozier, Pieter J In’t Veld, Axel Kohlmeyer, Stan G Moore, Trung Dac Nguyen, et al. Lammps-a flexible simulation tool for particle- based materials modeling at the atomic, meso, and continuum scales. Computer Physics Communications, 271:108171, 2022. [87] Alessandro Crisafulli, Ali Khodayari, Shahin Mohammadnejad, and Matteo Fasano. Sliding dynamics of parallel graphene sheets: Effect of geometry and van der waals interactions on nano-spring behavior. Crystals, 8(4):149, 2018. [88] Changgu Lee, Xiaoding Wei, Jeffrey W Kysar, and James Hone. Measurement of the elastic properties and intrinsic strength of monolayer graphene. science, 321(5887):385–388, 2008. [89] Ali R Ranjbartoreh, Bei Wang, Xiaoping Shen, and Guoxiu Wang. Advanced me- chanical properties of graphene paper. Journal of Applied Physics, 109(1), 2011. [90] M TG. ezger, the rheology handbook. For users of rotational and oscillatory rheometers. 2nd revised edition, Vincentz Network GmbH & Co. KG, Hannover, pages 171–172, 2006. [91] J Plateau. Statique experimentale et. theorique des liquids soumie aux seules forces. Cauthier Villars, Paris, 1:450–495. [92] Carl Marangoni. Ueber die ausbreitung der tropfen einer flüssigkeit auf der oberfläche einer anderen. Annalen der Physik, 219(7):337–354, 1871. [93] Jan Pelipenko, Julijana Kristl, Romana Rošic, Saša Baumgartner, and Petra Kocbek. Interfacial rheology: an overview of measuring techniques and its role in dispersions and electrospinning. Acta Pharmaceutica, 62(2):123–140, 2012. [94] F Ravera, L Liggieri, and G Loglio. Dilational rheology of adsorbed layers by oscillating drops and bubbles. Interfacial Rheology; Miller, R., Liggieri, L., Eds, pages 137–177, 2009. [95] R.J. Crawford. Chapter 2 - mechanical behaviour of plastics. In R.J. Crawford, ed- itor, Plastics Engineering (Third Edition), pages 41–167. Butterworth-Heinemann, Oxford, third edition edition, 1998. [96] Shun-ichiro Karato. Rheology of the earth’s mantle: A historical review. Gondwana Research, 18(1):17–45, 2010. [97] P Cicuta and EM Terentjev. Viscoelasticity of a protein monolayer from anisotropic surface pressure measurements. The European Physical Journal E, 16:147–158, 2005. [98] MG Basavaraj, GG Fuller, Jan Fransaer, and Jan Vermant. Packing, flipping, and buckling transitions in compressed monolayers of ellipsoidal latex particles. Langmuir, 22(15):6605–6612, 2006. [99] Katharine L Harrison, Laura B Biedermann, and Kevin R Zavadil. Mechanical properties of water-assembled graphene oxide langmuir monolayers: guiding con- trolled transfer. Langmuir, 31(36):9825–9832, 2015. [100] Shigenori Kamada, Hirotaka Nomoto, Katsutoshi Fukuda, Tadashi Fukawa, Hiro- fusa Shirai, and Mutsumi Kimura. Noncovalent wrapping of chemically modified graphene with π-conjugated disk-like molecules. Colloid and Polymer Science, 289:925–932, 2011. [101] Alma J Mendoza, Eduardo Guzmán, Fernando Martínez-Pedrero, Hernán Ritacco, Ramón G Rubio, Francisco Ortega, Victor M Starov, and Reinhard Miller. Particle laden fluid interfaces: Dynamics and interfacial rheology. Advances in colloid and interface science, 206:303–319, 2014. [102] Hani Hilles and Francisco Monroy. Dilational creep compliance in langmuir poly- mer films. Soft Matter, 7(17):7790–7796, 2011. [103] J Benjamins and EH Lucassen-Reynders. Surface dilational rheology of proteins adsorbed at air/water and oil/water interfaces. Studies in interface science, 7:341– 384, 1998. [104] Francisco Monroy, Francisco Ortega, Ramón G Rubio, and Manuel G Velarde. Sur- face rheology, equilibrium and dynamic features at interfaces, with emphasis on efficient tools for probing polymer dynamics at interfaces. Advances in colloid and interface science, 134:175–189, 2007. [105] Cheng Gong and Xiang Zhang. Two-dimensional magnetic crystals and emergent heterostructure devices. Science, 363(6428):eaav4450, 2019. [106] Kenneth S Burch, David Mandrus, and Je-Geun Park. Magnetism in two- dimensional van der waals materials. Nature, 563(7729):47–52, 2018. [107] Lioz Etgar, Wei Zhang, Stefanie Gabriel, Stephen G Hickey, Md K Nazeeruddin, Alexander Eychmüller, Bin Liu, and Michael Grätzel. High efficiency quantum dot heterojunction solar cell using anatase (001) tio2 nanosheets. Advanced Materials, 24(16):2202–2206, 2012. [108] Lili Yu, Yi-Hsien Lee, Xi Ling, Elton JG Santos, Yong Cheol Shin, Yuxuan Lin, Madan Dubey, Efthimios Kaxiras, Jing Kong, Han Wang, et al. Graphene/ mos2 hybrid technology for large-scale two-dimensional electronics. Nano letters, 14(6):3055–3063, 2014. [109] Zhongbin Wu, Yuan Liu, Erjuan Guo, Ghader Darbandy, Shu-Jen Wang, René Hübner, Alexander Kloes, Hans Kleemann, and Karl Leo. Efficient and low- voltage vertical organic permeable base light-emitting transistors. Nature Materials, 20(7):1007–1014, 2021. [110] Chih-Jen Shih, Shangchao Lin, Michael S Strano, and Daniel Blankschtein. Un- derstanding the stabilization of liquid-phase-exfoliated graphene in polar solvents: molecular dynamics simulations and kinetic theory of colloid aggregation. Journal of the American Chemical Society, 132(41):14638–14648, 2010. [111] Luna Imperiali, Ken-Hsuan Liao, Christian Clasen, Jan Fransaer, Christopher W Macosko, and Jan Vermant. Interfacial rheology and structure of tiled graphene oxide sheets. Langmuir, 28(21):7990–8000, 2012. [112] Yu-Jiun Lin, Sourav Barman, Peng He, Zhuqing Zhang, Gordon F Christopher, and Sibani Lisa Biswal. Combined interfacial shear rheology and microstructure visu- alization of asphaltenes at air-water and oil-water interfaces. Journal of Rheology, 62(1):1–10, 2018. [113] Chunhui Lu, Chenjing Quan, Keyu Si, Xiang Xu, Chuan He, Qiyi Zhao, Yongjie Zhan, and Xinlong Xu. Charge transfer in graphene/ws2 enhancing the saturable absorption in mixed heterostructure films. Applied Surface Science, 479:1161– 1168, 2019. [114] Rubin Xiao, Changyong Lan, Yongjun Li, Cheng Zeng, Tianying He, Shuai Wang, Chun Li, Yi Yin, and Yong Liu. High performance van der waals graphene–ws2– si heterostructure photodetector. Advanced Materials Interfaces, 6(24):1901304, 2019. [115] Mengzhi Zhang, Chunmei Tang, Wang Cheng, and Ling Fu. The first-principles study on the performance of the graphene/ws2 heterostructure as an anode material of li-ion battery. Journal of Alloys and Compounds, 855:157432, 2021. [116] Jan Groenewold. Wrinkling of plates coupled with soft elastic media. Physica A: Statistical Mechanics and its Applications, 298(1-2):32–45, 2001. [117] Nazmul Hasan, Karsten Busse, Asad Ullah, Hazrat Hussain, and Jörg Kressler. For- mation of surface wrinkles in collapsed langmuir films of a polyhedral oligomeric silsesquioxane containing diblock copolymer. Langmuir, 37(45):13399–13408, 2021. [118] Feng Wang, Zhenxing Wang, Lei Yin, Ruiqing Cheng, Junjun Wang, Yao Wen, Tofik Ahmed Shifa, Fengmei Wang, Yu Zhang, Xueying Zhan, et al. 2d library beyond graphene and transition metal dichalcogenides: a focus on photodetection. Chemical Society Reviews, 47(16):6296–6341, 2018. [119] A Rogalski, M Kopytko, and PJAPR Martyniuk. Two-dimensional infrared and terahertz detectors: Outlook and status. Applied Physics Reviews, 6(2), 2019. [120] Liubov A Belyaeva, Wangyang Fu, Hadi Arjmandi-Tash, and Grégory F Schneider. Molecular caging of graphene with cyclohexane: transfer and electrical transport. ACS Central Science, 2(12):904–909, 2016. [121] Ahmed A Al-Amiery, Mohammed A Fayad, Hussain A Hussain, Waleed K Al- Azzawi, Jabbar K Mohammed, and Hassan Sh Majdi. Interfacial engineering for advanced functional materials: Surfaces, interfaces, and applications. Results in Engineering, page 102125, 2024. [122] Zhenmin Li, Baosen Mi, Xun Ma, Ping Liu, Fengcang Ma, Ke Zhang, Xiaohong Chen, and Wei Li. Review of thin-film resistor sensors: Exploring materials, classi- fication, and preparation techniques. Chemical Engineering Journal, page 147029, 2023. [123] Alexander D Fuchs, Johannes AF Lehmeyer, Heinz Junkes, Heiko B Weber, and Michael Krieger. Nomad camels: Configurable application for measurements, ex- periments and laboratory systems. arXiv preprint arXiv:2402.07548, 2024. [124] Sophocles J Orfanidis. Electromagnetic waves and antennas. 2002. [125] David J Griffiths. Introduction to electrodynamics. Cambridge University Press, 2023. [126] David M Pozar. Microwave engineering: theory and techniques. John wiley & sons, 2021. [127] Wikimedia Commons. File:two-port network.png — wikimedia commons, the free media repository, 2020. [Online; accessed 27-September-2024]. [128] Donald W Metzger. One-port de-embedding using time domain substitution, September 29 2011. US Patent App. 13/048,008. [129] Arne Buchter, Johannes Hoffmann, Alexandra Delvallée, Enrico Brinciotti, Dim- itri Hapiuk, Christophe Licitra, Kevin Louarn, Alexandre Arnoult, Guilhem Al-muneau, François Piquemal, et al. Scanning microwave microscopy applied to semiconducting gaas structures. Review of Scientific Instruments, 89(2), 2018. [130] Fangzhu Qing, Yang Shu, Linsen Qing, Yuting Niu, He Guo, Shuyi Zhang, Chunlin Liu, Changqing Shen, Wanli Zhang, Samuel S Mao, et al. A general and simple method for evaluating the electrical transport performance of graphene by the van der pauw–hall measurement. Science bulletin, 63(22):1521–1526, 2018. [131] Yueyue Hui, Rongguo Song, and Daping He. Filtering antenna array based to graphene-assembled films for 5g applications. In 2022 IEEE MTT-S International Wireless Symposium (IWS), volume 1, pages 1–3. IEEE, 2022. [132] Rongguo Song, Ruixue Zhang, Haoran Zu, and Daping He. Graphene assem- bled films for radio frequency and microwave technology. Accounts of Materials Research, 2024. [133] Eduardo Tomanik, Wania Christinelli, Roberto M Souza, Vanessa L Oliveira, Fabio Ferreira, and Boris Zhmud. Review of graphene-based materials for tribological engineering applications. Eng, 4(4):2764–2811, 2023. [134] Gabriel Saada, Michael Layani, Avi Chernevousky, and Shlomo Magdassi. Hydroprinting conductive patterns onto 3d structures. Advanced Materials Technologies, 2(5):1600289, 2017. [135] Steven Vandebril, Aly Franck, Gerald G Fuller, Paula Moldenaers, and Jan Ver- mant. A double wall-ring geometry for interfacial shear rheometry. Rheologica Acta, 49:131–144, 2010. [136] Sebastian Rode, R Stark, Jannis Lübbe, Lutz Tröger, Jens Schütte, K Umeda, Kei Kobayashi, Hirofumi Yamada, and Angelika Kühnle. Modification of a commer- cial atomic force microscopy for low-noise, high-resolution frequency-modulation imaging in liquid environment. Review of Scientific Instruments, 82(7), 2011. [137] Poonam Subhash Borhade, Tawat Chen, Ding-Rui Chen, Yu-Xiang Chen, Yu-Chi Yao, Zhi-Long Yen, Chun Hsiung Tsai, Ya-Ping Hsieh, and Mario Hofmann. Self- expansion based multi-patterning for 2d materials fabrication beyond the litho- graphical limit. Small, 20(22):2311209, 2024. [138] Dinh-Tuan Nguyen, Ya-Ping Hsieh, and Mario Hofmann. Optical characterization of graphene and its derivatives: An experimentalist's perspective. Carbon-related Materials in Recognition of Nobel Lectures by Prof. Akira Suzuki in ICCE, pages 27–59, 2017. [139] Axel Eckmann, Alexandre Felten, Artem Mishchenko, Liam Britnell, Ralph Krupke, Kostya S Novoselov, and Cinzia Casiraghi. Probing the nature of defects in graphene by raman spectroscopy. Nano letters, 12(8):3925–3930, 2012. [140] Claudia Backes, Keith R Paton, Damien Hanlon, Shengjun Yuan, Mikhail I Kat- snelson, James Houston, Ronan J Smith, David McCloskey, John F Donegan, and Jonathan N Coleman. Spectroscopic metrics allow in situ measurement of mean size and thickness of liquid-exfoliated few-layer graphene nanosheets. Nanoscale, 8(7):4311–4323, 2016. [141] Yen Nguyen, Hui-Ping Chang, Meng-Syun Hsieh, Ian Daniell Santos, Sheng- Ding Chen, Ya-Ping Hsieh, and Mario Hofmann. Characterizing carrier transport in nanostructured materials by force-resolved microprobing. Scientific Reports, 10(1):14177, 2020. [142] JJ Vlassak and WD Nix. A new bulge test technique for the determination of young’s modulus and poisson’s ratio of thin films. Journal of materials research, 7(12):3242–3249, 1992. [143] Antonio Politano and Gennaro Chiarello. Probing the young's modulus and pois- son's ratio in graphene/metal interfaces and graphite: a comparative study. Nano Research, 8:1847–1856, 2015. [144] Alexander Arsenovic, Julien Hillairet, Jackson Anderson, Henrik Forstén, Vincent Rieß, Michael Eller, Noah Sauber, Robert Weikle, William Barnhart, and Franz Forstmayr. scikit-rf: An open source python package for microwave network cre- ation, analysis, and calibration [speaker's corner]. IEEE Microwave Magazine, 23(1):98–105, 2021. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96150 | - |
| dc.description.abstract | 石墨烯衍生材料因其在多種應用中的潛力而備受關注,包括功能性塗層、電子設備和膜分離。這些材料的質量和性能取決於組裝技術,該技術需能精確控制層數及薄膜的密度,並能夠在大面積上保持均勻性。雖然化學氣相沉積(CVD)技術能夠有效生產單層石墨烯,但其受限於高昂的能源成本、有限的基材選擇以及困難的轉移過程。傳統的實驗室方法如滴鑄、旋塗和過濾等,難以在大面積上實現納米尺度的薄膜厚度控制和均勻性。我們主張,在界面上組裝二維材料提供了一個有效的媒介,能夠製備並研究這些薄膜的形成,以應對新興應用需求。
我們觀察到,通過 Langmuir-Blodgett(LB)技術在氣-水界面上側向限制石墨烯片,懸浮片中的納米尺度皺褶在超過臨界表面壓力後導致了意想不到的折疊轉變,從而展示了薄膜增強的效果。折疊的出現通過原位布儒斯特角反射法和非原位顯微技術得到證實,並形成了獨特的“z-層壓"納米結構。我們將這一知識擴展到液-液界面中二維異質結薄膜的形成,因為 z-層壓石墨烯適合作為其他剪切剝離材料的基礎。為了展示我們 z-層壓薄膜的特性,我們引入了一種新穎的探測技術,稱為接觸電阻斷層成像(cRT)。該技術為表徵具有納米尺度不均勻性的材料的導電性和接觸性質提供了一種全新的方法。我們展示了 z-層壓方法在基於石墨烯的結構材料、摩擦層和功能性電化學塗層應用中的潛力。z-層壓石墨烯的完全可回收性為可持續納米結構材料開辟了新的途徑。我們還展示了在液-液界面組裝的石墨烯-W S2 異質結薄膜的可行性,並展示了其作為光電探測器的應用。 最後,我們開發了一種新的方法來表徵我們的界面組裝薄膜。該方法專注於具有納米尺度不均勻性的薄膜,如折疊和皺紋,表徵其導電性和接觸性質。傳統方法通常需要多個樣品和複雜的程序,對於基礎研究構成挑戰。我們利用一種新開發的雙微探針系統,引入了微波阻抗斷層成像(MIT)技術。與傳統方法不同,MIT 利用微波信號來測試樣品,允許非侵入性且高解析度地表徵導電性和接觸性質。這種技術可以測量表面電導率,同時映射納米材料內部的空間電阻變化,這在該領域是前所未有的。與傳統的微波阻抗顯微鏡(MIM)技術相比,MIT 提供了若干優勢:單次測量即可評估接觸質量、與納米電極兼容、更簡單的製造過程以及在環境條件下進行測量。通過模擬技術,我們提取了關鍵的材料參數,如電容映射和局部載流子濃度,從而闡明了納米尺度接觸行為。這一進展對於理解和優化界面薄膜及其他材料的性質具有深遠的影響。 | zh_TW |
| dc.description.abstract | Materials derived from graphene have gained significant attention for applications in functional coatings, electronic devices, and membrane separations. Their quality depends on precise assembly techniques to control layer numbers and film density over large areas. While Chemical Vapor Deposition (CVD) effectively produces single-layer graphene, it is limited by high energy costs and difficult transfer processes. Laboratory methods like drop-casting and spin-coating also fall short in controlling film thickness and uniformity on a nanometer scale. We propose that assembling 2D materials at interfaces offers an effective medium for fabricating and studying films for emerging applications.
Using the Langmuir-Blodgett (LB) technique, we confined graphene flakes at the air-water interface, inducing nanoscale buckling and folding transitions beyond critical surface pressure. This process strengthened the film, resulting in a unique “z-laminated" nanostructure, confirmed through in-situ Brewster-angle reflectivity and ex-situ microscopy. The z-laminated graphene structure serves as a robust platform for depositing other materials, such as shear-exfoliated films. We then demonstrate the formation of graphene-W S2 heterojunction films at the liquid-liquid interface, showing their potential as photodetectors. Finally, we developed a method for characterizing interface-assembled films. This technique relies on measuring contact properties in materials with nanoscale inhomogeneities. This approach allows for non-invasive, high-resolution characterization of surface conductance and spatial resistance variations, presenting a significant advancement in understanding and optimizing material properties in graphene-based films. These film assemblies present promising applications in graphene-based structural materials, tribo-logical layers, and functional electrochemical coatings, with the added benefit of complete recyclability. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-15T16:11:09Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-11-15T16:11:09Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements iii 摘要 v Abstract vii Contents ix List of Figures xiii List of Tables xvii Denotation xix Chapter 1 Introduction 1 Chapter 2 Background 5 2.1 Brief History of 2D materials . . . . . . . . . . . . . . . . . . . . . 5 2.2 Synthesis Methods of 2-D Materials . . . . . . . . . . . . . . . . . . 7 2.2.1 Bottom-up Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.2 Top-down Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.2.1 Mechanical Exfoliation . . . . . . . . . . . . . . . . . 10 2.2.2.2 Electrochemical Exfoliation . . . . . . . . . . . . . . . 10 2.2.2.3 Shear-Exfoliation . . . . . . . . . . . . . . . . . . . . 11 2.2.3 Graphene Thin-film Assembly . . . . . . . . . . . . . . . . . . . . 11 2.2.3.1 Langmuir-Blodgett Deposition . . . . . . . . . . . . . 12 Chapter 3 Characterization and Analysis of Z-laminated Films 21 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.1 Shear Exfoliation of Graphite . . . . . . . . . . . . . . . . . . . . . 23 3.2.2 Brewster Angle Microscopy . . . . . . . . . . . . . . . . . . . . . 23 3.2.2.1 Theory behind BAM . . . . . . . . . . . . . . . . . . . 24 3.2.2.2 Brewster Angle Microscopy Analysis . . . . . . . . . . 25 3.2.3 Liquid-Interface-Directed-Assembly of Graphene . . . . . . . . . . 25 3.2.4 Morphology Analysis of SE Graphene Film . . . . . . . . . . . . . 25 3.2.4.1 Atomic Force Microscopy . . . . . . . . . . . . . . . . 26 3.2.4.2 Scanning and Transmission Electron Microscopy . . . 26 3.2.5 Molecular Dynamic Simulation . . . . . . . . . . . . . . . . . . . . 27 3.2.6 Finite Element Method Simulation . . . . . . . . . . . . . . . . . . 27 3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 28 Chapter 4 Rheology of Z-laminated Graphene Flakes at the Air-Water Interface 41 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.1.1 Equations in Interfacial Rheology . . . . . . . . . . . . . . . . . . 42 4.2 Barrier Oscillation Study of Langmuir-Blodgett Assembled 2D materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.3 Heterojunction films at Interfaces . . . . . . . . . . . . . . . . . . . 50 4.3.1 Interaction between Particles at the Liquid-liquid interface . . . . . 50 4.3.2 Hexane-NMP Interface Preparation . . . . . . . . . . . . . . . . . . 51 4.3.2.1 Results and Discussion . . . . . . . . . . . . . . . . . 51 Chapter 5 Nanoscale Characterization of 2D Materials 55 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.2 Electrical Characterization with Resonant Feedback Loop Integration 56 5.3 Application of Impedance Spectroscopy to 2D Materials . . . . . . . 59 5.3.1 Maxwell’s Equations . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.3.2 2-port networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.3.2.1 Scattering matrix, [S] . . . . . . . . . . . . . . . . . . 65 5.3.3 Network Analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.3.3.1 Error sources . . . . . . . . . . . . . . . . . . . . . . . 66 5.3.3.2 De-embedding using Time-Domain Substitution . . . . 67 Chapter 6 Applications and Future Work 75 6.1 Applications of Z-laminated films . . . . . . . . . . . . . . . . . . . 75 6.1.1 Z-laminated graphene films extended to rheological studies . . . . . 79 6.2 Integrating VNA measurement to Smaract probe set-up . . . . . . . . 80 References 83 Appendix A — Supplementary Infomation for z-laminated films 103 A.1 Raman Spectroscopy of Langmuir films . . . . . . . . . . . . . . . . 103 A.2 Indentation Experiment . . . . . . . . . . . . . . . . . . . . . . . . . 105 Appendix B — Supplementary Information for Scripts 107 B.1 Smaract Probe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 B.2 VNA Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 | - |
| dc.language.iso | en | - |
| dc.subject | 複合材料 | zh_TW |
| dc.subject | 可回收 | zh_TW |
| dc.subject | 複合材料 | zh_TW |
| dc.subject | 膜 | zh_TW |
| dc.subject | 層壓石墨烯 | zh_TW |
| dc.subject | 可回收二維材料 | zh_TW |
| dc.subject | 二維材料 | zh_TW |
| dc.subject | 層壓石墨烯 | zh_TW |
| dc.subject | 膜 | zh_TW |
| dc.subject | 2D materials | en |
| dc.subject | membranes | en |
| dc.subject | laminated graphene | en |
| dc.subject | composites | en |
| dc.subject | recyclable | en |
| dc.title | 石墨烯納米片薄膜的組裝與表徵:高強度膜和功能性塗層 | zh_TW |
| dc.title | Assembly and Characterization of Graphene Nanoflake Films for Strong Membranes and Functional Coatings | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 謝雅萍;林靖衛;陳永芳;梁啟德 | zh_TW |
| dc.contributor.oralexamcommittee | Ya-Ping Hsieh;Ching-Wei Lin;Yang-Fang Chen;Chi-Te Liang | en |
| dc.subject.keyword | 二維材料,層壓石墨烯,膜,複合材料,可回收二維材料,層壓石墨烯,膜,複合材料,可回收, | zh_TW |
| dc.subject.keyword | 2D materials,laminated graphene,membranes,composites,recyclable, | en |
| dc.relation.page | 129 | - |
| dc.identifier.doi | 10.6342/NTU202404503 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-10-24 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf | 21.46 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
